
ATHABASCA UNIVERSITY

Enterprise Integration with Messaging

BY

Anuruthan Thayaparan

A thesis essay submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE in INFORMATION SYSTEMS

Athabasca, Alberta

February, 2011

© Anuruthan Thayaparan 2011

DEDICATION
I would like to dedicate this work to my lovely wife and my best friend for all her support
and encouragement throughout this MSc. Program and the writing of this essay.

ii

ABSTRACT

Integration architects and developers are faced with many challenges when integrating
disparate enterprise applications. First off, it is necessary to come up with the
integration solution that meets organization’s business needs. At the same time, they
need to make sure that the solution requires minimum or no changes to the existing
applications, so that cost of integration is minimal to the organization. This means the
integration solution has to be technology neutral so that applications and systems built
using different platforms and languages can be easily integrated. In addition, the
systems integrated need to be loosely coupled so that changes to one system can be
handled easily without impacting others. In order to tackle integration challenges like
these, knowing and applying the appropriate integration styles and patterns is
necessary. In addition, architects and developers need to be able to map different
architectural design to appropriate technology and products. This thesis essay
conducts a review on many of the integration architectures and patterns and how they
help solve some of these challenges. It also reviews some of the technologies and
products that are used to implement enterprise integration.

More specifically, the essay takes an in-depth look into enterprise integration with
respect to messaging by reviewing various messaging architectures, patterns, and
technology. So, there are three main objectives for this thesis. The first objective is to
research and evaluate some of the common integration architectures. The second
objective is to review and analyze various integration patterns, specifically messaging
and interaction patterns, and discuss how they help solve many common integration
problems. The third objective is to discuss current technologies and products that are
being used to implement enterprise integration based on proven architectures and
patterns.

iii

TABLE OF CONTENTS

CHAPTER 1! 1

INTRODUCTION! 1

Purpose! 1

Scope! 1

Research Methodology! 1

Thesis Essay Organization! 2

What is Enterprise Integration ?! 2

Integration Styles! 3

What are Design Patterns ?! 4

CHAPTER 2! 6

INTEGRATION ARCHITECTURES! 6

2.1 Point-to-Point! 6

2.2 Hub-and-Spoke architecture! 7

2.3 Bus architecture! 8

2.4 Service Oriented Architecture (SOA)! 9

2.5 Event Driven Architecture (EDA)! 11

2.6 Enterprise Service Bus (ESB)! 13

CHAPTER 3! 15

MESSAGING PATTERNS! 15

3.1 Synchronous messaging! 15

3.2 Asynchronous messaging! 15

3.3 Messaging Patterns! 16

iv

CHAPTER 4! 22

INTERACTION PATTERNS! 22

4.1 Common Interaction Patterns! 22

4.2 Enforcing the rules of the Conversation! 26

4.2.1 Orchestration! 26

4.2.2 Choreography! 27

CHAPTER 5! 29

MESSAGING TECHNOLOGIES! 29

5.1 Extensible Markup language (XML)! 29

5.2 Web Services! 29

5.3 RPC! 30

5.4 REST! 30

5.5 Middleware Technology for Messaging! 30

5.6 Java Messaging Service (JMS)! 31

CHAPTER 6! 34

MESSAGING MIDDLEWARE PRODUCTS! 34

6.1 Mule ESB! 35

6.1.1 Mule ESB Messaging Architecture! 35

6.2 TIBCO Middleware Products! 38

6.2.1 TICBO Enterprise Message Service (EMS)! 40

CHAPTER 7! 42

CONCLUSIONS AND RECOMMENDATIONS! 42

7.1 Conclusions! 42

7.2 Recommendations! 44

v

REFERENCES! 45

vi

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank the Athabasca University Faculty of Science
and Technology at the School of Computing and Information Systems for preparing me
to write this thesis essay and for providing me the access to online library to conduct
this research. Special thanks goes out to Dr. Qing Tan for accepting the task of being
the supervisor and providing me his guidance. Finally, I would like to recognize and
offer my thanks to all the software professions and researchers who have published
their work in the field of Enterprise Integration.

vii

LIST OF TABLES

Table 1 - ESB products and their vendors 34

viii

LIST OF FIGURES

Figure 1 - File Transfer 3

Figure 2 - Shared Database 3

Figure 3 - Remote Procedure Invocation 4

Figure 4 - Messaging Bus 4

Figure 5 - Point-to-Point Integration 6

Figure 6 - Meshed point-to-point connections 7

Figure 7 - Hub-and-spoke architecture with central message broker and
adapters

8

Figure 8: Bus architecture with central messaging backbone 9

Figure 9 - SOA and its associated Entities 10

Figure 10 - Enterprise Integration with SOA and EDA 12

Figure 11 - Enterprise Service Bus and Service containers 13

Figure 12 - Synchronous vs Asynchronous Messaging 16

Figure 13 - Message Channel 17

Figure 14 - Message Router 17

Figure 15 - Message Translator 18

Figure 16 - Message Enricher 18

Figure 17 - Message Filter 19

Figure 18 - Message Splitter 19

Figure 19 - Message Router 19

Figure 20 - Message Sequencer 20

Figure 21 - Message Re-sequencer 20

Figure 22 - Message Endpoint 21

Figure 23 - Request-Reply 23

Figure 24 - Request-Reply with Retry 23

ix

Figure 25 - Dynamic Discovery 24

Figure 26 - Subscribe-Notify 24

Figure 27 - Renewing Interest 25

Figure 28 - Reaching Consensus 25

Figure 29 - Web service interaction with Orchestration 27

Figure 30 - Web service interaction with Choreography 28

Figure 31 - Mule Architecture separated into three main layers 36

Figure 32 - Mule Endpoint configuration elements 38

Figure 33 - TIBCO Product suite 39

Figure 34 - Point-to-Point routing in EMS 40

Figure 35 - Publish-Subscribe routing in EMS 41

Figure 36 - Request-Reply interaction pattern in EMS 41

x

CHAPTER 1

INTRODUCTION

Purpose

The main purpose of this research is to review and analyze architectures, patterns, and
technology that can be applied to solve common problems in enterprise integration.
The essay should help integration architects and developers to tackle common
problems and challenges that arise when integrating enterprise systems. In addition,
the significance of this research is realized by the benefits of application integration to
organizations. Some of the these benefits will be highlighted in this chapter. The end
result of this research should yield both theoretical and practical foundation required to
design and implement enterprise integration solutions.

Scope

As the discovery of integration architectures and patterns is an ongoing phenomena, the
patterns reviewed in this essay are by no means a complete catalogue. The research
may only cover a subset of the common and proven integration patterns and
architectures that have been discovered by researchers and practitioners in this field.
The computing platforms, languages and products described in this essay are used to
simply illustrate how those architectures and patterns are realized in the implementation
phase. Therefore, a review of complete set of the existing technologies and products
used in integrating enterprise systems is not the goal of this essay. The aim is to try and
map some of the common integration patterns and architectures to implementing
technology. Although many integration styles are briefly reviewed, the primary focus
throughout the essay is particularly on messaging.

Research Methodology

The research for this essay is primarily conducted by reviewing existing literature from
peer reviewed articles, journals, documentations published by major middleware
product vendors, and books authored by software professionals as well as researchers
on the relevant subject matter.

1

Thesis Essay Organization

The thesis essay can be divided into two main parts. The first part of this thesis will
focus on the theoretical and design aspects of Enterprise Integration. Some of the most
proven Integration architectures and patterns have been categorized and described.
Chapters 2, 3, and 4 are dedicated to the first part of the thesis. Chapter 2 will describe
some of the common integration architectures. In Chapter 3, various messaging
patterns are discussed and how they help solve common integration problems.
Interaction patterns are discussed in Chapter 4. The use of interaction patterns assist
with designing integrated work-flows that span multiple systems that are used within the
context of a specific business process. The second part will focus on the
implementation technologies in EI. It identifies some of the available technologies and
products available that are used to implement integration solutions by leveraging those
architectures and patterns discussed in the first part.

What is Enterprise Integration ?

Enterprise Integration (EI) is one of the important and inviting topics of research in the
field of computing and information technology today. It is also one of the most
challenging tasks as integration problems can occur at the business process level as
well as at IT level. At the business process level, the integration problems occur when
different modeling languages are used to represent the different views of an enterprise.
At the IT architecture level, the problems occur when integrating two or more different
applications [1]. In this essay, the focus is on how to solve integration problems that
occur at the IT architecture level.

Business applications used in today’s industries do not live in isolation. They need to
work together to satisfy users’ demands. Users expect quick and easy access to all
business functions that an organization can offer. They do not want to be concerned
about which system may provide a particular functionality. This requires disparate
systems to be connected to each other into a larger solution and the required
functionality exposed through a common interface. EI is about connecting disparate
systems together within an enterprise or even systems across multiple enterprises,
meaning that an organization may integrate with their business partners such as
suppliers and vendors. It is essentially meant to solve the problem of data interaction
and sharing between existing systems [2]. It ensures that different functional units in
the organization are connected in a way that they can share information and business
processes across the organization. This means that right people and the right
processes have the right information at the right time. In other words, implementing EI
should effectively increase productivity, reduce cost, eliminate data duplication, provide
competitive advantage, and ultimately should result in increased profitability for the
organization. So, the relevance of this research is realized in part by the benefits of EI
to organizations in various industries. In addition, the research should also assist

2

integration developers and architects to tackle common problems and challenges that
arise when integrating enterprise systems.

Integration Styles

Designing and implementing integration solutions can be very complex. There may be
many possible solutions to the problem. Even after choosing what might seem to be the
best possible solution, it will not typically be known until many months or even years
after as new changes and additions to the the original architecture may be required.
Over the years, application integration styles have evolved. Some of the earlier
integration styles, but may still be appropriate in many systems today, are File Transfer,
Shared Database, and Remote Procedure Invocation. Currently messaging is used
more commonly as the choice of integration and leveraged by various integration
architectures and solutions today.

a) File Transfer - In order to share data among different applications, the applications
produce files that may be transferred to one or more different target applications to be
consumed. In the middle, the files may get parsed and transformed by a separate
application to fit the needs of the target system. This is also known as ETL (Extract,
Transform, Load) process.

