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ABSTRACT 

This essay focuses on pathfinding in a 2.5D game world for Non-playing Characters 

(NPC) and agents. The primary focus is to investigate and determine the optimal 

pathfinding strategy based on several measures such as steps and time taken to reach the 

goal. For this investigation the most popular pathfinding algorithms and interaction 

schemes will be analyzed and tested using standard analysis techniques and test 

applications. The result of this analysis and testing is that it is shown that the A* 

algorithm is optimal using the Manhattan distance heuristic. Unfortunately, our testing 

did not reveal an optimal choice among the three interaction scheme that was tested 

which were cooperative, non-cooperative and competitive.  
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CHAPTER 1 

INTRODUCTION 
 

 An essential part of most strategy games involves the movement of Non-Player 

Characters (NPC) and/or Agents in a seemingly intelligent manner within the game. In 

the computer gaming industry, this intelligently moving of objects has become more 

significant and complex as games have increased in complexity and can be found in 

many different styles of games from real time strategy to first person shooters. 

The intelligent movement of objects, specifically NPC and Agents, is known as 

pathfinding and in the most general sense simply means finding the best route from an 

initial starting point to a destination. The term best in this context means finding the 

optimal route, which is path having the smallest cost over the entire set of paths [6], 

based on certain pre-defined criteria such as using minimal amount of system resources 

or finding the optimal path in an acceptable amount of time. 

 All pathfinding strategies, which are simply the decided upon pathfinding solution 

used within an application, must take into account all possible obstacles that can be 

encountered in the application environment and must have a tactic to deal with them. As 

the study of pathfinding has matured, many algorithms and strategies have been 

developed that address this question of finding the optimal path from an initial starting 

point to a destination while navigating around or accepting a penalty and going though 

obstacles. Some of these strategies are optimal only for certain types of environments 

while others work for all types of environments but may require resources beyond what 

can be allocated for the task. These issues resulted in the search for an all purpose 

strategy that could find the path from one location to the next in the optimal number of 
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steps while not requiring resources that would make using it a determent to the 

application in general. 

Statement of the Purpose 

The main purpose of this paper is to investigate and design a workable 

pathfinding strategy in a 2.5D game world for multiple NPC and players’ Agents that is 

optimal in terms of steps taken and resources required. In pursuit of this purpose I will 

consider fixed location obstacles and moving NPCs and Agents. The strategy that will be 

developed will work for both cooperative environments where NPCs and Agents must 

find non-colliding routes from one location to separate destinations with knowledge of 

the routes of others [22], as well as non-cooperative environments where NPC and 

Agents have no knowledge of each others plans [22]. This paper will also address 

Antagonistic Pathfinding, also known as Competitive Pathfinding, where the NPC or 

Agents try to maximize their performance measure which may minimize other NPC or 

Agents performance measure [14, 22]. 

Research Problem 

  The research problem that this paper is trying to address is: what is the optimal 

pathfinding strategy in regards to resources required, time needed to discover the path 

and the number of steps required for the NPC or Agent get to the destination in a 2.5D 

game world. This problem has many facets that play a part in developing an overall 

solution. 

This discussion will focus primarily on the most popular algorithm for 

pathfinding, the A* (pronounced A Star) algorithm. In our discussion of the A* algorithm 
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I will discuss several other popular algorithms too be used in comparison to A* as a 

means to illuminate the history, features and reasons for the popularity of the A* 

algorithm. Additionally, I will discuss several variants of the A* algorithm that have been 

proposed to address specific perceived deficiencies or as replacements for the A* 

algorithm. Several other success factors will also be taken into consideration such as a 

discussion on search depths for the various algorithms and variants of A* with a focus on 

resource consumption.  

In our study, it will also be assumed that the 2.5d environment we are using in our 

study is fully observable, which means the NPC or Agent is fully aware of all aspects that 

are relevant to its choice of action [14, 25]. This gives the NPC or Agent the complete 

State of the environment in which it resides, at each point in time [14].  

In order to round out this topic, I will provide, in figures, tables and various 

examples, an in-depth discussion of the algorithms in question followed by  a real world 

comparison of the algorithms in a prototype environment that will demonstrate the 

effectiveness of the discussed algorithms, comparing the best possibilities to each other 

using basic metrics as the comparison method.  

Significance of Problem 

The study of pathfinding and strategies is significant for several reasons. Firstly, 

the technology that goes into computer gaming is almost always at the cutting edge of 

what is possible with graphics, hardware, artificial intelligence, etc, and pathfinding is no 

different. Pathfinding algorithms can tax the CPU and memory resources of computers to 

the point that they are unable to address all requests for resources. An analysis of the 

various pathfinding algorithms and strategies can help to identify the areas where 
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pathfinding algorithms may cause hardware and performance issues, but also gives the 

programmer insight into how to mitigate these issues or even overcome them. 

Additionally, the study of pathfinding opens up other significant areas of interest 

in computing, specifically the field of Artificial Intelligence (AI). AI is the field of study 

that aims to encompass computational techniques for performing tasks that apparently 

require intelligence when performed by humans [25] and deals directly with the 

intelligence of machines [26]. AI is a very large and fragmented field that has many sub 

areas, topics and sub fields.  

AI can also be viewed as the study and design of intelligent agents [26] such as 

those referred to as Non-Playing Characters (NPC) and agents. The study of pathfinding 

algorithms presents a basic look into the field of AI and how it can be used in real world 

applications such as the Roomba robotic, in home vacuum cleaner developed and sold by 

iRobot Corporation to the Mars Pathfinder operated by NASA. While both these 

examples go beyond this discussion, the basis for both examples and the technology 

behind how they operate is based on the same questions and techniques that will be 

discussed in this paper. Both of these examples need to be able to navigate their 

environment in the most efficient manner and pathfinding, in one way or another, makes 

this possible.  

In order to understand pathfinding, think of an open field. It is easy to see how to 

move an object from one location to the next but what if there is a wall between the two 

locations. How does the object now move to the next location by the most efficient path? 

Now suppose that the object in question is an NPC or agent. How does a programmer 
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embed in the NPC or agent the ability to maneuver inside a virtual game world in the 

most efficient and least memory intensive way.  

Limitations 

 The area of study known as Pathfinding is a very large topic that has been 

addressed by many researchers over the years. As such, it is not possible to discuss all 

possible pathfinding strategies and algorithms that have been introduced by all this 

research. In the scope of this paper, it is only possible to discuss the most popular and 

widely used strategies and algorithms, primarily Dijkstra’s algorithm, Best-First Search 

(BFS) and the A* algorithm.  

Definition of Terms 

In order to develop a base of knowledge for the topic addressed by this paper, this 

section will define several important terms that are used throughout the paper. 

Firstly, what is a NPC? A NPC is a character in a game that is not controlled by a 

human. Its actions are dictated by a series of pre-defined rules that it follows during the 

course of a game. These rules may include any actions that are seen as being ‘in 

character’ for the NPC and are dependant on the type of game and the game designers 

whim. The NPC may interact with a Player Character (PC) and may have its actions 

triggered by this interaction.  

 Similar to a NPC, an Agent is an entity that is not controlled by a human. It 

observes its environment and interacts with it to satisfy a pre-programmed goal or set of 

goals. With agents, there may be an element of learning or knowledge retention involved 

that assists them in achieving their goals. There may be many different varieties of agents 
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in a game and they can be simple to very complex depending on the requirements as seen 

by the game designer.  

 The next important term to understand is the term 2.5D. What do we mean by 

2.5D? Tile based games tend to have one of two different perspectives, either a top-down 

2D perspective or an isometric 2.5D perspective which allows the graphical 

representation of the game to represent three-dimensional objects in two-dimensions.  

 
 

 
Figure 1: (a) 2D Tile Based Grid (b) 2.5D tile Based Isometric Grid 

   

 In a 2.5D isometric perspective all objects are to scale no matter where they are in 

the space. This differs from real perspective in which all objects reduce in size the farther 

they recede into the background. This is an important distinction and must be fully 

understood in order to completely understand what is meant by isometric prospective and 

2.5D. Following is an example that illustrates this concept.  
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In the two figures below, figure (A) shows true perspective in which the rectangle 

that is perceived to be in the background is smaller than the rectangle perceived to be in 

the front. In figure (B) the rectangles are the same size even for the rectangle perceived to 

be in the background. 

 
 

 
Figure 2: (a) True Perspective (b) Isometric Perspective 

 One of the benefits of isometric perspective and its lack of perspective scaling, 

which keeps all the objects the same size no matter their placement in space, is that it 

makes isometric perspectives easy and reliable to measure [34] because all the 

proportions are maintained. This can be seen in the following figure of a cube that has all 

its edge equal in length. 

Width

H
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h
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Figure 3: Isometric Perspective 
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Below is a basic example of a 2.5d environment as it could look in a game 

environment.  

 
Figure 4: An Example isometric environment 

 

 An element of isometric game worlds is that some objects, represented by NPCs 

or Agents can move independently of each other or the background within the 

environment. This helps to create a sense of depth for the gamer [29]. 

 Pathfinding is a sub-topic of the larger topic AI. AI has several different 

definitions depending on the source [14] but they all generally align along two main 

dimensions which are thought processes and reasoning and secondly, behaviour [14]. In a 

very basic sense this breaks down to how systems think and how they act with the degree 

of AI being how closely they think or act like human beings or think or act rationally.  