Figure 1 - File Transfer [17]

b) Shared Database - Integration can also be enabled by using a common database
that can be used by multiple applications where the data is stored and consumed by
those applications.

Figure 2 - Shared Database [17]

3

c) Remote Procedure Invocation - Applications expose some of their functionalities so
that they can be invoked through remote procedure calls by other applications remotely.
This enables exchange of data between those applications.

Figure 3 - Remote Procedure Invocation [17]

d) Messaging - In this thesis, the integration style in focus is Messaging. Based on
messaging, several integration architectures and patterns will be discussed. They
can guide solution developers to design and architect EI that enable data sharing
among different applications by simply exchanging messages. The integration using
messaging is usually achieved through the use of some form of Middleware
technology and products. The Middleware provides the mechanism and the platform
to enable data transport, data transformation, routing, and so on.

Figure 4 - Messaging Bus [17]

Before discussing the various design patterns used to develop EI solutions, the next
section provides some background on design pattens first.

What are Design Patterns ?

In software engineering, design patterns are known as solutions to commonly occurring
problems. Patterns are an abstract representation of an architecture, in the sense that
they can be realized in multiple concrete forms [3]. For example, the publish-subscribe
pattern describes an abstract mechanism for loosely coupled integration and many-to-
many communications between publishers of messages and subscribers who wish to

4

receive those messages. Patterns do not use specific technologies, as they focus on
the architectural concepts and not the implementation technology. These patterns are
captured from experts’ knowledge in the fields such as object-oriented design and
enterprise application architectures. As there is no “one size fits all answers” to the
challenges and problems in these fields, each pattern handles a specific design
problem, describes the problem, discusses the design considerations, and presents an
elegant solution to solve the problem. According to James Noble, “Patterns are crucial
to the art and science of software design and programming, rooted in hard-won practice
and experience” [4]. Since patterns are derived from real-life practice, each pattern
incorporates the experience gained by senior developers and architects from repeatedly
building solutions and learning from their mistakes. Therefore, the patterns are
categorized and documented some time after they have been practiced and proven in
the industries. The patterns discussed in this report are by no means complete as there
are new patterns being discovered as part of experts’ daily job facing different
challenges in different customer facing environments and their projects.

One of the very first books on software design patterns was published in 1995. This
book was titled, Design Patterns: Elements of Reusable Object-Oriented Software, and
was written by Eric Gamma et al [5]. This book has actually been known to bring design
patterns into mainstream. In 2002, Martin Fowler published a book titled, Patterns of
Enterprise Application Architecture [6]. This book mainly covered patterns collections
that focused on enterprise application architecture. The patterns presented in this book
described how to layer an enterprise application, how to organize domain logic, how to
incorporate domain logic to a relational database, how to design a web-based
presentation, and some important principles in distributed design. A catalog of
application architecture patterns can be viewed at http://martinfowler.com/eaaCatalog.

In 2003, Gregor Hohpe teamed up with Bobby Woolf to write a book on Enterprise
integration patterns. This book titled, “Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions”, describes integration solutions across
many implementation technologies [7]. So, the book actually goes beyond just teaching
the patterns, but also maps them to some of the available technologies. It describes 65
distinct integration patterns with consistent vocabulary and visual notations. This book
also plays an important role in the research for this report as it serves as reference to
many of the patterns discussed in this report.

5

http://martinfowler.com/eaaCatalog
http://martinfowler.com/eaaCatalog

CHAPTER 2

INTEGRATION ARCHITECTURES

Integration architectures are at the highest level of abstraction in the process of coming
up with an EI solution. In this chapter, some of the most common architectures used in
EI will be discussed, starting from the earliest to the ones that are more commonly used
today.

2.1 Point-to-Point

The most simplest approach to connect one system to another would be to connect
them directly with each other through a custom interface. This allows the two systems
to communicate with each other using an API that is custom designed and developed to
handle data transfer between them. This approach is commonly referred to as Point-to-
Point integration.

Figure 5 - Point-to-Point Integration

However, there are several potential problems with this approach when it comes to
integration of multiple systems across a large enterprise. With just two applications, it is
relatively simple to maintain as there is just one API code with a single predefined
communication standard and interface that need to be known to the two applications.
When more applications need to be integrated and need to share data with each other,
more details need to be maintained for each connection. The number of connections
needed can be calculated using the following formula.: n (n-1) / 2. The variable n is the
number of applications that need to be connected in a fully meshed point-to-point
connections. For example, ten systems would require 45 point-to-point connections (10

6

* 9 / 2 = 45). The number connections increase significantly as more applications need
to be connected.

Figure 6 - Meshed point-point connections

Each application needs to know about how to connect to each other. Each application
needs to know how to transform/translate data formats between each other. If multiple
applications need to be involved in completing a single request, this also means all
participating applications need to be active and available to handle the request at all
time. Since applications are tightly-coupled with each other, it also becomes difficult to
manage changes. A change to one application’s interface affect all others. So, this
approach quickly becomes very complex and difficult to maintain.

2.2 Hub-and-Spoke architecture

Hub-and-spoke architectures is one of the ways used to solve the problem in point-to-
point architecture. In this architecture a single centralized broker, referred to as the
“hub”, handles the message exchange, transformation, and routing for the systems that
need to be integrated. These systems are integrated by connecting them to the broker
through their adapters called the “spokes”. Each spoke connecting the source system
and the hub converts the message format to the format that the hub understands. The
hub then takes care of transformation and translation of incoming data in a way that the
target system can understand. Figure 7 below illustrates the Hub-and-spoke
architecture.

7

Figure 7 -Hub-and-spoke architecture with central message broker and adapters [8]

By having a central hub makes this architectural solution relatively easier to manage.
However, the scalability becomes dependent on the hardware. To overcome this
hardware limitation, many vendors have come up with federated hub and spoke
architectures in which multiple hubs can be put in place to scale better. Any changes to
rules such as transformation or routing in one hub would get propagated to other hubs
automatically. As this architecture provides central management of all hubs, it also
helps to bring down support cost.

2.3 Bus architecture

The Bus architecture has a central messaging backbone that is referred to as the
message bus. The messages are propagated though the bus from source systems to
target systems. Messages from the source systems get sent to the bus using the
system adapters and they flow to the target systems using this message bus. The
message transformations take place in source adapters into a format required by the
bus. Similarly, the messages are transformed in the target system adapters to the
format that the target systems can use. The main difference between hub-and-spoke
and bus architectures is in the integration engine. For the bus architecture, the
integration engine that performs message transformation and routing is distributed in
the system adapters as seen in Figure 8 below. This actually scales better than the
hub-and-spoke design because the adapters have integration engine and run on the
same platform on which source and target systems run. This makes it less complex to

8

manage than maintaining the hub.

Figure 8: Bus architecture with central messaging backbone [8]

2.4 Service Oriented Architecture (SOA)

Service Oriented Architecture is one of the most talked about integration architecture or
solution in the market within the last decade. Before SOA came into mainstream,
Enterprise Resource Planning (ERP) was another software integration solution that was
popular in 1990s. However, the problem was that in order to implement ERP, most
companies had to first reengineer their business processes to adopt ERP standard
business processes [9]. For most organizations, this made it impossible to implement
ERP as their current business scheme was not compatible with the standard required
by ERP. SOA on the other hand does not require the business to change their
standards or move away from the existing legacy systems that organizations rely on [9
35]. SOA is the notion of building the infrastructure that enables loosely-coupled
interoperability between disparate systems using discoverable services and messaging.
These systems may be of different types of technology and platforms. A service is a
specific functionality or operation exposed through a common interface by the source
system. Each service instance interacts with disparate systems or other services
through a loosely-coupled message-based communication model. The most basic
pattern that is implemented in SOA interaction is referred to as “Request-Reply” pattern.
Service consumer sends a request to the service provider. The service provider replies
to the request in response. In addition, SOA consists of various entities configured
together to support the find, bind, and execute paradigm as shown in Figure below [10].
The entities involved are as follows.

9

a) Service provider and consumer - The service provider is the system that receives
requests from the service consumer. Before any service consumer can request the
service, the service provider needs to publish its service contract in the service registry
for access by service consumers. The service consumer may be an application, another
service, or some other type of system that requires a service. The service consumer
locates the service in the service registry, binds to the service over a transport, and
executes the service request by sending a message in a format according to the
service contract. The service provider executes requests and responds to the
consumer in the format specified in the service contract.

b) Service Registry - The Service Registry is a network-based directory that accepts
and stores service contracts from service providers. It then provides those contracts to
the service consumers. It is essentially a central repository that contains all available
service contracts that can be retrieved and thus enables the services to be dynamically
discovered by the interested consumers.

c) Service Contract - The Service Contract is the specification of the way a service
consumer and service provider can interact with each other. It specifies the format of the
request and response from the service provider. It may also specify quality of service
levels and specifications for the non-functional aspects of the service.

Figure 9 - SOA and its associated Entities [10]

10

SOA basically enables enterprises to be organized around services instead of around
applications. But, SOA alone is not enough to successfully implement EI. In a given
SOA implementation, each service may have a predefined business objective. At the
same time, multiple services may need to interact with each other to execute a
particular business process. Each business process may consist of various business
activities in a complex workflow. This means transaction management is required in
cases where one of the services fails in the workflow and thus needs to be rolled back.
Therefore, SOA requires intermediaries such as the message broker or the bus to
coordinate the service interaction. Enterprises also need integration built around
business events that are triggered during a workflow. Various business events would
then need to trigger service interaction among different systems. So, services
implemented in SOA also need to react to business events. This is handled by building
Event Driven Architecture as discussed next.