 In AI, the Turing Test was proposed by Alan Turing to provide a satisfactory 

definition of intelligence [14]. In its most basic form, the Turing test a computer shows it 

is intelligent if it can pass a test that compares its results to that of an undeniably 

intelligent entity which, in this case, are human beings. A computer passes the test if a 
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human interrogator, after posing some questions, cannot tell whether the resulting 

responses are from a person or not. If the computer passes it is intelligent [14, 30]. 

 For the study of pathfinding strategies, this is important because the ultimate 

result of developing a strategy is to have the NPC and Agent objects in the game world 

appear to move as if they were controlled by a human being. In essence, they should be 

able to pass a limited type of Turing Test. 

 The distinction between Cooperative, Non-Cooperative and Antagonistic or 

Competitive environments was discussed previously.  In a Cooperative environment all 

the NPCs and Agents have knowledge about all other NPCs and Agents and take this into 

consideration in developing an individual route that does not interfere with any other 

routes from a starting point to a destination [14, 27]. An example of this is Doubles 

Tennis where there are a team of two players facing off on each side of the net. When the 

ball is hit to one side both players evaluate where the ball will land and make decisions 

on where to move to depending on if they feel they can reach the ball or they feel their 

partner can reach it. Thus they developed plans for themselves based on the actions of the 

other player. 

 The Non-Cooperative environment is one in which the NPC and Agents have no 

knowledge what so ever of each others actions or plans and must try to predict each 

others future movements [22].  

 Antagonistic or Competitive Pathfinding is pathfinding where all the NPCs or 

Agents goals are in conflict. Each NPC or Agent tries top reach its goal while, at the 

same time, preventing other Agents from reaching theirs. Basically, Agents make plans to 

move from their starting point to their destination without taking into consideration any 
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information from the other NPCs or Agents and does not concern itself if the path it 

selects will be in conflict with another NPC or Agent, in fact this conflict is agreeable. 

This gives rise to what are known as adversarial search problems which are problems that 

arise when we try to plan ahead in a world where other NPCs or Agents are planning 

against us [14, 22]. 

 In discussing the topic of this paper another distinction must be defined, that of 

fully observable and partially observable. As discussed previously, an environment is 

fully observable if all aspects that are relevant to the choice of action are known at each 

point in time [14]. This makes it more convenient for the NPC or Agent because they do 

not have to maintain an internal state to keep track of the world in which they interact. If 

they desire to move they can reference the fully observable state of the environment at 

that time to use in determining the optimal action path.  

 Opposed to fully observable is partially observable in which not all states of the 

environment are known at each point in time [14]. An NPC or Agent in a partially 

observable environment needs to maintain an internal view of their world they use when 

making action decisions and add to it as they move throughout their environment.  

 For the discussion contained in this essay, we will only be concerned with NPCs 

and Agents in fully observable environments. 

 In our discussion of algorithms we will be using graphs and maps to help 

represent the area within which the algorithm works. This area can be comprised of many 

different shapes such as squares, hexagons or even a spatial representation of a game tree 

and does not need to be a map in the literal sense [11]. One of the easiest representations 



 21

to understand for our discussion is the graph. The graph contains all the elements that will 

be dealt with in this paper. 

 To start, a graph is a graphical representation of a set of objects that are connected 

by links that are commonly called edges [35]. These object that are being represented are 

often called vertices or nodes depending on the preference of the author [11, 35]. Nodes 

or vertices are data structures that represent points on a map [31]. Each point on the map 

or graph has a representative node that contains information representing that point. For 

this paper both node and vertex will be used interchangeably.  

One of the hardest terms to define is what is meant by the cost of a node [31]. The 

cost of a node represents the desirability that a path should pass through the node. An 

example of this arises in most strategy games when there are mountains contained in the 

terrain. The cost for an NPC or Agent to pass through the mountains as part of their path 

is higher then if they were simply passing through an open field. The cost of a node can 

be based on several factors such as time, energy, money or terrain [31].  

 
Figure 5: A labeled graph with 5 vertices/nodes and 8 unlabelled edges 

 As mentioned previously, we will be discussing the area in which the algorithms 

work; this area is commonly referred to as a state space or a search space. A search space 
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is the set of all possible solutions in a search area [14]. As such, a search space represents 

all of the paths between vertices in our algorithms.  

 A state space is what a state space search searches in. A state space search is a 

process in which successive states of an instance are considered with the intention of 

finding a goal state with a desired property [36]. This essentially means that various 

possible solutions are tried in an attempt to reach a goal state. This has an obvious tie in 

to the subject of this paper in that we are searching through an area attempting to find a 

path from a starting point to a goal.  

The state space is implicitly defined by the initial state which is the start for the 

search and the successor function which is the description of all possible actions available 

to an agent [14]. The state space forms a graph where the nodes are states and the edges 

or arcs between the nodes are actions [14]. Additionally, a path in the state space is a 

sequence of states connected by a sequence of actions [14].  

Organization of the Remaining Chapters 

 Aside from the Introduction chapter, this essay is divided into four additional 

chapters, which are briefly described below. These remaining chapters support the 

statement of purpose of this paper and provide the necessary detail to reach a conclusion. 

 Chapter two will be a review of previous research and related literature that acts 

as the basis of knowledge for this paper. This will include a critical appraisal of current 

research from print sources and the internet discussing various pathfinding strategies 

including the A* algorithm and variants, as well as, pathfinding related techniques. While 

various pathfinding strategies will be discussed, this section will not engage in any in-
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depth discussions of the algorithms beyond that which is needed to explain the pertinent 

research and findings in light of the statement of purpose of this paper. 

 Chapter three will focus on discussing various pathfinding strategies and 

comparing them in order to discern what is the optimal pathfinding strategy for our 2.5D 

game world. The result of this chapter will be to identify, through analysis only, the 

optimal pathfinding strategy for our 2.5D environment. This result will then be tested in a 

2.5D test environment which is the subject of the following chapter. 

 Chapter four will deal with taking the research from the previous chapters and use 

it to answer the statement of purpose. This will be accomplished by using a test 

environment that will run and measure each of the algorithms and then compare the 

results to determine the overall best algorithm. These results will be compared to our 

analysis of the algorithms preformed in the previous chapters to see if our analysis was 

proved correct. This will take into account the various success factors and will end with a 

recommendation of which pathfinding strategy is optimal under the assigned conditions. 

The overall comparison of these algorithms will take into account several different test 

environments designed to test the abilities of the algorithms as well as several different 

interaction schemes. The first of these interaction schemes takes into account the 

environment where the NPC and agents act in a cooperative manner, the second will 

address a Non-Cooperative scheme and, lastly, the Antagonistic or Competitive scheme 

will be discussed. 

 Chapter five will bring together the research from the previous sections and 

present the conclusions and recommendations. It will also identify any future areas of 

research in this field. 
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CHAPTER 2 

REVIEW OF RELATED RESEARCH 

 There has been an abundance of research into pathfinding strategies over the 

years. Following is a collection of research that has been conducted that address the 

statement of purpose of this paper. The breath of research in this area made the act of 

gathering the best articles difficult but I have tried to maintain a common goal of only 

addressing research that directly relates to the topic at hand without getting into esoteric 

research that does not add to the overall base of knowledge needed to understand this 

topic.  

In a discussion of pathfinding there are several algorithms that should be 

discussed along with their accompanying research. Following is a brief introduction to 

these algorithms and research. The intent of the following research review is to assist the 

reader in seeing the historical and logical progression of research and study in 

pathfinding strategies. This section will then wrap up with a brief synopsis of various 

research that has been carried out with regards to the A* algorithm. This research will be 

further expanded in the following chapter. 

Dijkstra’s Algorithm 

The first pathfinding strategy to be discussed is Dijkstra’s algorithm which was 

first conceived by E. W. Dijkstra in 1959 in his paper A Note on Two Problems in 

Connexion with Graphs [1, 2]. In this paper Dijkstra discusses what he sees as problems 

with graphs and proposes a solution in the form of an algorithm designed to find the 

shortest paths from a starting point to all the other points in a weighted, directed graph 
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which simply means that it is a graph, or set of connected items, whose edges, or 

connections between its points, are in ordered pairs meaning that each edge can be 

followed from any point to any other point and each of these edges has a weight or 

numeric value associated with it [1, 3]. 

 In [1], Dijkstra solves two basic problems that arise when we consider a graph 

with n vertices, which are simply an item on a graph and can be referred to as points or 

nodes, that have all pairs connected by a positive length edge [1, 4]. The problems that 

Dijkstra solves are as follows: “Problem1: construct the tree of minimal total length 

between the n vertices. (A tree is a graph with one and only one path between any two 

vertices.) Problem 2: find the path of minimal total length between two given vertices” 

[1]. 

 Dijkstra’s algorithm solves the problem of finding the shortest path from a 

starting point to the destination in a graph as long as the edges between the points are not 

negative [1, 5]. In order to find the shortest path from the starting point to the destination, 

Dijkstra’s algorithm has to discover all the paths to all points on the graph meaning that 

in order to find the shortest path from the source to the destination we have to find the 

path from the source to all other points. This problem is sometimes called the single-

source shortest paths problem [5] and occurs because Dijkstra’s algorithm always visits 

the closet unvisited node from the starting node and, as such, does not search towards the 

goal node [12].  