2.5 Event Driven Architecture (EDA)

In EDA, interaction between systems is triggered in response to an event. An event is
simply a change in state in a system or something important that happens in a
business. So an event in the business or system may be a new problem, a new
opportunity, a threshold, or some sort of significant deviation that has an impact to the
business [11]. This event would need to be sent to another system so that proper action
can be taken in response. So, the fundamental interaction pattern that is implemented
in EDA is referred to as “publish-subscribe” pattern. The event is published and the
subscribers consume and react to the event. For example, inventory system may trigger
an event that the store is running low on supply and publish an event message
indicating this problem. Subscribing ordering system can pick up this event message
and submit an order for the specific product that the store needs. The ordering process
may be yet another event that is published so that the subscribing supplier system can
pick up this order request event and fulfill the order. When EDA is implemented with
SOA, an event can trigger the invocation of one or more services. Those services may
perform simple functions, or entire business processes like the order processing
example. This interaction between events and services is commonly referred to as
event-driven SOA [11,12]. Figure 10 below depicts how SOA and EDA fit into an
integration solution together.

11

Figure 10 - Enterprise Integration with SOA and EDA [12]

As shown in Figure 10 above, EDA is illustrated as a series of business events that are
published and consumed by different systems in business process chain. This is
commonly referred to as the publish-subscribe interaction pattern. A set of interacting
systems may reside in different domains, where each domain has its own SOA
implemented as their systems’ functionalities are exposed as services. This is referred
to as the request-reply interaction pattern.

The architectures discussed so far can actually work with each other to implement an
integration solution as a whole. For example, SOA can be implemented with EDA to
implement an event driven service interaction. However, in order to implement these
architectures, a form of intermediary such as a messaging middleware is needed to
facilitate the interaction that is required. So, a messaging engine or broker along with
event-driven service interactions can be implemented using either the Bus architecture
or the Hub-and-Spoke architecture that were discussed earlier. One such solution is
more commonly realized by using an Enterprise Service Bus (ESB). ESB has become
one of the most popular intermediaries today that provides the infrastructure for
implementing SOA and EDA type of integration solutions to enterprises. It is considered
as the most common and effective middleware solution for Enterprise Integration today.

12

2.6 Enterprise Service Bus (ESB)

ESB is an application integration model that is based on the Bus architecture. It
effectively extends the Bus architecture by providing a scalable infrastructure to
facilitate architectures such as SOA and EDA. Many vendors today use the term ESB
in their middleware products and provide the APIs which can be used to develop web
services and make those services interact with each other reliably. According to
Chappel, “An ESB is the implementation backbone for a loosely coupled, event-driven
SOA that enables a highly distributed universe of named routing destinations across a
multi-protocol message bus” [13]. ESB can scale beyond the limits of a hub-and-spoke
architecture as the systems can be integrated using adapters that run on the same
platform on which source and target systems run. The term ESB is now also used to
describe an integration solution or product sold by various vendors to implement
enterprise integration [14]. It is a combination of a middleware technology and products
that helps to implement enterprise integration as it mediates the interaction using
messaging between disparate systems that are loosely-coupled software modules or
services. Business events can be propagated through the service bus in the form of
messages.

Figure 11 below illustrates ESB as an integration module that connects various systems
through the use of service containers. Different service containers in an ESB expose
message-driven interfaces for the purpose of sharing data between applications, both
synchronously and asynchronously. A service container can provide a number of
facilities for the service implementation such as event dispatch, thread management,
security through reliable message delivery [13].

Figure 11 - Enterprise Service Bus and Service containers [13]

Figure 1 – Enterprise Service Bus and Service containers [10]

ESB needs to be able to handle multiple integration paradigms. In order to support the variety of

interaction patterns that are required in SOA, ESB needs to supports three major styles of enterprise

integration. Firstly, ESB needs to support SOA in which applications communicate through reusable

services. Secondly, since those service-oriented interactions leverage underlying messaging and event

communication models, ESB needs to support message-driven architectures in which applications send

messages through the ESB to receiving applications. Lastly, it also needs to facilitate event-driven

architectures in which applications generate and consume messages independently of one another [13].

The following sections describe some of the common integration patterns that enables ESB to facilitate

application integration.

5.1 VETO Pattern

When routing data or messages through the ESB, data needs to go through various changes before it is

sent to the target application from the source application. One of the common patterns used in ESB is

known as VETO pattern [10]. It stands for Validate, Enrich, Transform, Operate as illustrated on

Figure 2 below. This pattern essentially ensures that data is consistent and validated as it is routed

throughout the ESB.

13

ESB effectively needs to be able to support three major styles of enterprise integration.
Firstly, it needs to support SOA in which applications communicate through reusable
services. Secondly, since those service-oriented interactions leverage underlying
messaging and event communication models, ESB needs to support message-driven
architectures in which applications send messages through the bus to receiving
applications. Lastly, it also needs to facilitate event-driven architectures in which
applications generate and consume messages independently of one another [15].
Chapter 6 will revisit ESB with respect to various ESB products offered by different
vendors.

Chapter 3 and 4 extend the discussion from this chapter by taking a closer look at some
of the messaging and interaction patterns used to implement EI solutions around SOA
and EDA. It is apparent that messaging underpins the required interaction when
integrating disparate systems. So, Chapter 3 describes messaging in more detail and
some of the common messaging patterns that help solve many of the common
integration problems. Chapter 4 describes interaction patterns. These patterns are
used in having multiple systems work together towards a common goal. These
interactions can span within a single enterprise or multiple enterprises such as
suppliers, manufacturers and vendors to carry out various business processes.

14

CHAPTER 3

MESSAGING PATTERNS

Messaging underpins some of the most proven and desirable integration architectures
and solutions described in chapter 2. A message is simply a packet of data that is
transmitted from one system to another. Each message, at minimum, consist of two
parts:

a) Header - describes the message being transmitted and contains information such as
its source, its destination, and other data that can be used by messaging system to
route the message.

b) Body - consists of the content of the message being transmitted.

Simply put, application integration is enabled by having the applications communicate
with each other and share data through sending each other messages. In order to
integrate these systems, a messaging system is put in the middle, referred to as the
Middleware, to coordinate the messages that need to be passed from one to the other.
Having the messaging system in the middle enables loose coupling among disparate
systems because each system communicates through the messaging middleware and
does not need to know specifically about each other when sending and receiving
messages. This section starts by describing two fundamental types of messaging:
Synchronous vs Asynchronous messaging. It then describes some of the common
asynchronous messaging patterns.

3.1 Synchronous messaging

In synchronous messaging, the calling process makes a call and it blocks its process
until the called process completes its operation and the response is received. This
means both parties (source and target systems) have to be available for the operation
to be successful. In other words, both systems have to be tightly coupled when it
comes to synchronized messaging, and may not be possible for all systems in an
enterprise to be integrated this way. However, some systems may actually require the
communication to be synchronous depending on the business requirement.

3.2 Asynchronous messaging

In asynchronous messaging, however, the caller’s process is non-blocking as it only
initiates the operation. Asynchronous messaging architectures have become most
common and proven ways to integrate enterprise systems as they allow for loosely
coupled solution that overcomes the limitations of remote communication, such as
latency and unreliability. The concept of asynchronous messaging is actually very much
similar to how interactions occur between people in real life situations from different
physical locations. For example, people may communicate with each other through

15

phone calls. Person A calls person B. Person A cannot always expect Person B to
answer the phone call, because Person B may not necessarily be available to pick up
the phone. So, person A may have to just leave a voice mail to provide information or
instructions to do something and expect a response back. Also, person A cannot
assume that Person B will receive the message and respond back within specific
timeline . So, if person B does not respond within a certain amount of time, person A
may try to call person B again. This is exactly how the situation would be between
different systems (system A and system B) through asynchronous messaging. One
cannot assume the status of other systems at any given time. Similar to person A and
B, system A cannot assume that system B will respond to a request at any given time.
As we live in an asynchronous world, asynchronous messaging allows us to face the
reality of uncertainty in real life. By reducing or eliminating those assumptions, systems
can be loosely coupled with each other using asynchronous messaging. Figure 12
below illustrates difference between synchronous and asynchronous messaging. Next,
some of the common patterns used in asynchronous messaging systems will be
discussed.

Figure 12 - Synchronous vs Asynchronous Messaging [16]

3.3 Messaging Patterns

Asynchronous Messaging Patterns effectively assist with designing asynchronous
messaging solutions. These patterns exist at different levels of abstraction. Some
patterns are used to represent the message itself, or attributes of a messaging system.

16

Others are concerned with the flow of messages from a source system to one ore more
target systems. They describe various ways a message can be directed from one
system to the other by using complex mechanisms. They are also used to represent
creation of message content or change the content of a message. The following are
some of the most commonly known messaging patterns.

a) Message Channel - A Messaging system transmits messages through a Message
channel that connects the sender application to the receiver application. A Message
channel can be described as a virtual pipe established from one application to the other.
It may also be referred to as message Queue or Topic based on the type of channel it is
and the technology or vendor used to implement the message channel. The difference
between Queue and Topic based message channel will be described in chapter 6.

Figure 13 - Message Channel [17]

b) Message Router - The primary function of a Message Router is to connect one
Message Channel to multiple Message Channels. It does not modify the message
content as it is only concerned with the message destination. It can use any number of
criteria to determine the output channel of an incoming message. This allows for the
decision criteria of messages to be maintained in a single location. This pattern also
enables the publish-subscribe interaction pattern as it allows the messages published
by a source system to be routed to multiple subscribing applications.

Figure 14 - Message Router [17]

c) Message Translator - The Message Transformation is concerned with the message
content itself as it acts as a message translator. It is usually necessary to translate the

17

messages from one format used by the source system to another format that is required
by the target system. One of the benefits of being able to transform the messages is
that it allows the applications to be decoupled from each other. When integrating
existing systems, there is no need to make any changes to any of the systems in order
to adhere to another system’s message format. The translator on the messaging
middleware can do the job instead.

Figure 15 - Message Translator [17]

d) Message Enricher - Messages Enrichment is necessary when the message content
needs to be enriched by adding additional data to the incoming messages before being
routed to its destination. The additional data, for example, may need to be retrieved
from a database and appended to the message content.