 Although Dijkstra’s algorithm does successfully find the shortest path from a 

starting vertex to a destination vertex in a graph and as such is admissible, it is easy to see 
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that it does have substantial overhead associated with it due to the single-source shortest 

paths problem. As such it is not considered optimal for most pathfinding applications. 

Best-First Search (BFS) Algorithm 

Another common algorithm, the BFS, is another algorithm that attempts to be 

optimal in regards to pathfinding. The BFS algorithm has been discussed in research by 

many researchers, this paper focuses on the work of Stuart J. Russell and Peter Norvig 

entitled Artificial Intelligence – A Modern Approach. This text gives a very good 

overview of several search strategies that fall under the informed (heuristic) search 

strategy umbrella which includes the family of BFS strategies. It must be remembered 

that the field of study called Pathfinding falls under the very large and encompassing 

topic of AI. As such, there is a large selection of AI research that directly references the 

topic of Pathfinding. 

The BFS algorithm is an informed search strategy algorithm meaning that it uses 

specific knowledge that is obtained beyond the definition of the problem in order to solve 

the problem [14]. It is easy to see the informed search algorithms can be more efficient 

then uninformed search algorithms due to this additional knowledge that helps the 

informed algorithm to solve the problem. There is a whole family of BFS algorithms 

based on their different evaluation functions. The evaluation function is used by the 

algorithm to select a node for expansion and is commonly denoted by f(n) [14].  

A key component of the evaluation function is called the heuristic function [14]. 

The heuristic function, commonly denoted as h(n), is the estimated cost of the cheapest 

path from the current node, denoted as n, to the goal node [14]. The current node is the 

node that is being evaluated at that time.  
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h(n)
 

Figure 6: Common Identifier for the Heuristic Function 

 

The BFS algorithm explores a graph by expanding the most promising node based 

on its heuristic [8, 10]. In a basic sense, the BFS algorithm acts completely opposite of 

Dijkstra’s algorithm. Instead of always picking the closest node to the starting node, it 

always picks the node that is closest to the goal node on the assumption that by doing this 

it will find the solution quickly hence the BFS algorithm being called greedy [14]. Since 

we do not know the distance to the goal node this has to be estimated [12]. This estimate 

is a heuristic and is used in the evaluation function. A heuristic is an algorithmic 

technique that usually, but not always, works or gives an approximate answer [9]. As 

such, the BFS algorithm evaluates nodes by using just the heuristic function, which is 

denoted as follows: 

f(n) = h(n)
 

Figure 7: BFS evaluation function 

The A* Algorithm 

The next logical step in pathfinding research came in 1968 with the introduction 

of the A* algorithm by [6]. They introduced the A* algorithm in their research paper A 

Formal Basis for the Heuristic Determination of Minimum Cost Paths. In this paper they 

developed an algorithm that could find the shortest path similar to Dijkstra’s algorithm, 

but uses a heuristic to guide it in finding the best path similar to the BFS algorithm [8].  
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In their work on developing the A* algorithm, [6] expanded upon the heuristic 

evaluation function of the BFS algorithm. They showed that A* is admissible, meaning 

that it is guaranteed to find an optimal path from a starting vertex to a preferred goal node 

for any graph [6].  

The A* algorithm changes the evaluation function, f(n), first seen in the BFS 

algorithm to the following: 

 
Figure 8: A* evaluation function 

  

Where g(n) is the actual cost of an optimal path from the source to the current node, the 

cost to reach the node and h(n) is the actual cost of an optimal path from the source node 

to the goal node, the cost to get from the node to the goal [6, 11, 14]. 

 Making this change in the evaluation function made the A* algorithm admissible 

but also, compared to Dijkstra’s algorithm, uses reduced memory and time requirements. 

Effectively, A* combines the best characteristics of Dijkstra’s algorithm and the BFS 

algorithm.  

 While the memory and time requirements for the A* algorithm is less then that of 

Dijkstra’s algorithm they are still considered high and at times prohibitive, especially 

when it has to deal with a large state space which is commonly a map or graph. 

Surprisingly, time requirements to run A* does not appear to be the biggest drawback, it 

seems that because the algorithm maintains  a list of nodes in memory it will actually run 

out of space in memory before it runs out of time and as such is, it is not practical for 

large scale pathfinding problems [14].  
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 Even with the drawbacks mentioned, the A* algorithm is by far the most popular 

pathfinding algorithm used in gaming and similar applications today [11]. As such, much 

of the attention of researchers has been directed to studying A* and trying to improve it 

in general or for specific applications. Following is a brief sampling of some of the 

research that has suggested variations to the A* algorithm. The research that is being 

discussed is presented in no specific order unless it is deemed that understanding of one 

variation is needed to understand another.  

Table 1: Comparison of Pathfinding algorithms 

Algorithm Uses Heuristic? Speed Admissible 

Dijkstra’s No O((n+m) log n) [33] Yes 

BFS Yes Depends on heuristic Yes 

A* Yes Depends on heuristic Yes 

Iterative Deepening A* 

 One of the problems with the A* algorithm is that, similar to Dijkstra’s algorithm, 

it is very memory intensive [14]. Many of the variations come out of the need to lower 

this memory cost. One of the simplest ways proposed to reduce the memory requirements 

of the A* algorithm involves adapting the idea of iterative deepening to the heuristic 

function. Adding iterative deepening to the heuristic results in a variation of the A* 

algorithm called the iterative-deepening A* (IDA*) algorithm [14].  

 The IDA* algorithm started out in the 1960s as a way for programmers and 

researchers to address finding a reliable mechanism to control the time consumption of 

tournament chess games [15]. Essentially, they hit upon the idea of extending the idea of 

searching only one depth of the state space to subdividing up the task into separate depth-

first searches with successively deepened search horizons or cost thresholds [15].  
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 In [15], the author explains that IDA* performs a series of cost-bounded depth-

first searches while successively increasing the cost thresholds. This means that IDA*, at 

each iteration of the algorithm, does a search and removes all nodes that exceed the set 

fixed cost bound that was determined at the first iteration of the algorithm. The cost 

bound is set to the heuristic estimate of the initial state [15] and, with each iteration, is 

increased to the minimum path value that exceeds the previous bound [15, 17]. In simple 

terms, this means that IDA* addresses the memory issues seen with the A* algorithm by 

not adding nodes to memory that do not satisfy the depth determined by the iterative-

deepening function. 

 [16] Discusses the problem with BFS which is that it must store all the nodes in 

memory in order to determine the best node to expand next. For large environments, this 

requires a significant amount of memory which grows linearly with the running time and 

increases exponentially with the size of the problem [16, 17].  

 The author sees iterative deepening as one of the possible solutions. Iterative 

deepening performs a series of depth-first searches, each with a depth limit that is one 

greater then the previous iteration [16, 17]. This continues until a solution is found. As 

such, iterative deepening uses less memory then A* and still is admissible. 

 In [18], iterative deepening is seen as a way to impose an artificial limit that 

reduces the total search space on the search algorithm. This works to lower the memory 

demands that is a problem with algorithms such as A*. As mentioned previously, IDA* 

means that the algorithm is called repeatedly in iterations, starting with a small value for 

the path length which increases on each iteration. If the call to the algorithm fails to find a 

path it will gradually relax the limit in subsequent calls to the algorithm until the search 
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succeeds or the limit reaches the maximum value which would mean that a path is not 

possible [18]. 

 The research in [18] explains that there are several advantages to using IDA* over 

A*. The first is obvious and has been mentioned previously, that IDA* uses less memory 

then A* for most calls because the artificial limit results in fewer nodes being examined 

and expanded [17, 18]. The additional benefit identified is that IDA* speeds up the 

detection of almost-straight paths and improves performance in environments where there 

are many other agents attempting to pass the same point at the same time [18]. This 

additional feature of IDA* will be further elaborated on in the following chapter. 

 The purpose of this study was to introduce the IDA* algorithm which is an 

extension of the A* algorithm. It differs from A* in that it determines a successively 

deepened search horizon on each iteration that is used by the algorithm to limit the 

number of nodes that are expanded and as such maintained in memory. It addresses the 

memory issues of the A* algorithm. 

Abstraction 

 Another newer variant of the A* algorithm that was first proposed in 2004 is 

called Hierarchical Path-Finding A * (HPA*). The research in [19] proposes a 

hierarchical approach for reducing the complexity of path-finding on grid-based maps 

which extends the A* algorithm by creating an abstraction of the map into linked local 

clusters [19].  

 The HPA* does not rely on a specific topology and will work with our 2.5D 

environment, as well, it gives the advantage of being relatively simple compared to other 
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extensions for the A* algorithm and is easy to implement [19]. The authors suggest that 

HPA* is up to 10 times faster then compared to highly optimized A* [19].  

 [20] Extends the work proposed by the HPA* algorithm. In this paper the authors 

bring together several related pieces of work on using abstraction for pathfinding with a 

focus on implementing the algorithm with the least amount of memory usage [20]. In fact 

the authors conclude that their proposed technique uses only about 3% additional 

memory but results in computing paths up to 100 times faster then just the A* algorithm 

by itself [20]. 