 Figure 16 - Message Enricher [17]

e) Message Filter - The Message Filter is a way for the target system to avoid receiving
unwanted messages from the source system. It is similar to a Message Router but with
a single output channel. If the content of an incoming message matches the criteria
specified in the Messages Filter, it is routed to the output channel where the target
system would be able to pick up the message. Otherwise, the messages is discarded.

18

Figure 17 - Message Filter [17]

f) Message Splitter - The Message Splitter is useful when a message contains multiple
elements that have to be split and processed in a different way. The Splitter would
essentially break the single message into multiple messages, each containing data
related to one element.

Figure 18 - Message Splitter [17]

g) Message Aggregator - The Messages Aggregator is useful when multiple but related
messages have to be combined into one so that it can be processed as a whole. It
would need to receive a stream of messages, identify the messages that are related,
and publish a single aggregated message to the output channel.

 Figure 19 - Message Router [17]

19

h) Message Sequencer - Message Sequencer needs to be implemented when large
amount of data need to be transmitted but is too big to be transmitted as a single
message. The Message sequencer breaks up the large chunk into message-size
chunks, mark each with sequence identification fields, and send them. There are three
Message sequence identification fields as follows: a) Sequence identifier that
distinguishes the broken up chunks as cluster of messages from others, b) Position
identifier sequentially orders the messages in sequence, and finally c) the End indicator
marks the final message in the cluster and specifies the number of total messages in
that cluster.

Figure 20 - Message Sequencer [17]

i) Messages Re-sequencer - Messages may get out of sequence when they have to be
processed differently or by different components. When this occurs, Message Re-
sequencer can be used to put the individual messages that are out of sequence back
into the correct order. In order to do this, each message needs to have a unique
sequence number. These sequence numbers help the re-sequencer to detect when
they are out of order. When a messages with the higher sequence number arrives
before the message with a lower sequence number, the Re-sequencer has to store the
messages with the higher sequence number until it receives all the messages with the
lower sequence numbers. When the buffer contains all the consecutive sequence
numbers, the Re-sequencer would send the messages to the output channel and then
remove them from the buffer.

Figure 21 - Message Re-sequencer [17]

20

j) Message Endpoint - Applications and the messaging system need a way to
communicate with each other because they are separate entities. A message endpoint
enables them both to connect to each other. A sending application can use a message
endpoint to send and receive messages to messaging system and the messaging
system can then route and dispatch messages to the message endpoint of the receiver
application. This way, the sending and receiving applications are decoupled from each
other as they don’t need to know about each other and only need to interact with their
message endpoints. Any changes to one application does not have an impact on other
applications as long as its endpoint gets updated accordingly.

Figure 22 - Message Endpoint [17]

21

CHAPTER 4

INTERACTION PATTERNS
In chapter 3, patterns related to messages were discussed. They described patterns on
how messages could be routed, transformed, enriched, and so on. In other words,
those patterns are concerned with message content, message format, and message
delivery. However, EI needs to be concerned with much more than how a message
should be sent from system A to system B. In EI, systems need to communicate with
each other by passing messages and responding to each others’ messages. So, this
chapter focusses on patterns that describe various ways that systems can interact and
respond to each other using messaging. There may be complex interactions that
typically need to take place when different systems need to be integrated to provide
their services or carry out various activities in a complex work-flow of a business
process. Holpe refers to such patterns as Conversation Patterns [18]. Various
interaction patterns will be described in section 4.1 below.

When two or more systems communicate and share data with each other, the type of
communication may take on the form of a conversation between each other. The
conversation patterns describe and illustrate the types of interactions that can occur
when two or more systems are integrated in order to share data or carry out a specific
function. They essentially assist with designing communication based on some rules
among multiple systems using messaging. For example, when systems expose parts of
their functionality as Web Services, a particular business process may actually take
several Web service interactions to complete. This means there are multiple steps in
the conversation that need to take place based on specific rules applied to the
conversation.

4.1 Common Interaction Patterns

a) Request-Reply - Request-Reply is the most simplest form of conversation between
two systems. System A sends a message to System B. The message may be to send
instructions or share data. System A may wait and block until the response from
System B is received (Synchronous) or continue to perform other tasks (Asynchronous)
while System B processes the request and responds. So, Request-Reply may be
implemented synchronously or asynchronously. However, as mentioned before,
asynchronous communication has the advantage over synchronous communication due
to decoupling of systems being integrated. A real-life example of this pattern would be
when a user submits a purchase order online through a web browser (request), the user
needs to receive a order number and confirmation of purchase (response).

22

Figure 23 - Request-Reply [18]

b) Request-Reply with Retry - As an extension to the Request-Reply pattern, the sender
may need to repeat a request until a response is received or repeat it n times until it
gives up. It is important that provider or the receiver needs to be idempotent. In other
words, sending the request one time or multiple times should have the same effect on
the receiver. So, retrying the requests multiple times should not have any unwanted
effect [18].

Figure 24 - Request-Reply with Retry [18]

c) Dynamic Discovery - In Dynamic Discovery pattern, the system sends a broadcast
request to a channel where multiple target systems may be listening on. This form of
requests to multiple target systems is also known as the publish-subscribe pattern. In
this case however, the providers are the subscribers of this channel and they would
decide whether or not to respond to the request. So, the requester would then need to
choose which provider to respond back to. After the interested providers send their
responses, the requestor chooses the desired provider from all the responses. The
requestor then initiates interaction with the chosen provider [18]. A real-life scenario for
this pattern would be when a user requests a quote for auto insurance on a web portal,
the backend service fires off requests to multiple insurance providers and renders each
of the response back to the user. User can then choose the one that he/she prefers and
starts the application process.

23

Figure 25 - Dynamic Discovery [18]

d) Subscribe-Notify (Multi-responses) - In this pattern, the subscriber expresses interest
in receiving notifications and receives messages until the subscriber sends a stop
request. Provider notifies subscriber of end of transmission. Examples: WS-Eventing,
WS-Notification [18].

Figure 26 - Subscribe-Notify [18]

e) Renewing Interest - The Renew Interest pattern is also referred to as the "Lease"
model or the “Magazine Model” [18]. In the “Lease” model, the subscriber has to renew
actively after certain interval. Otherwise, the subscription would automatically expire. In
the “Magazine Model”, the subscriber does not need to know when to send a renewal
request, because the provider manages the state of each subscriber. Before the next
expiration, the provider sends a request to the subscriber for renewal after a certain
time interval.

24

Figure 27 - Renewing Interest [18]

f) Reaching Consensus - In this pattern, the conversation is coordinated. The
coordinator initially sends the request and then tracks responses from each
participant. Based on the responses, the coordinator makes the decision and then
broadcasts the decision. A simple real-life example for this would be the type of
communication that occurs when someone is assigned to coordinate when and where
to go out for lunch at the office. The coordinator sends everyone an email asking
when and where they would like to go out for lunch. After everyone responds, the
coordinator makes the final decision and sends the notification to everyone with the
details on when and where to go out for lunch together [18].

Figure 28 - Reaching Consensus [18]

25

Several more service interaction patterns have been discussed by Barros et al in [19]
that involve interactions among more than two systems. The authors refer to these
patterns as multi-transmission interaction patterns. One of them is “Contingent request”
pattern in which, system X makes a request to another system Y. If X does not receive
a response within a certain timeframe, X alternatively sends a request to another party
Z, and so on [19]. Next section will discuss ways to enforce such rules to the interaction
or conversation.

4.2 Enforcing the rules of the Conversation

When some of the more complex conversation patterns such as “Dynamic Discovery” or
“Contingent request” are implemented, the conversation among the systems needs to
have specific rules enforced in order to execute the workflow of activities and messages
exchanged during the conversation. Without these rules, systems would not know how
to carry out the conversation. For example, a system needs to know whether to send a
message once and forget it, or send a message and retry after specified time has
elapsed if no response is received. It essentially needs to know what to do when the
response is received. Based on the type of response, it may need to send a message
to another system or call some other internal process. Simply put, in order to make
disparate systems or services interact with each other, rules need to be enforced in
order to specify the sequence of steps to be taken. There are currently two distinct
approaches to enforce the rules and carry out the interactions. They are referred to as
Orchestration and Choreography. These approaches are commonly implemented when
integrating multiple services in SOA. For example, they may be interacting through
Web Services using SOAP messages or may be interacting using JMS messages
through a messaging middleware (as described in Chapter 5 and 6).

4.2.1 Orchestration

In Orchestration, a central controller process is used to coordinate the sending and
receiving of messages with other participating systems. This controller is also referred
to as orchestration engine. The controller includes instructions on sending and
receiving messages between multiple services. This controller may be a web service or
some process instance running on the messaging middleware system. In essence,
Orchestration is a way to coordinate service interaction in SOA implementations.
Manolescu describes various orchestration patterns that help deal with problems when
orchestration is used in enterprise architecture [20].

The main point to note about Orchestration is that all other systems don't need to know
about other participating systems in the conversation. Things such as how the systems
will be called, what will be the control flow, and what transformations will take place are
things that are known only to the controller. The other systems only need to respond to
the requests whenever they are called and do not need to maintain the state of the
overall conversation. The figure below depicts how the controller coordinates the
interaction among all the participating systems or services.

26

Orchestration provides a controlled environment that can handle different scenarios
such as what to do when the response is received, when no response received, or
when an error occurs. The controller needs to act according to the rules specified and
the response from other systems,. For example, if an error is returned from one
system, it may need to call another system, or use a default value, or compute the
value to be used, or pass the control to another process.