 Abstraction means transforming a large map into smaller representations of the 

larger map in order to speed pathfinding. This is a natural concept for humans as we use 

abstraction for solving many large problems [20]. In abstraction a high level path is 

determined using the abstract pieces of the state space which can be a graph or map; this 

then leads to determining the near optimal path in the larger non-abstracted, local sections 

of the map. 

The purpose of the above study was to discuss the topic of abstraction in regards 

to the A* algorithm. Abstraction involves creating representations of a larger state space. 

This allows A* to perform a high level search that coupled with a lower level search 

ensures that the agent is moving in the near optimal route to the goal. 

Real Time Adaptive A* 

 Abstraction works in speeding up the A* algorithm but there are many other ways 

to increase the performance of the A* algorithm. One way that has been propose is called 

Real-Time Adaptive A* (RTAA*) [21]. With RTAA*, the heuristic for the A* algorithm 
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gets updated between searches that use real-time search methods [21]. RTAA* uses real-

time search methods combined with the A* algorithm.  

 Real-time search methods restrict the search to a small part of the state space 

which can be reached from the current state or node with a small number of action 

executions [21]. Basically, the agent determines the state space that will be used for the 

initial search. The agent then searches the state space and determines what the path will 

be. Once determined the path is executed to a point on the resulting trajectory. This 

process is then repeated until the agent reaches the goal state [21]. 

 Real-time search methods do not plan the complete path to the goal state but 

create a path for the agent to move through to the final goal state. This can be seen as 

being similar to the abstraction method of pathfinding in that they both do not find a 

complete path but, instead determine parts of the path using waypoints.  

 With real-time search methods, this usually results in shorter search times due to 

the smaller search spaces but larger trajectory costs due to the entire path being broken up 

and determined separately [21]. A side effect of these benefits is that real-time search 

methods are adept at pathfinding for very large state spaces. 

 With RTAA*, the A* algorithm is the algorithm of choice that finds the points on 

the trajectory or, eventually, the goal state. It is a novel approach to pathfinding using 

real-time search methods and the A* algorithm to create a real-time heuristic search 

method. In RTAA* the local search state space is determined in a fine grained way while 

the heuristic for each state is updated in the local search space very quickly [21] resulting 

in a A* like algorithm that is overall faster then original A* and is considered by the 

authors, easy to implement [21]. 
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The purpose of this study was to introduce real-time search methods to the A* 

algorithm which address the performance issues of the A* algorithm. 

Cooperative Pathfinding A* Variations 

 Cooperative pathfinding was described previously in this paper as pathfinding 

involving many agents that must find non-colliding routes to separate destinations given 

full information about the routes of the other agents [22].  

 In his paper, [22], David Silver discusses several variations on the A* algorithm 

that work well in a cooperative environment and work to solve the multi-agent 

pathfinding problem. Specifically he discusses Cooperative A* (CA*), which searches 

space-time for a non-colliding route, Hierarchical Cooperative A* (HCA*), which use an 

abstract heuristic to boost performance and finally, Windowed Hierarchical Cooperative 

A* (WHCA*), which limits the space-time search depth to a dynamic window which 

spreads the computation of the path over the duration of the route [22]. 

 CA* breaks up the task of moving multiple agents into individual single agent 

searches that is performed in three dimensional space-time. These single agent searches 

use a reservation table that represents the shared knowledge about each of the agents 

planned routes. The path entries in this table are considered impassable and are avoided 

during pathfinding searches for subsequent agents [22]. This enables the agents to find 

non-colliding paths to their goals.  

 HCA* uses abstraction of the state space in order to determine the paths for the 

multiple agents. In the case of HCA*, the abstraction is a simple single domain, 2-

dimensional map with all the agents removed that ignores both the time dimension and 

the reservation table [22]. With the state space abstracted this way, abstract distances can 



 36

be viewed as perfect estimates of the distance to the goal, ignoring any and all possible 

interactions with the other agents [22]. This result is an admissible and consistent 

heuristic with the inaccuracy of the heuristic being determined only by how much the 

agent must deviate from its path to avoid contact with other agents [22]. 

 CA* and HCA* have several drawbacks. Firstly, they do not address what to do 

with the agents once they reach there goal. This becomes an issue if the goal was in a 

narrow point, the agent could prevent other agents from passing the point resulting is a 

backup and pathfinding chaos [22]. The agent must move off its goal and allow other 

agents to pass onto their goals. This involves further cooperation beyond simply finding 

the non-colliding paths to their goals.  

 The second issue with the above strategies is that they do not address agent 

ordering. A robust solution that considers the sensitivity of agent ordering varies the 

agent order and assigns each agent in turn the highest priority for a short period of time 

[22]. This enables the strategy to solve problems that would be unsolvable with an 

arbitrary or fixed agent order. 

 Thirdly, CA* and HPA* must calculate the complete route to a goal in a large 

three-dimensional state space [22] which is more time and space prohibitive then what is 

desired.  

WHCA* overcomes the above challenges by simply windowing the search. 

Windowing simply involves taking a smaller set depth of the state space to search rather 

then the entire state space. This results in the agent searching only a partial trajectory to 

the goal. Once the partial trajectory is calculated, the agent begins to move, following the 



 37

route. At regular intervals such as when the agent is half way through the partial route, 

the window is shifted forward and a new partial trajectory is calculated.  

Due to problems that could arise due to the partial trajectory seeming to be the 

optimal route but in reality being a dead end, only the cooperative search depth is limited 

to a fixed depth, that is the pathfinding that takes into account all the other agents, while 

the abstract search, the single domain, 2-dimensional abstraction, continues to be 

executed to the full depth of the map [22]. This ensures that the agents are headed to their 

goal on a near optimal path. 

While WHCA* is not without its problems. The main problem it faces is that of 

the horizon effect [23]. The horizon effect is caused when agents plan just enough to push 

congestion past the windowed horizon resulting in agents behaviors looking bizarre and 

unreal [23]. 

[22] Performs experimentation to determine the most effective of the three 

strategies in various situation using Local Repair A* (LRA*) as a comparison. LRA* has 

every agent search for a route to its goal using the A* algorithm, ignoring all other agents 

except those that are its closest neighbors [22]. Once the system begins to run, the agents 

follow there routes until a possible collision appears imminent. When it appears that an 

agent is going to try and move into the space of another agent, the original agent’s route 

is then recalculated to not try and move into the occupied position. 

Another possible solution to the multi-agent pathfinding problem can be seen in 

[23] in which the authors wish to create a WHCA* type strategy but without the horizon 

effect. Their solution involves using a direction map which essentially replaces the static 

reservation table with a dynamic new data structure that stores the direction that the agent 
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last moved as each location [23]. This enables the strategy to determine ahead of time if 

there is the possibility of a collision and allow it to prevent it occurring without the agents 

explicitly communicating their plans. 

The purpose of this study was to identify several variations of the A* algorithm 

that address and overcome the multi-agent pathfinding problem that affects multiple 

agents in a cooperative state space.  

Comparison of A* Algorithm Extensions 

 For comparison and reference, below is a matrix of the A* algorithm changes that 

have been discussed in this chapter. This is designed as a comparison of the changes 

made to the A* algorithm and the item that the change addresses in the A* algorithm or 

previous extensions. 

Table 2: Comparison of changes to A* 

Algorithm Changes to A* Addresses 

IDA* 
Multiple depth-first searches with 

successively deepened search horizons 
A* memory issues 

HPA* Abstraction A* Performance  

RTAA* 
Updates heuristic between searches and 

real-time search methods 
A* Performance 

CA* 

It is cooperative. Breaks up task of moving 

multiple agents into individual single agent 

searches. Also uses a reservation table. 

Multi-agent pathfinding 

problem 

HCA* 
Abstraction plus CA* changes minus the 

reservation table. 

Multi-agent pathfinding 

problem 

WHCA* Uses windowing for search. 

Multi-agent pathfinding 

problem plus the drawbacks 

found in CA* and HCA* 

*Direction Map A* Direction Maps 
All items from WHCA* plus 

the Horizon effect 

 

* NOTE: This change was not given a name in the research, as such, Direction 

Map A* is a description of the algorithm changes and not the name of the 

algorithm. 
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Alternative Heuristics 

 The most common heuristic for the A* algorithm is Manhattan Distance, 

sometimes called city block distance [14, 24]. As with all heuristics for the A* algorithm, 

it estimates the remaining distance to the goal. Manhattan distance does this by summing 

the horizontal and vertical distances to the goal. While this is considered ‘good enough’ 

for most applications there has been research into developing better heuristics that have 

better performance.  

 While this is a large topic that is beyond the scope of this paper, I will discuss a 

new heuristic and the related research around it. In the next chapter we will look into 

several additional heuristics and investigate how they affect the performance of the A* 

algorithm. 

 [24] Discusses several optimizations for the A* and IDA* algorithms. Among 

them are two optimizations that are relate directly to A*. Firstly, the author discusses an 

optimization that involves the use of an array of stacks rather then a priority queue for 

maintaining the open list of nodes. This does offer some interesting possibilities but is 

beyond the scope of this paper and does suggest a further topic for research. 

 In regards to heuristics, [24] proposes a new heuristics called ALTBestp [24]. The 

author discusses this heuristic in relation to the Manhattan distance heuristic and the ALT 

heuristic. The Manhattan heuristic was discussed above, the ALT heuristic works by first 

pre-computing the distance to all points from a given point, such as the starting point, and 

then uses these pre-computed distances to calculate an admissible heuristic [24]. 

 The author believes that a better variation on the ALT heuristic is the ALTBestp 

heuristic which uses pre-computed distances from P points but instead of taking the 
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maximum value over the h values computed with the P points at each node of the search, 

it selects among the P points the one that gives the highest h value at the root node [24]. 

For all the nodes in the search, it chooses as the h value the maximum of the ALT value 

computed with the selected point and of the Manhattan distance [24]. The advantage of 

the ALTBestp heuristic is that is takes less time at each node, making the overall search 

process faster while at the same time not being any worse then other heuristics such as 

Manhattan distance [24]. 

The purpose of this study was to develop a new heuristic that would increase the 

performance of the A* algorithm beyond the performance it normally gets when 

implemented using the Manhattan distance heuristic. Additionally, this research goes to 

show that different heuristics can be developed that address performance issues with A*.  
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CHAPTER 3 

PATHFINDING STRATEGIES ANALYSIS 
 

 The preceding chapter discussed research that has been conducted into various 

pathfinding strategies and algorithms over the years. This chapter builds upon this 

previous research by analyzing several algorithms and pathfinding strategies, specifically 

Dijkstra’s algorithm, BFS and A*, by subjecting them to an in-depth technical analysis 

that will look at how the algorithms function with a goal of being able to deduce what we 

should see in our actual testing of the algorithms and pathfinding strategies.  

 This chapter will focus on discussing the identified popular pathfinding strategies 

and comparing them in order to discern what is the optimal pathfinding strategy for our 

2.5D game world. The result of the investigation that is described in this chapter was to 

identify the optimal pathfinding strategy for our 2.5D environment based on analysis of 

the main algorithms. The chapter that follows this one will take the results of the analysis 

conducted in this chapter and evaluate and compare them in a test environment to see if 

the results of the analysis were correct.  

Evaluation Criteria 

 The success of any given pathfinding algorithm or strategy depends on the 

requirements and assumptions of the application that is being evaluated. For our 

investigation, we considered the pathfinding strategies in regards to expected memory 

usage, relative speed and the ability to find the shortest path from the starting node to the 

goal node. 
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Dijkstra’s algorithm 

 To start our technical discussion of Pathfinding algorithms we will start with 

Dijkstra’s Algorithm. As discussed in the previous chapter, Dijkstra’s algorithm was first 

put forward by E. W Dijkstra who developed his namesake algorithm in 1959 [1, 2, 5]. 

This algorithm is a graph search algorithm that searches for and discovers the shortest 

path from a point in a graph, the source, to a destination [2, 5]. Dijkstra’s algorithm is 

greedy [33] which means that it attempts to make the locally optimal choice at each step 

with the overall goal of finding the globally optimal solution [1, 32, 33].   

 Following is an example of Dijkstra’s algorithm in action on a basic grid based 

state space. This state space presents an obstacle that must be navigated around in order 

to reach the goal. As can be seen in this image, Dijkstra’s algorithm ends up having to 

search almost all of the state space in order to discover the shortest path making it 

admissible but not necessarily optimal. It is easy to see that Dijkstra’s algorithm would 

require a significant amount of time and memory in order to discover a path from the 

starting point to the goal. 

 In the following figure, the starting point is represented by the green square; the 

goal is represented by the red square, the black squares represent obstacles which cannot 

be passed through, the purple squares are the squares in the state space in which the 

algorithm searches in discovering the shortest path to the goal which is represented by the 

yellow squares.  
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Figure 9: Grid based example of Dijkstra’s algorithm 

This example is interesting in that it shows how Dijkstra’s algorithm functions 

when presented with a simple obstacle. The next question that must be addressed is why 

does this algorithm need to expand so many nodes when searching for a path to the goal? 

The answer lies in the way Dijkstra’s algorithm works. In order for it to find a path to the 

goal it must discover all the possible paths from the starting node to all possible points, 

this is called the single-source shortest paths problem [5] and is the biggest downfall of 

Dijkstra’s algorithm [5, 14]. It requires a large amount of memory in order to calculate 

the optimal path to a goal with the size of the state space being a primary factor for 

determining how much memory is required. 

In order to illustrate the functionality of Dijkstra’s algorithm, following is an 

implementation of Dijkstra’s algorithm in pseudo-code that we will use to explain how 
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the algorithm works. There are many different ways to write pseudo-code. This paper 

uses the style put forward in [33]. This pseudo code style is used through this paper when 

describing code snippets. An explanation of this pseudo code style can be found in [33]. 

Algorithm Dijkstra(G, s)

    Q ← new heap-based priority queue

    for all v  G.vertices()

        if v s

setDistance(v, 0)

        else

setDistance(v, ∞)

        l ← Q.insert(getDistance(v), v)

        setLocator(v,l)

    while   Q.isEmpty()

        u ← Q.removeMin()

        for all e  G.incidentEdges(u)

{ relax edge e }

z ← G.opposite(u,e)

r ← getDistance(u) weight(e)

if r getDistance(z)

    setDistance(z,r)

    Q.replaceKey(getLocator(z),r)

∈

∈

¬

 
Figure 10: Dijkstra’s Algorithm in pseudo-code [33] 

 

The above pseudo-code for Dijkstra’s algorithm shows the inner workings of 

Dijkstra’s algorithm. As an explanation the steps involved in this algorithm, the following 

table describes the mode of operation for the algorithm, which explains the step by step 

process of executing the algorithm. 

Table 3: Dijkstra’s Algorithm mode of operation 

Point Mode of Operation of Dijkstra’s Algorithm 

 

1. 

The input to the algorithm is an undirected weighted graph G with non-negative 

edge weights and a vertex s. 
 

2. 

A new heap-based priority queue Q is initialized to hold all the vertices of G 

using the Distance label as keys. 
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3. 

For each vertex v in graph G, assign the values in the distance list to infinity 

except for the starting vertex which is set to 0. 

 

4. 
While there are vertices in Q, pull a new vertex u into the cloud.  

 

5. 

For each vertex e that is adjacent to u such that e is in Q, perform the relaxation 

procedure. 

 

6. 

The output of this algorithm is a label for u, for each vertex u of G, such that the 

distance is the length of a shortest path from s to u in G. 

 

 

To further enhance the understanding of this algorithm, following is a step by step 

example of it in action based on an example that can be found at [42]. The key for the 

example is as follows, the boxes are the nodes and are referenced by the letter that is 

above or below them; the edges are the arrows with their weight being the number 

contained in their centre and their direction being specified by the arrow head. 

With figure 1, we start off with a graph G and vertex s which is point one. From 

this figure we see the initial state of a graph prior to running the algorithm against it. All 

nodes have an infinite cost except the source node which has a cost of zero. This 

references point three. 
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5

6432
9

 

Figure 11: Example execution of Dijkstra's algorithm - Step 1 [42] 
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In step two of the algorithm, we first choose the node that is closest to the starting 

node s. We initialize the distance to s, denoted by d[s] to 0. We then add it to our priority 

queue Q and then relax all the nodes that are adjacent to the source node s. We then 

update the predecessor, which is a structure for storing a path through a graph, for all 

nodes updated. This is represented by the red arrows in the figures. 

10

5

6432
9

 

Figure 12: Example execution of Dijkstra's algorithm - Step 2 [42] 

 

 Step three of Dijkstra’s algorithm proceeds as follows, we choose the closet node 

which, in this example, would be node x. We relax all the nodes that are adjacent to node 

x. We then update the predecessors for nodes u, v and y which, again, are represented by 

the red arrows in the figures. 
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Figure 13: Example execution of Dijkstra's algorithm - Step 3 [42] 

 Step four follows similar to step three. In this step we again choose the closet 

node to our last closet node which in this case is node y. We add it to Q and Relax node v 

and adjust its predecessor. 
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Figure 14: Example execution of Dijkstra's algorithm - Step 4 [42] 

 

 Step five with node u being the closet. We choose this node and adjust its 

neighbor node v. 
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Figure 15: Example execution of Dijkstra's algorithm - Step 5 [42] 

The final steps for this graph are as follows: we add node v. The predecessor list now 

contains the shortest paths from each node to the source node s.  
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Figure 16: Example execution of Dijkstra's algorithm - Step 6 [42] 

 

The above series of figures represents the outcome of the research conducted by 

Dijkstra to create an algorithm for finding the shortest path from a source to a destination. 

The above example shows how the algorithm works with a graph but this example can be 

extrapolated to a 2.5d isometric environment very easily. 
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As mentioned in the previous chapter, Dijkstra’s algorithm solves the single-

source shortest paths problem by finding the shortest path from a single-source to all 

other vertices in a specific graph. This can be seen in the above example as each and 

every node is touched by the algorithm and the distance from each to the source is 

calculated for each. 

Best-First Search  

 BFS works in a similar manner as Dijkstra’s algorithm except that it uses an 

estimate, called a heuristic, of how far away a vertex is from the goal, which was 

discussed in the previous section [8]. BFS is admissible, it will find a path to the goal if 

one exists but it is not guaranteed to find the shortest path but it does find the path faster 

then happens with Dijkstra’s algorithm [8].   