 Figure 29 - Services interaction with Orchestration [21]

4.2.2 Choreography

In Choreography, there is no central controller to coordinate the conversation with
participating systems. This means every participating system needs to be aware of
other systems they need to interact with. Each system needs to know which system to
call next and how to communicate with that system. For example, if system A calls B,
then B needs to know what to do next. It may need to respond to system A or call
system C. So, the rules need to be maintained within each system instead of
maintaining them within one controller process as in Orchestration [21]. It is also
necessary for each system to maintain a state of the conversation or interaction in case
if the conversation is transactional and needs to be rolled back upon error conditions.
So, Choreography is a collaborative effort by all participating systems to utilize each
others services. Orchestration, on the other hand, is a controlled and co-ordinated way
of utilizing the services of all the participating systems. There is no need for each
system to maintain the state of the conversation as it is maintained by the central
controller. In case of error conditions, the controller knows what to do and the
participating systems will be called to perform what is needed. In Choreography,
however, it would require more effort to handle error conditions and maintain consistent
conversational states because the state needs to be maintained inside every
participating system.

27

Figure 30 - Web service interaction with Choreography [21]

So far, the report has described EI from the design perspective or conceptually by
analyzing different integration architectures and patterns. In the next two chapters, the
focus is shifted to the implementation side by discussing the current technologies used
to implement EI. In chapter 5, some of the common technologies that are currently
used to implement the integration architectures and patterns will be discussed.

28

CHAPTER 5

MESSAGING TECHNOLOGIES

Although it is important for integration architectures and developers to know various EI
patterns and architectures, knowing them is not enough. Architects and Developers
need to be able to map those patterns and architectures to technology and products
that suit the needs of the enterprise. So, this chapter provides an overview of some of
the most current and popular technologies used in enterprise integration using
messaging. It will discuss some of the open standards, protocols, languages, and
platforms used to implement EI solutions based on the architectures and patterns that
were discussed in previous chapters.

5.1 Extensible Markup language (XML)

XML is a markup language that is similar to HTML. The difference is that XML is
designed to transport and store data with the focus on what data is, and HTML on the
other hand is designed to display data with the focus on how data is displayed. XML is
a simple and flexible text format derived from SGML (ISO 8879) [22] that is independent
of any programming language. Using a common message format and standard like
XML provides independence from programming languages and platforms. XML is
currently the most common format used to construct messages. So, it enables
disparate applications to communicate with each other using a common language
regardless of the languages or platforms that the applications are built on. It currently
plays an important role in the exchange of data in Web based applications, Web
services and various Messaging middleware systems.

5.2 Web Services

Using Web Services technology is still one of the most popular ways that allows
disparate applications to communicate with each other. It is built on top of open
standards and platform-independent protocols. It is essentially a software interface
that provides a collection of functionality or operations that can be accessed over the
network through standardized messaging format such as XML [23]. So, it allows
applications built on different platforms and languages to exchange messages between
each other through a common interface. There are two main web services architectures
to choose from, namely RPC (Remote Procedure Call family of protocols) and REST
(Representational State Transfer methods). In order to choose the right standard, one
needs to consider the following factors such as 1) one that is easiest to implement, 2)
one that is most widely supported, and 3) one that is most likely to work well in the
environment where it needs to be implemented [23]. After choosing the standard, there
are many frameworks to choose from. The frameworks are essentially APIs that are

29

developed based on either RPC or REST based web service standards. So, the
frameworks make it easier and faster to develop Web Services solution.

5.3 RPC

RPC methods allow developers to call functions similar to the way functions are used in
programming single systems, but instead it calls to a remote system. Simple Object
Access Protocol (SOAP) is one of the most common protocols used today that basically
wraps its messages in XML and uses HTTP or JMS (Java Messaging Service) to
transport the message. These functions are exposed as services through common
interfaces defined by Web Service Definition Language (WSDL), and whose semantics
are defined in XML. Universal Description Discovery and Integration (UDDI) is a
language-independent protocol that is used to interact with registries and look for
services. This makes web services discoverable to consumers. These features make
SOAP based web services an appropriate choice for developing SOA applications.
They are typically modeled as stateless message processors that accept request
messages, process them, and typically generate a response back to the requester [23].
Although their behavior is synchronous in nature, they can be implemented as
asynchronous using technologies like JMS with a messaging middleware that is
discussed in section 5.5.

5.4 REST

The REST method differs from RPC because of the level at which it operates. The
REST calls behave the same way as any other HTTP web requests. REST operates
with stateful resources instead of individual stateless messages. So this results in a
more standard and widely understood method of interacting, just like the HTTP itself.
REST typically handles passing simple data blocks, whereas RPC can pass complex
procedures. Although RESTful services can use SOAP as its protocol, but this is not
really required because REST is simply a method of interacting, and not a protocol
itself. The data can be formatted using other common language independent standards
like XML or JSON (Javascript object notation). REST also does not require any
additional messaging layers as SOAP does [23]. However, the notion of service
discovery is not currently present in REST Web Services, unlike RPC with SOAP.
Therefore, the consumer application that wishes to interact with a service provider
needs an initial URI provided by the service to enter the application and consume the
service.

5.5 Middleware Technology for Messaging

In order to implement messaging solutions in a scalable and loosely-coupled manner, a
middleware platform is necessary to facilitate the message based interaction between
multiple service providers and consumers. This type of middleware platform is also

30

referred to as Message Oriented Middleware (MOM). As discussed in chapter 2, a
centralized broker or a message bus is needed to implement a Hub-and-Spoke or a Bus
architecture respectively. In addition to providing message transport and exchange,
they facilitate message routing, transformation, enrichment and so on. They are more
commonly referred to as the message broker or an ESB middleware. Message broker
more commonly follows the implementation of a Hub-and-Spoke architecture and ESB
implementations follow the Bus architecture. But, depending on the vendor specific
middleware product, there may be some overlaps between the two in terms of the
functionalities and capabilities. For example, both message broker and ESB products
provide message routing capabilities, but an ESB product may extend its capability by
facilitating web services interaction using an orchestration engine. However, there is no
concrete distinction between the two types of messaging middleware products as it is
dependent on the specific vendor implementation.

In chapter 2, SOA and EDA architectures were discussed. It is important to realize that
messaging middleware platforms make it possible to implement SOA and/or EDA based
solutions. Web Services alone are not enough to implement these architectures
because a Web Service is a point-to-point communication style by nature. For instance,
it is not possible to talk to two service providers concurrently. However, a message
broker or an ESB product can be setup to accept messages from any number of service
providers. In turn, they can deliver a copy of each message to any number of
consumers. So, Web Services interactions can become many-to-many through the use
of appropriate middleware product.

5.6 Java Messaging Service (JMS)

In order for other systems to communicate with the messaging system, a messaging
API is required. JMS (Java messaging service) is one of the most common messaging
API and standard that is provided by many messaging middleware vendors. JMS
allows application components based on the Java Enterprise Edition (JEE) platform to
create, send, receive, and read messages. In an ESB based middleware, for example,
JMS allows communication between different components such as router, splitter, or
sequencer on the bus and enables the messages to be propagated from one
component to the other. It also allows the communication between the systems to be
reliable, loosely-coupled, and asynchronous. SOAP based Web Services may also be
implemented over JMS to send and receive SOAP messages. This makes web
services asynchronous unlike SOAP over HTTP, because JMS is an asynchronous
protocol as explained next.

JMS supports two types of the message delivery models: Point-to-Point and Publish-
Subscribe [24]. These two models essentially implement the message channel pattern
that was described in chapter 3.

a) Point-to-Point - This can be used when a message needs to be delivered from a
producer to one consumer. The messages are delivered to a “Queue” destination on
the messaging system and then delivered to one of the consumers. For example, if a

31

producer system wants to send a message to a consumer system, it can send the
message to a queue defined on the messaging middleware on which the consumer
system would be listening on. Even if the consumer system is unavailable at the time
the message is sent, the messages are held in the queue until they are consumed. So,
the messages are guaranteed to be delivered to the consumer. This makes it an
asynchronous communication between the producer and the consumer.

b) Publish-Subscribe - This model allows a producer to send messages to multiple
consumers. Messages are sent to a “Topic” destination for which multiple consumer
have subscribed to. So, each consumer gets a copy of the message that is sent to the
this topic destination. In addition, any number of producers can send to the same topic.
If there are no subscribers to the topic, the messages are generally discarded unless it
has durable subscription. A durable subscription is when a consumer registered with
the topic destination that can be inactive at the time the message is sent to the topic [24
20]. Alternatively, the messages on the topic may be setup to persist to a permanent
storage like a database or file system using a custom application.

Each JMS message consists of three parts:

a) Header - contains information about the message itself. The information is used for
routing and to determine the type of message. It has various fields as name-value pairs
in which some of them are set automatically by the JMS provider when producing and
delivering a message. Others are set by the client in each message.

b) Properties - These are optional set of values that messaging system can use to filter
or route messages for example. It consists of additional information about the message
such as its source and time it was created.

c) Body - contains the actual data for the message to be sent or received.

The following snippet of code from [24] is a sample JMS application that illustrates how
a JMS message is created, sent to a Queue, and how it is retrieved from the queue.
The application uses point-to-point communication to send and receive a text message.
It acts as a queue sender and a queue receiver.

import javax.jms.*;

public class HelloMsg {
 public static void main(String argv[]) throws Exception {
 // The producer and consumer need to get a connection factory and use
it to set up
 // a connection and a session
 QueueConnectionFactory connFactory = new
com.sun.messaging.QueueConnectionFactory();

32

 QueueConnection conn = connFactory.createQueueConnection();
 // This session is not transacted, and it uses automatic message
acknowledgement
 QueueSession session = conn.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);
 Queue q = new com.sun.messaging.Queue("world");
 // Sender
 QueueSender sender = session.createSender(q);
 // Text message
 TextMessage msg = session.createTextMessage();
 msg.setText("Hello there!");
 System.out.println("Sending the message: "+msg.getText());
 sender.send(msg);
 // Receiver
 QueueReceiver receiver = session.createReceiver(q);
 conn.start();
 Message m = receiver.receive();
 if(m instanceof TextMessage) {
 TextMessage txt = (TextMessage) m;
 System.out.println("Message Received: "+txt.getText());
 }
 session.close();
 conn.close();
 }
}

One of the reasons that JMS is popular and commonly used is that many of the current
messaging middleware products provide support for JMS. Most of these messaging
middleware products nowadays follow the ESB paradigm. Next chapter will review
some of these middleware products.

33

CHAPTER 6

MESSAGING MIDDLEWARE PRODUCTS

There are many different vendors who provide messaging middleware products, and
are most commonly provided as some form of ESB implementation. Their aim is to be
technology neutral, supporting multiple platforms and technologies, so that
organizations can cost effectively integrate their existing systems with little or no
changes. There are several commercial as well as open source products. So,
choosing the appropriate middleware product is yet another challenge of EI that
Architects would need to face. They would need to evaluate the products with respect
to many factors such as cost, supported platforms,supported languages, performance,
and so on. Happe et al present an interesting article on evaluating performance of
messaging-oriented middleware [25]. The authors present model-based performance
prediction methods that enable architects to evaluate the performance of MOM.

This chapter will review an open source middleware product called Mule ESB and some
commercial products provided by TIBCO. The table below shows some of the most
mature offerings, in alphabetical order [26]. All of them, including the open-source
products, have support from one or more Vendors.

Product Vendor Supporting Technologies
Active Matrix
BusinessWorks

TIBCO SOAP, EMS, JMS, Rendezvous,
MQ, BPEL

Mule ESB Open-source,
MuleSource, Inc.

SOAP, REST, JMS, MQ, JBI, AQ,
Caching, JavaSpaces,
GigaSpaces, Email, IM, JCA,
AS400 Data Queues, System I/O.

OpenESB Open-source, Sun
Microsystems

JBI, JCA, JAX-RPC, JAX-WS

Sonic ESB Progress Software JMS, SOAP, JMX
Websphere ESB IBM JMS, MQ, SOAP; requires

additional adapters to interface
with other products and legacy
protocols; requires Websphere to
work

Table 1 - ESB products and their vendors[26]

34

6.1 Mule ESB

Mule is a java-based ESB platform that facilitates the integration of disparate
applications by enabling them to exchange data between each other. It supports the
integration of applications regardless of the different technologies they use such as
JMS, Web Services, JDBC, HTTP, and more. At a high level, the following are the
capabilities provided by Mule ESB and is based on Mule ESB version 3 as per the
documentation from [27].

a) Service creation and hosting - Provides a light weight service container to expose
and host reusable services

b) Service mediation - Services are shielded from message formats and protocols.
Similarly, business logic is also separated from messaging protocols.

c) Message routing - Many of the message routing patterns are supported by providing
content and rule based router, filter, aggregator, and re-sequencer.

d) Data Transformation - The messages can be transformed between different formats
and protocols.

6.1.1 Mule ESB Messaging Architecture

There are three main layers to the architecture of Mule ESB in terms of its message
flow as illustrated in Figure 31 below. The Transport Layer assists with data
transmission as the message payload needs to be sent and received using different
transport protocols such as HTTP and JMS. The Application Layer consists of different
components or applications that implement the business logic and know how the
message needs to be routed. The Integration Layer is the most important layer
because it is the key to exchanging data, as it helps convert or transform the data to a
format that other components can understand. It is the glue between disparate
applications with different message formats.

35

Figure 31 - Mule Architecture separated into three main layers [27]

Mule implements the following four features: Component, Mediation, Orchestration, and
End-point.

a) Component - A component is implemented as a service that implements the business
logic to process the message payload. When a message is sent from an application,
Mule ESB picks up the message, sends it to a component that processes it using some
specific business logic, and then routes it the intended application. For example, an
invoice from an order entry system is sent to a component that checks the customer
and inventory databases, and then it is routed to the order fulfillment system. There
may be one or more components that execute business logic on messages. An
example service of a component would be to read the message payload such as an
order invoice and then call another component to retrieve additional client information
from a customer database. Finally the component would append the information
returned to the payload and then forward it to order fulfillment system. In other words,
the service in this example implements the Enrichment Messaging pattern described in
chapter 3. A component does not need to contain any Mule-specific code. They can be
any POJOs, scripts, or web services that has the business logic for processing the data
in a way that is required.

36

b) Mediation - The business logic implemented in the components are separated from
transport, transformer, and flow mechanisms implemented in Mule. For example, if an
XML message is sent over HTTP, firstly the HTTP transport mechanism turns it into a
Mule message. Secondly, the transformer mechanism changes it along the way from
XML to a Java object as required. Finally, the flow mechanism directs the message to
each component that needs to process it. Multiple types of transports may be enabled
to handle different transport protocols. For instance, a message sent synchronously
over HTTP endpoint can be forwarded asynchronously over JMS after the message has
been processed by a data component. This separation of business logic over transport
allows for flexibility in the implementation and configuration of messaging solution.

c) Orchestration - As there may be multiple components required to process the
payload, an orchestration flow wraps the components with additional message
processors that transform, enhance, filter and route the messages to appropriate
components. This ensures that the component receives the right messages and routes
them properly after each processing. The following snippet of Mule configuration is an
example of orchestration using a flow. In this flow, it accepts a book order in an XML
file and transform the file’s contents into a standard format that contains one or more
specific orders. In the next step, the orders are split out to be processed separately,
and any non-book orders are filtered out. After that, there are two services being called:
one to check whether the book is in the inventory, and another to create a customer
order. Both are then being e-mailed to the customer and stored in a database. If any
failure occurs in this process, the message is placed in a JMS queue of failed orders
and can be checked, fixed, and resubmitted later.

	
 <flow>
 <file:inbound-endpoint path="/myDirectory">
 <file:filename-filter name="*.xml"/>
 </file:inbound-endpoint>
 <xml:xslt-transformer xsl-
 file="createBbookOrdersTransformation.xsl"/>
 <splitter expression="xpath://order"/>
 <!-- The following message processors will be invoked for each order in the xml
 file -->
 <expression-filter expression="xpath://
 order[@type='book']"/>
 <component class="org.my.BookInventoryChecker"/>
 <component class="org.my.BookCustomerOrderProcessor"/>
 <smtp:outbound-endpoint subject="Order Confirmation"
 to="#{xpath://customer/email]"/>
 <jdbc:outbound-endpoint queryKey="storeOrder"/>
 <default-exception-strategy>
 <jms:outbound-endpoint queue="failedOrders"/>
 </default-exception-strategy>
 </flow>

Code snippet: Illustration orchestration flow implemented in Mule ESB [27]

37

d) Endpoints - The Endpoints are configuration elements that wire together all the
services. The endpoints can be specified in the flows to tell Mule ESB which transport
to use, where to send messages, and which messages a component should receive.
The address in the endpoint specifies the transport to use. For example, if a flow’s
inbound endpoint address is http://myshop.com/mule, all messages sent to that URL
will be dispatched to that flow by the HTTP transport. Similarly, if the inbound endpoint
is file://mymachine/files, the File transport will dispatch any new files created in that
directory to that flow. Figure 32 below illustrates how endpoints play a role in the
message flow.

Mule supports chaining multiple processing steps together through an orchestration mechanism called . Flows allow any number offlow
components to be chained together along with other forms of message processing. Flows allow Mule to orchestrate how and when a message is
routed to a component. Components can also be exposed directly as services using the Simple Service pattern or the Service Model.

You can have many different components that perform different business logic, such as one that verifies whether the items on the invoice are in
stock and one that updates a separate customer database with the order history. The invoice, which is encapsulated in a message, can flow from
one service component to the next until all the required processing is complete.

Endpoints - Wiring Everything Together

Endpoints - Wiring Everything Together

Endpoints are configuration elements that are the key to wiring together all the services. You specify endpoints in your flows to tell Mule ESB
which transport to use, where to send messages, and which messages a component should receive. The primary part of an endpoint is the
address which indicates the transport to use, the location (a transport-specific resource), and any additional parameters.

Addresses may be expressed as a Uniform Resource Identifier () or as schema-specific XML configurationURI

For example, if a flow's inbound endpoint's address is , the HTTP transport will dispatch to that flow any messages thathttp://myfirm.com/mule
have been sent to that URL. If the inbound endpoint specifies , the File transport, which is watching that directory, dispatchesfile://myserver/files/
any new files created in that directory to the flow.

Depending on the messaging style you specify, Mule may or may not generate a response to send back through the inbound endpoint to the
sender. Mule supports several and each transport has a default pattern it will follow unless you specify otherwise.Message Exchange Patterns
Mule will typically return the final result of the message processing back as the result; however response processing can also be specified to
control what is returned.

An outbound endpoint can also be specified to indicate where the message will go next. For example, after processing an HTTP request, you may
want to place the result on a JMS queue as shown in the following illustration.

A flow can receive messages using many different transports. For each type of transport that a flow will use, you must specify one or more
separate endpoints. For example, if you want one of your flows to handle messages coming in on both the HTTP and JMS channels, you would
specify at least one inbound HTTP endpoint and at least one inbound JMS endpoint. Mule registers these endpoints with the flow, and the
transport uses this registry information at runtime to configure itself and determine where to send and receive messages.

Mule also supports dynamic endpoints, allowing the destination to be constructed from the content of the message. This allows routing-slip
patterns where the message instructs Mule where to route it.

The flow can also include filters that further specify which messages to send or receive. For example, you can specify that the component only
receives RSS messages by a specific author. Specifying filters, routers, and endpoints for your services simply requires editing an XML
configuration. You do not have to write any Java code. Some routers are also dynamic and can change behavior based on the content of the
message or an external data source such as a file or database. As stated previously, your components code remains completely separate from
messaging and routing, which you handle through Mule configuration.

Figure 32 - Mule Endpoint configuration elements [27]

6.2 TIBCO Middleware Products

TIBCO provides several commercial EI products and tools to help enterprises design
and implement their EI solutions. Their products suite is very broad and
comprehensive, so it is impossible to cover all of them in this report. So, this section
first provides a brief overview of some of their middleware products and development
tools.