 This concept that BFS will find a path although it may not be the most optimal is 

easily seen in the figure below. In this figure we can see that BFS searches less of the 

state space then Dijkstra’s algorithm but it can also result in the expansion of nodes that 

are not actually on the shortest path to the goal. This results in a path to the goal that 

contains more steps then Dijkstra’s algorithm being run on the same state space but BFS 

does use less memory then Dijkstra’s algorithm, although it uses more then the A* 

algorithm which will be shown in the next section. 

 In the following figure, the starting point is represented by the green square; the 

goal is represented by the red square, the black squares represent obstacles which cannot 

be passed through, the purple squares are the squares in the state space in which the 

algorithm searches in discovering the shortest path to the goal which is represented by the 

yellow squares. 
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Figure 17: Grid based example of the BFS algorithm 

BFS runs much quicker, in most cases, then Dijkstra’s algorithm due to it not 

needing to expand as many nodes in search of a path to the goal.  This is a result of the 

heuristic function being used to guide the algorithm towards the goal [8]. An example of 

this concept can be seen if the goal is oriented towards the south of the state space, the 

algorithm will direct its search towards the south instead of in all directions as Dijkstra’s 

algorithm would. 

A* Algorithm 

 The A* algorithm can be seen as a combination of Dijkstra’s algorithm and BFS. 

It finds the shortest path to the goal the same as Dijkstra’s algorithm but does it in a much 

quicker way just like BFS and with less memory usage then both Dijkstra’s algorithm and 
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the BFS algorithm. This is shown in the following example that uses the same map as the 

previous examples for Dijkstra’s algorithm and the BFS algorithm. 

In the following figure, the starting point is represented by the green square; the 

goal is represented by the red square, the black squares represent obstacles which cannot 

be passed through, the purple squares are the squares in the state space in which the 

algorithm searches in discovering the shortest path to the goal which is represented by the 

yellow squares. 

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    
Figure 18: Grid based example of the A* algorithm 

 This example shows that the search area for A* is smaller then that of BFS due to 

the use of a refined heuristic (see chapter 2 for details) but it found a path the same as 

Dijkstra’s algorithm. This was accomplished with less memory usage then Dijkstra’s 

algorithm and the BFS algorithm. 
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 The following figure shows a pseudo-code listing of the A* algorithm. There are 

several different variations of pseudo-code for the A* algorithm as can be seen in [2, 5, 

33]. This implementation is based on analysis of several different pseudo-code variants 

by the author in order to create a variant in the style of [33]. 

¬

←

←

←

←

¬

¬

 
Figure 19: A* algorithm in pseudo-code 

 

 Examination of the pseudo-code for an algorithm only gives part of the analysis 

for an algorithm. To support the above pseudo-code is a table followed by a basic 

flowchart of the mode of operation for the A* algorithm that adds additional 

comprehension to the above pseudo-code. 

Table 4: A* Algorithm mode of operation 

Point Mode of Operation of A* Algorithm 

 

1. 

The input to the algorithm is an undirected weighted graph G with non-negative 

edge weights and starting vertex s. 
 

2. 
Create the open list of nodes O, initially containing only the starting node s 
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3. 
Create the closed list of nodes C, initially empty  

 

4. 
If O is empty, exit with failure 

 

5. 

If u is a goal node, exit successfully with the solution obtained by tracing a path 

along the pointers from s to u in G. 

 

6. 

Expand node u, of its successors that are not already ancestors of u in G. Install 

these members as successors of u in G. Each successor is identified by n. 

 

7. 

Establish a pointer to n from each of those members that were not already in G 

(i.e., not already on either O or C). Add these members to O. For each member O 

or C, redirect its pointer to n if the best path so far is through n. For each 

member already on C, redirect the pointers of each of its descendants in G so that 

they point backward along the best paths found so far to these descendants. 

 

8. 
Go to Step 4. 

 

 

 

Figure 20: Flowchart for A* Algorithm 
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 To further enhance the understanding of the functioning of the A* algorithm, 

following is an example of the algorithm in action. This example shows a fictional search 

for Toronto starting in Vancouver. Each of the nodes represented by ovals is labeled with 

their heuristics. They are labeled f = g + h where the h values are the fictional straight-

line distances to Toronto and f is the result of the heuristic function.  

 The following Figure displays the initial state for the search. It represents the 

starting node of Vancouver. 

 
Figure 21: A* example initial state 

 

 

 

 The next figure displays the extension of Vancouver showing the next nodes with 

their values. Of the three resulting nodes, the shortest path to the goal passes through 

Calgary, represented by the arrow. This is determined by Calgary having the lowest value 

heuristic of 393. 

 

Figure 22: A* example after expanding Vancouver 

 The next step is to expand the Calgary node. This results in three nodes with the 

Saskatoon node having the lowest heuristic.  
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Figure 23: A* example after expanding Calgary 

 

 The next step is for the Saskatoon node to be expanded as follows. 

 

 

Figure 24: A* example after expanding Saskatoon 
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 The expansion of Saskatoon results in an interesting situation. Each of the nodes 

expanded from Saskatoon have larger heuristics then the Reina node that was expanded 

from the Calgary node. This results in the next node to be expanded being the Regina 

node. 

 

 

Figure 25: A* example after expanding Regina 

 

 Once the Regina node is expanded, the goal node Toronto is shown but since the 

heuristic is larger the Winnipeg, Winnipeg is the next node to be expanded since it has 

the lowest heuristic of the visible nodes. 
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Figure 26: A* example after expanding Winnipeg. Goal reached. 

 

 The expansion of Winnipeg results in the goal node Toronto being made visible. 

This is the final goal node over the Toronto node exposed from the Regina node because 

it has a lower heuristic then the node under the Regina node.   

Heuristics – Speed vs. Accuracy 

As mentioned previously, a heuristic is the estimated cost of the cheapest path 

from the current node to the goal node [14]. The use of heuristics is one of the key 

elements of the A* algorithm and helps to distinguish it from many other algorithms such 

as Dijkstra’s algorithm. The BFS algorithm uses a heuristic, in fact the A* algorithm 

actually belongs in the Best-first algorithm family [10, 40], but the A* algorithm expands 
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upon the simply heuristic used for the BFS algorithm to calculate a better path to the 

goal.  

In the A* algorithm, the heuristic is used to control of its behavior and it is 

important to choose a good heuristic function [37] of which there are several that we will 

take note of. The following section describes the most common, general purpose 

heuristics used with the A* algorithm and compares them in an investigation of which 

heuristic should be considered optimal.  

 When dealing with heuristics and the A* algorithm it is important to decide what 

is the desired result of running the algorithm as there can be several outcomes that can be 

the result of using different heuristics. The most important qualities that must be decided 

on are the speed at which the algorithm determines the shortest path and how important it 

is to achieve the optimal shortest path. This can be seen as tradeoff between speed and 

the accuracy of finding the shortest path. Both of these qualities are interrelated and a 

balance must be found between them when determining which is optimal based on what 

is considered important at the time [37].  

 If a heuristic is decided upon because it determines a path quickly it is very likely 

that its accuracy is not the best although it is admissible. On the other hand if a heuristic 

determines the shortest path possible then it usually is not the fastest because of the need 

for it to expand more nodes as it determines the shortest path to the goal node. 

 In regards to the accuracy of the heuristic, it is possible for the A* algorithm to 

find a shortest path but it may not be the shortest path. The heuristic determines what 

qualifies as the shortest path. To illustrate this point, the following figures show examples 
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of using Manhattan Distance, Euclidean Distance and simple diagonal path heuristics 

with the A* algorithm.  

 Figure twenty seven shows an example of the shortest path determined using the 

Manhattan Distance heuristic. According to [38], Manhattan distance is the distance 

between two points measured along the axes at right angles. Manhattan Distance is 

calculated by taking the starting point p1 = (x1, y1) and the goal node is p2 = (x2, y2) and 

calculating [39]: 

h(n) = |x1 – x2| + |y1 – y2| 
 

Figure 26: Manhattan distance equation 

 

 As we can see from figure twenty seven, Manhattan distance finds a path to the 

goal but it is not the most accurate as we can easily visualize a shorter path. 

 
 Figure 27: Manhattan distance example 

 

This shorter path can be seen in the following figure. Figure twenty nine shows an 

example the shortest path determined using the Euclidean distance heuristic. According 

to [39] it can be defined as the straight line distance between two points. Euclidean 

distance determines the most direct path from the starting point to the goal without 
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consideration of the grid that makes up the environment. It can be calculated using: the 

starting point p1 = (x1, y1) and the goal node is p2 = (x2, y2) and calculating [39]: 

 
Figure 27: Euclidean distance equation 

  

This heuristic is much more accurate then the previous example of Manhattan distance as 

it creates a path to the goal that is a direct line. 