Some of the messaging middleware products offered are Enterprise Message Service
(EMS), Rendezvous, and Message Appliance to name a few. EMS is a JMS compliant
messaging infrastructure that support Java, .NET, C/C++, and COBOL. It provides the
foundation to build SOA [28]. Rendezvous is a low-latency, high-throughput messaging
software for large scale distributed application environment. This is more suitable for
real-time applications that require broad data distribution. The Message Appliance is a
hardware implementation of Rendezvous. It basically replaces the standard hardware,

38

http://myshop.com/mule
http://myshop.com/mule

operating system, and messaging software with special purpose hardware to handle
more message volume with less rack space and power consumption.

In addition to these middleware software and hardware products, TIBCO provides
several composite applications that are technology neutral frameworks and service
containers for application integration development and deployment. ActiveMatrix
Adaptors, for instance, enable packaged applications and databases to be integrated
with the messaging infrastructure and the messaging flow. So, these Adapters provide
the means to easily connect existing databases and packaged applications to become
participants in the enterprise information flow. ActiveMatrix BusinessWorks is an
integration suite tool that helps to develop services and orchestrate them. It includes
visual tools that enable drag-and-drop assembly of technology components and service
assemblies. For example, if the application component needs to connect to a relational
database, one can drag-and-drop a JDBC palette on the IDE canvas, configure the
database url and credentials to make a connection to the database. So, this eliminates
having to write code for such services. ActiveMatrix Service Bus is a lightweight ESB
product that provides the means to mediate services and also includes visual tools to
develop and implement the mediation between different components and services.
These composite application suites and tools help enable the development of services
with required business logic. These services can access existing functions across a
heterogeneous environment and include them in new applications [29].

The following figure illustrates a complete product suite and how each product fits into
the overall product lifecycle and integration framework.

Figure 33 - TIBCO Product suite [29]

The next sections will take a closer look at TIBCO EMS as it provides underlying
message transport mechanisms and infrastructure for wide range of platforms and
technologies.

39

6.2.1 TICBO Enterprise Message Service (EMS)

TIBCO EMS enables synchronous and asynchronous inter-system communications
across a wide range of technologies such as Java EE, .NET, C, C++, and COBOL. It is
a JMS compliant messaging solution that enables communication across wide range of
application platforms [30]. It facilitates the implementation of various routing and
interaction patterns by configuring Queues, Topics and Bridges for the desired message
flow. Some of the patterns supported are point-to-point, publish-subscribe, and request-
reply. Chapter 5 already described JMS Queue and Topic. A Queue is used to
implement point-to-point routing of message. A Topic is used to implement publish-
subscribe pattern to route messages to multiple targets. However, there are different
ways to configure the routing.

a) Point-to-Point routing in EMS

In EMS, the concept of a “Bridge” is used to route messages between Queues and
Topics [31]. For example, a message that is published to a Topic can be bridged to a
Queue. This Queue may be a dedicated input Queue for the target system to receive
the messages. If messages published to the Topic need to be persisted to a database,
for example, a component may be implemented to persist any messages published to
that Topic. This is one example on how to implement point-to-point routing in EMS as
illustrated in Figure 34 below.

Figure 34 - Point-to-Point routing in EMS

Publish-Subscribe routing in EMS

If a message needs to be routed to multiple Queues from a Topic, then multiple bridges
can be created from that Topic to route messages to multiple Queues and thus
implementing a publish-subscribe pattern. Each bridge created can be configured to
route only certain types of messages based on a selected criteria. It is also possible to
subscribe to the Topic instead of having to bridge the Topic to a Queue. However, if the
target system is not available at any given time then message would be discarded

40

without being consumed by the target system. So, routing the message to a Queue
would guarantee delivery. The following Figure 35 illustrates this scenario.

Figure 35 - Publish-Subscribe routing in EMS

c) Request-Reply interaction pattern in EMS:

One way to implement a Request-Reply pattern would be as follows. The source
system can publish to a Topic that is bridged to a Queue for the target system to receive
the message. The target system may then reply by publishing to a specific reply Topic
that is bridged to a Queue for the Producer to retrieve the response message. If
multiple target systems need to reply to the same message, then all of them can publish
their response messages to the same reply Topic. Figure 36 below illustrates this
scenario.

Figure 36 - Request-Reply interaction pattern in EMS

41

CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The main objective of this research was to illustrate how disparate enterprise
applications can be integrated using Messaging. It first provided an overview of what
enterprise integration is and why it is important for business organizations. It described
why messaging is a more suitable solution compared to other styles of EI. Various
integration architectures and patterns were also discussed on how they help solve many
common integration problems. In addition to the architecture and design side of EI, the
essay has described many of the current integration technologies as well as products
that organizations can use to implement their EI solutions. So, this report has covered
the subject from the design perspective as well as implementation perspective.

One of the most important things to realize, when implementing EI, is that it is not
feasible for organizations to completely change their existing systems and infrastructure
in order to integrate their systems. Also, organizations don’t always implement their I/T
infrastructure and systems from the ground up knowing how they are going to be
integrated. As the business evolves and changes quickly, the systems built to support it
have to change and adapt quickly as well. Some of these systems may have been built
in isolation and never intended to work with each other. They may have been built
using different programming languages and platforms. So, it is also important for
integration solutions to be technology neutral. This means the EI solution has to be
able to support multiple existing platforms, network protocols, languages that the
existing systems were built around. It is because of these reasons, integrating those
disparate systems using appropriate messaging architecture and middleware products
can be a feasible solution.

The ESB model fits these requirements very well as it facilitates the implementation of
architectures such as SOA and EDA. SOA leverages existing systems by wrapping
them and exposing their functionality as discoverable services. However, this is only
the first step towards enterprise integration. Once the functionalities are provided
through a common interface, the data sharing and interaction with other services need
to be enabled in a decoupled and a scalable manner. This is where the importance of
implementing the appropriate interaction patterns come into play. For instance, the
message exchange may need to be synchronous or asynchronous. It may need
request-reply or request-reply-retry interaction enabled. The appropriate interaction
patterns would need to be implemented. In addition, multiple interacting services may
need to be implemented by following the appropriate models such as choreography or
orchestration that enforce the rules around how different services need to work with
each other.

42

In business systems, different business events may trigger business processes . An
example of an event would be when a company requests a quote from multiple
suppliers. When each supplier system receives the request for a quote, they may need
to interact with other internal systems or services before a response can be sent back to
the requestor. When the requestor receives all the responses, it then needs to evaluate
all the responses from different supplier systems and make a decision. This means
implementing EDA with SOA would be suitable as requests and responses (events)
need to be fired and propagated to invoke and interact with various services in real time.
In order to facilitate the interaction between these services, a messaging middleware
product such as TIBCO EMS with BusinessWorks container or IBM Websphere ESB
would be two examples of suitable middleware products for such business scenario. A
messaging engine and components deployed on the messaging infrastructure can
propagate the messages between different services. Operations such as validate,
transform, route, enrich, and filter would need to be performed to the messages as
necessary. If different enterprises use different messaging middleware, then it may be
necessary to use a common supporting messaging standard such as JMS. This allows
two different vendor products to be integrated using messaging. Therefore, the
knowledge of various messaging patterns, messaging middleware products and open
standards is necessary to implement the appropriate integration solution. This
knowledge can help solve many common integration problems such as routing between
different transport protocols, message formats, and platforms.

With respect to implementing technologies, however, challenges can still occur even if
the design is sound. For example, limitations with the technology or products may
arise in different areas like security, latency, throughput, storage, and so on. Most of
these issues may be discovered during the analysis phase and by performing proof of
concept for the design using the chosen technology and products. But, some issues
may not be detected until the system implementation is in production for some time.
So, continued changes and fixes will still be required in an integrated environment as
with any systems.

Troubleshooting and recovering from problems that occur in an integrated environment
with multiple systems would also be much more challenging than when they occur in a
single system. Following good design practices such as integrating them in a
decoupled and asynchronous manner can ease those challenges. For instance, if
systems are tightly coupled with synchronous communication, it requires all systems to
be active and ready to process at all times in a given workflow of activities. If one
system goes offline, the entire workflow would be affected. In this scenario, there may
be no easy way to recover from the crash other than having to restart the process from
the beginning. However, if the communication is asynchronous in nature, the workflow
may be re-started from where it was left off, when the inactive system becomes active
again.

Similarly, the maintenance of tightly coupled systems is also more difficult to manage.
If one system changes its interface, it would require all other systems to be updated as
well, because they explicitly need to know how to communicate with that system. If a

43

messaging middleware is put in place, for instance, it can handle the routing and
communication with other participating systems. Each system only needs to know how
to communicate with the messaging middleware and not each other. Any changes
would only have to be done to the system that requires the change, and the adapter or
endpoint that implements the communication with the messaging system.

Although messaging has many advantages and provides many benefits when
implementing EI, it may not always be the right choice for all business scenarios. One
of the primary disadvantages is that it requires an additional component in the
architecture such as the messaging system itself. In some cases, this may even cause
reduction in performance and reliability. For instance, it may not be suitable for small
organizations. Instead, it may be simpler to have dedicated point-point to connections if
they only have a few systems. Another example would be when systems require large
files to be transferred from one to the other. In this case, messaging may not be
suitable because it would cost more for the organization to implement a messaging
solution as it would require significant amount of changes to the way it handles its data
currently. Messaging solutions would also require the organizations to provide
additional training to existing staff or even hire new staff with the appropriate skill sets to
help support the new integrated environment. Implementing SOA for existing legacy
systems is yet another example of additional cost for the changes required. Although
SOA can provide legacy enablement and help integrate those systems with modern
technology and expose them through different application interfaces, it has its own
challenges to overcome as well. For example, financial institutions would need to
ensure that their existing system functions exposed as services are still secure and
robust. They need to ensure that their network and data are not compromised by the
new messaging protocols and products used to integrate with other systems.