 
Figure 28: Euclidean distance example 

 

The third example shows the shortest path if we were to find it using Diagonal 

distance which attempts to use a perfectly diagonal line, as determined by the grid. A 

straight line from the starting node moves towards the goal node until the diagonal line 

can be used. Diagonal distance combines aspects of both Manhattan and Euclidean 

distance heuristics [12, 37]. It takes several computational steps to determine the diagonal 

distance from one node to another. The equation for determining the diagonal distance is 

as follows: having the starting point p1 = (x1, y1) and the goal node is p2 = (x2, y2) the 

equations are [12]: 

First determine the number of diagonal steps that can be taken: 
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d = min{ |x1 – x2|, |y1 – y2|}
 

Figure 29: Diagonal distance, determine number of diagonal steps 

 

Then determine the number of straight steps that need to be taken: 

 
Figure 30: Diagonal distance, Determine number of straight steps 

 

The final step is to determine the heuristic value using: 

h(n) = s + √2 * d
 

Figure 31: Diagonal distance, determine heuristic value 

 

As can be inferred from the equations to calculate Diagonal distance, this 

heuristic will not be the fastest heuristic since it effectively triples the amount of work 

that is done in the other heuristic equations. 

 
Figure 32: Shortest Path using the diagonal path 

 



 62

As we can see, these heuristics determine a path between two points that is 

considered by each to be the shortest path but each determines a different shortest path 

depending on what the heuristic determines it to be. So from this we can see that 

selection of a heuristic is very important. 

As mentioned previously, the most accurate heuristic may not be the best for 

speed. From our examples above this is indeed the case. The heuristic that determines the 

optimal shortest path, determined by the least amount of steps taken from the starting 

node to the goal node, is determined using the Euclidean distance heuristic. The 

Euclidean distance heuristic usually underestimates the actual cost to the goal node by a 

significant amount meaning that, while it does determine an admissible, optimal shortest 

path, it does so by visiting a large number of nodes, some unnecessarily, which in turn 

causes the heuristic to take a relatively long time to determine the path [12, 37]. As well 

as expanding more nodes then may be necessary, the Euclidean distance heuristic is also 

computationally more expensive then the Manhattan distance heuristic simply because it 

involves two additional multiplication operations as well as the taking of the square root 

[12]. 

The Manhattan distance, sometimes called city block distance [14], is the most 

common heuristic [14, 37] used with the A* algorithm. Manhattan distance is preferred 

because it is admissible and computationally inexpensive with its only drawback being 

that it tends to overestimate the actual minimum cost to the goal resulting in the path 

being found not being the optimal solution [8, 12, 37]. For most applications this 

drawback is not seen as being important and can easily be overlooked. 
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 The diagonal distance heuristic is also admissible and does find a near optimal, 

shortest path but due to the overhead of requiring three equations to determine the 

heuristic value this heuristic is extremely computationally expensive and should only be 

considered when speed is not a factor and  diagonal movement is desired [12, 37]. 

 There are other additional heuristics, several of which were identified in the 

research review chapter of this paper, but they tend to be variants of one of the three 

heuristics discussed above or have specific qualities that make them only valuable in 

certain environments.  

Interaction Schemes 

 An additional topic that needs to be addressed in regards to pathfinding strategies 

is the interaction of the NPCs and agents with in the state space. This essentially deals 

with how the NPCs and agents respond to one another during pathfinding when there is 

more then one NPC trying to pathfind in the environment. There are several schemes that 

have been adapted to address this form of interaction. These schemes involve the NPCs 

working together and sharing information called cooperative, the NPCs not sharing 

information and not hindering each other in any way called non-cooperative and, finally, 

where they act do not share any information but do interfere with each other if their paths 

interfere with each other commonly referred to as competitive. 

 These three pathfinding interaction schemes do not in themselves, affect the 

outcome of an NPC developing a path to a goal, i.e. they do not affect the amount of 

memory used, but they can have an effect on the number of steps that an NPC will take to 

it’s goal since the type of interaction scheme being used will effect how the NPCs act 



 64

when they are faced with situations in which they must decide how to solve a pathfinding 

problem such as navigating through a small bottleneck. 

 With cooperative pathfinding, the NPCs can work together to identify where there 

will be a possible bottleneck in their paths and work to resolve the issue such that all the 

NPCs can reach their goals in the least amount of steps. This could involve a strategy 

where some of the NPCs have to find another way around the obstacle or the creation of a 

strategy that sees all the NPCs pass through the bottleneck in the least amount of steps 

and shortest possible time. 

 Non-cooperative pathfinding would see the NPCs not care if another NPC got in 

their way they would just continue as if nothing was in the way. In this interaction 

schema it is usually the case that the NPCs can pass through each other with out having 

to react to a collision with another NPC. 

 With competitive pathfinding, the situation exists where each NPC is only 

concerned with itself and getting to its goal even at the expense of other NPCs. In this 

interaction scheme, if as bottleneck occurs it is possible that some NPCs may not be able 

to reach their goal, will have to wait until the bottleneck velars or will have to find 

another path to the goal assuming that the bottleneck will not clear. 

 These schemes will be discussed further in the next section in the context of how 

they are implemented for testing in the test environment.  

Result of Analysis 

From our analysis based investigation, we can come to the conclusion that the A* 

algorithm is the optimal algorithm for pathfinding in grid based state spaces such as a 
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2.5D, isometric environment. This is reflected in the following table which summarizes 

the results of the previous sections in this chapter. 

Table 5: Comparison of Algorithms Based on Evaluation Criteria 

Comparison of Algorithms based on Evaluation Criteria 

Algorithm Memory Usage Relative Speed Finds Shortest Path 

Dijkstra’s Algorithm High Slow True 

BFS Medium Fast False 

A* Algorithm Medium Fast True 

 

 In regards to heuristics, our analysis seems to point to Manhattan distance being 

the best heuristic. This can be concluded by balancing speed and accuracy where 

Dijkstra’s algorithm is accurate but can be relatively slower due to the large number of 

nodes that must be expanded in its search for the goal. As well, the BFS algorithm is 

relatively slow because it has to perform three calculations for each node that it expands. 

The heuristic that seems to balance our two qualities is Manhattan distance which finds a 

relatively accurate path without expanding too many nodes or having to perform a series 

of calculations. 

 The next chapter will take the results from the analysis of the pathfinding 

strategies identified in this chapter and use a test environment to test if our analysis is in 

fact correct. 
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CHAPTER 4 

PATHFINDING STRATEGIES TESTING 

This chapter focuses on describing the details of the testing that was performed in 

order to address the statement of purpose for this paper which is to investigate and design 

a workable pathfinding strategy in a 2.5D game world for multiple NPC and players’ 

agents that is optimal in terms of steps taken and resources required. 

 In the previous chapter we looked at an analysis of the most popular algorithms, 

Dijkstra’s, BFS and A*, and gave the results of this analysis as being that A* with the 

Manhattan distance heuristic is optimal. This chapter contains the results of using a 2.5D 

test environment to evaluate the relative strengths and weaknesses of the various 

algorithms under specific conditions which will be addressed in relation to the 

conclusions from our previous analysis. 

Test Environment 

 The test environment consisted of a 2.5D, isometric tiling application that was 

easy to configure and extend. The original application was developed by Dr. Andrew 

Davidson and is taken from his book ‘Killer Game Programming in Java’. The 

application itself is very basic but contains much of the necessary functionality to enable 

individual sprites to move over an isometric environment based on preset algorithms.  

 In order to use this application for testing, I first removed much of the ‘game like’ 

features that would be of no benefit to our testing. As well, I removed the coloration of 

environment floor to make it easier to follow the sprites as they move through the 

environment.  
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 I then added an implementation of Dijkstra’s algorithm and BFS algorithm. An 

implementation of the A* algorithm was already included in the application. I verified 

that this implementation of the A* algorithm was correct and decided that it would 

suffice for our testing needs. Additionally, for the A* algorithm, I added implementations 

of the Euclidean and Diagonal distance heuristics. Again the application already contains 

a good implementation of the Manhattan distance heuristic. 

 Additionally, the test application was extended to include an implementation of 

collision detection for the NPCs. When an NPC tries to enter a node that will contain 

another NPC after the next step, the collision detection functionality will cause the first 

NPC to add an additional step to its path. This additional step will be the same as the 

current step and will result in the NPC spending two steps in the same node. This 

essentially causes the NPC to wait one step for the node it wishes to move to be clear of 

other NPCs.  

The goal node for each of the NPCs also uses collision detection. The collision 

detection for the goal node was already in place in the form of collision detection for the 

player character of the unmodified application. When an NPC enters the location of the 

player character the application signals a game over state and the application stops. When 

multiple NPCs are being used, all the NPCs must reach the goal node before the 

application signals this condition. 

The movement functionality of the NPCs is as follows. The NPCs are given a 

priority based on the closeness of the NPC to the goal and where the NPCs are the same 

distance, the one closest to row one is the more significant. Each NPC, based on this 

priority, develops its path to the goal based on the pathfinding characteristics determined 
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for the NPC. These characteristics include which pathfinding algorithm it will use, 

Dijkstra’s algorithm, the BFS algorithm or the A* algorithm, which also requires that a 

heuristic be chosen ahead of time. Other characteristics include determining if collision 

detection is active and if the NPCs will work cooperatively. 

 Once each NPC developed its path to the goal node, each NPC in turn, based on 

their priority, will move one step from their path. This continues until the goal is reached 

by the NPC. For our testing it was decided that the goal node would not move but if this 

was not the case and the goal did move then the NPCs would develop a new path to the 

goal each time it moved. 

As will be described later in this chapter, several test environments were used for 

our testing. Each of the test environments were identical, except for the placement of the 

obstacles. The obstacles for our testing are fixed and not moving which ensures that we 

are able to test our different pathfinding schemes evenly. 