7.2 Recommendations

Overall, this essay dwells into two major challenges in current EI practice. The first
challenge is to choose the appropriate architectural design and proven integration
patterns based on the organization’s business requirements. The second challenge is
to be able to map that design to the appropriate technology and products that are
suitable for the organization and its current I/T infrastructure. This report provides the
necessary foundation to start tackling these challenges from a technical perspective.
But, further research is necessary on how to map the organization’s business
requirements to technical requirements as it is important for the integration developers
to realize the need for EI for the business. Therefore, it is necessary to ask the
question of “why” EI is required and not just “how” EI can be implemented. This essay
helps to answer the question of “how” by providing the knowledge on proven
architectures, patterns, as well as technology that can help solve commonly occurring
technical problems in EI.

44

REFERENCES
[1] Anaya, V., Ortiz, A., (2005), “How Enterprise Architectures Can Support Integration”,
Copyright © 2005 ACM

[2] Mengjian, Chen., (2009), “Research and Implementation on Enterprise Application
Integration Platform”, IEEE Xplore

[3] Gorton, Ian, Liu, Anna., (2004), “Architectures and Technologies for Enterprise Application
Integration”, IEEE Computer Society

[4] Noble, James. (2007). “Every Good Designer Uses Patterns”. Copyright © 2007 IEEE
Software

[5] Gamma, E; Helm, R. Johnson, R. Vlissides, J., (1995). “Design Patterns: Elements of
Reusable Object-Oriented Software”. Addison-Wesley.

[6] Martin, F. (2002). “Patterns of Enterprise Application Architecture”. Addison-Wesley.

[7] Hohpe, Gregor., Woolf, Bobby., (2003), “ Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions”, Addison-Wesley

[8] Goel, Anurag., " Enterprise Integration - EAI vs. SOA vs. ESB", Retrieved on March
20th, 2011 from http://ggatz.com/images/
Enterprise_20Integration_20_20SOA_20vs_20EAI_20vs_20ESB.pdf

[9] Lee, J., Siau, K., Hong, S., (2003), “Enterprise Integration with ERP and EAI”, Copyright ©
2008 ACM

[10] Chatterjee, Soumen., (2004), “Messaging Patterns in Service-Oriented Architecture”,
Retrieved on September 2011 from http://msdn.microsoft.com/en-us/library/aa480027.aspx

[11] Ghalsasi, Sadhana Yogesh. (2009), “Critical Success Factors for Event Driven Service
Oriented Architecture“, Copyright © 2009 ACM

[12] Michelson, Brenda M., (2006), “Event-Driven Architecture Overview - Event-Driven
SOA Is Just Part of the EDA Story”, Patricia Seybold Group

[13] Chappell, Dave., (2004), "ESB Integration Patterns", Retrieved on April 1st, 2011,
from http://soa.sys-con.com/node/46170

[14] Lublinsky, Boris, (2009), “An ESB Vendors Evaluation by Forrester Research”,
Retrieved on March 22nd from http://www.infoq.com/news/2009/02/ESBVendors

[15] W3C, (2003), “Web Services Architecture”, Retrieved on August 2003 from
http://www.w3.org/TR/2003/WD-ws-arch-20030808/

[16] Holpe, Gregor (2003), “Enterprise Integration Patterns - Asynchronous Messaging
Architectures in Practice”, JAOO Conference - Copyright © 2003 Gregor Holpe

[17] Holpe, Gregor, (2011), “ Enterprise Integration Patterns”, Retrieved on April 7th, 2011 from
http://www.eaipatterns.com/

45

http://ggatz.com/images/Enterprise_20Integration_20_20SOA_20vs_20EAI_20vs_20ESB.pdf
http://ggatz.com/images/Enterprise_20Integration_20_20SOA_20vs_20EAI_20vs_20ESB.pdf
http://ggatz.com/images/Enterprise_20Integration_20_20SOA_20vs_20EAI_20vs_20ESB.pdf
http://ggatz.com/images/Enterprise_20Integration_20_20SOA_20vs_20EAI_20vs_20ESB.pdf
http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/
http://soa.sys-con.com/node/46170
http://soa.sys-con.com/node/46170
http://www.infoq.com/news/2009/02/ESBVendors
http://www.infoq.com/news/2009/02/ESBVendors
http://www.w3.org/TR/2003/WD-ws-arch-20030808/
http://www.w3.org/TR/2003/WD-ws-arch-20030808/
http://www.eaipatterns.com/
http://www.eaipatterns.com/

[18] Holpe, Gregor., (2007), “Conversations between loosely coupled services”, Retrieved
July 2011 from http://www.infoq.com/presentations/hohpe-soa-conversations

[19] Barros, A., Dumas, M., Hofstede, A.T, (2005), “Service Interaction Patterns: Towards a
Reference Framework for Service-based Business Process Interconnection”, Copyright © 2005
The Authors, Faculty of IT, Queensland University of Technology

[20] Manolescu, Dragos A., (2004), “Patterns for Orchestration Environments”, Copyright ©
2004 Dragos A. Manolescu, hillside.net

[21 19] Geek Explains, (2008), “Ways of combining Web Services, Orchestrations vs
Choreography”, Retrieved on August 15th, 2011 from http://geekexplains.blogspot.com/
2008/07/ways-of-combining-web-services.html

[22] W3C, (2011), “Extensible Markup Language”, Retrieved on October 19th, 2011 from http://
www.w3.org/XML/

[23] Schluting, Charlie., (2009), “Understanding SOA Technologies”, Retrieved on April
5th, 2011, from http://www.enterprisenetworkingplanet.com/netsp/article.php/3806171/
Understanding-SOA-Technologies.htm

[24] Oracle (Sun Developer Network), (2004), “Getting Started with Java Message
Service”, Retrieved on November 06th, 2011, from http://java.sun.com/developer/
technicalArticles/Ecommerce/jms/

[25] Happe, J., Friedrich, H., Becker, S., Reussner, R.H., (2008), “A Pattern-Based Performance
Completion for Message-Oriented Middleware”, Copyright © 2008 ACM

[26] TheServerSide.com, (2007), “Mule: A Case Study”, Retrieved on November 7th, 2011 from
http://www.theserverside.com/news/1365047/Mule-A-Case-Study

[27] MuleSoft, (2011), “Mule ESB 3 concepts”, Retrieved on November 10th, 2011 from http://
www.mulesoft.org/sites/all/themes/litejazz/docs/mule-esb-3-concepts.pdf

[28] TIBCO, (2011), “Messaging”, Retrieved on November 18th, 2011 from http://www.tibco.com/
products/soa/messaging/default.jsp

[29] TIBCO, (2011), “Building Composite Applications”, Retrieved on November 20th, 2011 from
http://www.tibco.com/products/soa/composite-applications/default.jsp

[30] TIBCO, (2009), “TIBCO Enterprise Message Service”, Retrieved on November 18th, 2011
from http://www.tibco.com/multimedia/ds-message-service_tcm8-824.pdf

[31] Lawrence, Richard., (2004), “TIBCO EMS Routing Design Patterns”, Retrieved on
November 29th, 2011 from https://ssl.tibcommunity.com/servlet/JiveServlet/previewBody/
2597-102-1-2503/EMS-Routing-Design-Patterns-August2007.pdf

[32] Robinson, Rick, (2004), “ Enterprise Service Bus Patterns”, IBM Software Group,
IBM Corporation

[33] Hoof, Jack van., (2006), “How EDA extends SOA and why it is important”, Retrieved on
October 9th, 2011 from http://soa-eda.blogspot.com/2006/11/how-eda-extends-soa-andwhy-
it-is.htm

46

http://www.infoq.com/presentations/hohpe-soa-conversations
http://www.infoq.com/presentations/hohpe-soa-conversations
http://geekexplains.blogspot.com
http://geekexplains.blogspot.com
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.enterprisenetworkingplanet.com/netsp/article.php/3806171/
http://www.enterprisenetworkingplanet.com/netsp/article.php/3806171/
http://java.sun.com/developer/
http://java.sun.com/developer/
http://www.theserverside.com/news/1365047/Mule-A-Case-Study
http://www.theserverside.com/news/1365047/Mule-A-Case-Study
http://www.mulesoft.org/sites/all/themes/litejazz/docs/mule-esb-3-concepts.pdf
http://www.mulesoft.org/sites/all/themes/litejazz/docs/mule-esb-3-concepts.pdf
http://www.mulesoft.org/sites/all/themes/litejazz/docs/mule-esb-3-concepts.pdf
http://www.mulesoft.org/sites/all/themes/litejazz/docs/mule-esb-3-concepts.pdf
http://www.tibco.com/products/soa/messaging/default.jsp
http://www.tibco.com/products/soa/messaging/default.jsp
http://www.tibco.com/products/soa/messaging/default.jsp
http://www.tibco.com/products/soa/messaging/default.jsp
http://www.tibco.com/products/soa/composite-applications/default.jsp
http://www.tibco.com/products/soa/composite-applications/default.jsp
http://www.tibco.com/multimedia/ds-message-service_tcm8-824.pdf
http://www.tibco.com/multimedia/ds-message-service_tcm8-824.pdf
https://ssl.tibcommunity.com/servlet/JiveServlet/previewBody/2597-102-1-2503/EMS-Routing-Design-Patterns-August2007.pdf
https://ssl.tibcommunity.com/servlet/JiveServlet/previewBody/2597-102-1-2503/EMS-Routing-Design-Patterns-August2007.pdf
https://ssl.tibcommunity.com/servlet/JiveServlet/previewBody/2597-102-1-2503/EMS-Routing-Design-Patterns-August2007.pdf
https://ssl.tibcommunity.com/servlet/JiveServlet/previewBody/2597-102-1-2503/EMS-Routing-Design-Patterns-August2007.pdf
http://soa-eda.blogspot.com/2006/11/how-eda-extends-soa-andwhy-
http://soa-eda.blogspot.com/2006/11/how-eda-extends-soa-andwhy-

[34] Hohpe, Gregor., (2007) “SOA Patterns – New Insights or Recycled Knowledge?”, Google
Inc.

[35] Linthicum, David S., (2000), “ Enterprise application integration”, Addison-Wesley
Information Technology Series

47