 Through manipulation of the source code I was able to control the starting 

locations and number of the NPCs as well as the starting location for the goal node. I also 

was able to adjust the timer to count seconds to two decimal places for accuracy.  

 The time for the NPCs to reach the goal was recorded but is not the only 

measurement. An additional measurement is the number of steps that the NPCs take to 

get to the goal. This measurement is our prime measurement for comparing our 

algorithms because the size of the environment does not ensure that the differences in 

speed for calculating the algorithms will be noticeable. This will be manipulated by 

having several different environments, one with no obstacles and others with varying 

numbers and designs of obstacles. As well, during different tests, the NPCs will be set to 
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react to collisions from other NPCs by letting them pass through or forcing the other NPC 

to stop and wait until the path is clear or go around the first NPC.  

 In our test environment, the NPCs act in certain ways due to the overall design of 

the test application. Firstly, the NPCs can only move in a diagonal path, north east, north 

west, south west and south east relative to their present position, using row number one 

as the top of the environment, as relative north.  

 As discussed previously in this paper, three interaction schemes were considered 

and included in our testing, these are cooperative pathfinding, non-cooperative 

pathfinding and competitive pathfinding.  

 Cooperative pathfinding was implemented by prioritizing the NPCs. The priority 

for the NPCs was set by considering which NPC was closer to the goal by a direct 

distance. For NPCs that were the same direct distance from the goal, the NPC that was on 

the row closest to the top of the grid was determined to be of higher priority then those 

that were lower. This was a heuristic and not based on any rule.  

 Once the NPCs were prioritized, the most significant NPC was instructed to 

develop its path to the goal before the other NPCs; this essentially ensured that the first 

NPC would develop the best path to the goal. Following the first, the second NPC 

developed its path but it was instructed to consider points where it would collide with the 

first NPC and take action to ensure that this interference did not occur. This was 

accomplished by adding an extra step to the path of the second NPC where a collision 

was going to happen. This extra step was the same as the previous step and would 

basically cause the second NPC to wait one step until the first NPC moved away. 
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 The third NPC would then follow performing the same collision avoidance 

carried out by the second NPC but comparing itself first to the first NPC and then the 

second. All other NPCs would follow this process comparing their path to all other paths 

until they are all complete. 

 The cooperative interaction scheme is similar to our collision detection scheme 

discussed previously except for one important difference. The cooperative process 

happens before the NPCs start to navigate the environment, essentially done before they 

start, where as, collision detection happens on the fly as each NPC takes a step. 

 This cooperative approach ensures that no NPC interferes with another and that 

all NPCs involved will have the best possible route to the goal taking into consideration 

possible collisions and their priority. 

 For non-cooperative pathfinding, the implementation involved allowing the NPCs 

to develop their paths independently of the other NPCs and to enable them to pass 

through one another without any consideration of collision detection.  

 Competitive pathfinding was implemented by enabling collision detection but not 

having the NPCs develop their paths with any knowledge from the other NPCs. For 

competitive pathfinding during our testing, the number of collisions were counted and 

recorded. 

 Another factor that affects the test application is the software and hardware that 

the test application is running on. This software and hardware has a direct effect on the 

speed at which the test application runs. The test application was written in and run on 

Java version 1.6.0_11 running on Microsoft Windows XP with service pack 3. The 



 71

hardware was a Toshiba laptop with a T5600 Intel Core 2 CPU running at 1.83 GHz with 

3.00 GB of RAM.  

Tests Overview 

 Our testing was performed using five test environments. A test environment is the 

environment that the NPCs must navigate to the goal. They are distinguished by the 

obstacles they contain as each test environment has a different number and placing of 

obstacles. Each Test environment has the same number of tests carried out on it and these 

tests are grouped by interaction strategy for easier reference. The different groups are the 

single NPC group, the cooperative group, the non-cooperative group and the competitive 

group. Tests within each group can be referenced by their test number. This terminology 

will be used throughout this chapter to reference and identify specific tests. 

As mentioned in the discussion of the test environment, it is a relatively simple 

matter to change the settings and perform tests with different variables. As such, it was 

decided that we would attempt to perform as many tests as possible that have different 

variables that can have an effect on the overall outcome of running the test. These 

variables included varying the number of NPCs attempting to reach the goal, varying the 

interaction between the NPCs and, when applicable, testing different heuristics while 

testing different pathfinding algorithms.   

 For each test, there were three iterations conducted with an average taken at the 

end. The reason for the three tests was to ensure that our results for the test were 

consistent and did not contain any anomalies that would skew our view of the test. For 

each test the number of steps to the goal, the number of collisions with other NPCs if 
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collision detection was enabled and the time it took the NPC to reach the goal were all 

recorded.  

 There were variables that did not change from test to test, these included the basic 

design of the environment which can be seen in figure thirty four. As can be seen from 

this image, the environment was a basic 2.5D isometric grid with a height of 12 cells and 

a width of 16 cells. The red colored cell represents the goal node which did not be change 

during the primary tests and only changed for the race tests that are described as test 

environment 5. The numbered, green colored cells represent the starting locations for the 

NPCs. The numbers were used for identification as well as prioritization. When only one 

NPC was required for a test, the number one NPC was always used. The other NPCs, 

numbers two and three, were only used during tests which were designed to look for 

differences in the three different pathfinding relationships. 

 
Figure 33: Test Environment 1 

 

The basic test environment, called test environment 1 for simplicity, only enabled 

very simplified testing and only truly proved that all the tested algorithms were 

admissible when there are no obstacles for them to work around. In this environment, a 

relationship test was also conducted but with all the NPCs moving at the same speed 
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there was really no true result to be taken away from this testing. For the testing of the A* 

algorithm, different heuristics were used with only occasionally minor differences. We 

believe that differences in the speed of running each of the heuristics were not seen due to 

the relative small size of the environment and that without any obstacles to navigate 

around the time to calculate a path for each of the heuristics would be very close to each 

other. 

The second environment that was tested included some basic obstacles for the 

NPCs to navigate and can be seen in the following figure and will be referred to as test 

environment 2.  

 
Figure 34: Test Environment 2 

 

 Test environment 2 contains a large obstacle in the center that can cause an NPC 

to enter it and have to add many extra steps in order to work its way out. The intention of 

this group of testing was to investigate which of the algorithms would not be able to 

navigate the obstacle without a penalty in the form of steps and time. From our previous 

work it was expected that the BFS algorithm would have the biggest problem navigating 

this type of obstacle. 
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 Other tests that were conducted using test environment 2 included testing how the 

different heuristics for the A* algorithm reacted to the obstacle and how different 

pathfinding relationship among the NPCs would be affected by this obstacle.  

 The next test environment, named test environment 3, was configured as seen in 

the following figure. 

 
Figure 35:  Test Environment 3 

 

Test environment 3 is very similar to test environment 2 except that it extends the 

top arm of the obstacle to make a barrier that cannot be navigated to the goal. The testing 

for this test environment followed the same steps and performed the same tests as the 

previous test environment, test environment 2. 

 The next test environment, named test environment 4, was designed to test the 

effects of different pathfinding relationships among the NPCs, especially competitive 

pathfinding. Under competitive pathfinding, it would be expected that an NPC can block 

another NPC from moving forward or force it to find another path. Under our 

environment, using competitive pathfinding, it was expected that the blocked NPC would 

be forced to wait one step until the path clears. 
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Figure 36: Test Environment 4 

 

 Test environment 4 had an obstacle that was specifically designed to force the 

NPCs to path find to a specific point that only one NPC at a time would be able to 

navigate around. This would force the other NPCs to reevaluate their pathfinding 

decisions if they are working cooperatively or using collision detection 

 The final test environment, test environment 5, can be seen in figure. It could be 

called ‘The Race’ because it sets the goal into the center of the environment and sets an 

NPC at an equal distance in each corner. Around the goal was placed different obstacles 

that are the same for each NPC so as not to give one an advantage over the other. 

 
Figure 37: Test Environment 5 (‘The Race’) 

  



 76

Each of the NPCs was assigned a different algorithm to use to develop a path to the goal. 

The assignment of algorithms was as follows: 

Table 6: Algorithm assignments 1 

NPC Algorithm 

1 A* using Manhattan Distance 

2 Dijkstra’s 

3 BFS 

4 A* using Euclidean Distance 

 

An additional test was conducted with the following NPC to algorithm assignments: 

Table 7: Algorithm assignments 2 

NPC Algorithm 

1 A* using Manhattan Distance 

2 A* using Diagonal Distance 

3 A* using Euclidean Distance 

4 A* using Manhattan Distance 

 

 The reasoning behind this algorithm assignments was to determine which of the 

algorithms, with all things being equal, would be the fastest and which of the heuristics 

used by A* would be the fastest. From our previous research we had already made 

assumptions based only on analysis, this was the opportunity to determine if the 

conclusions from this analysis were correct. 

Findings and Results 

The following sections contain the results from the testing that was performed as 

well as observations and general conclusions based on the numbers presented. Special 

attention will be paid to results that reinforce or are contrary to our previous analysis 

conducted in chapter three of this paper.  

The tables containing our summarized test results contain columns that show the 

variables that were manipulated for each test. They are, from left to right as seen in the 
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tables below, the test number, the interaction strategy for the NPCs in the test, the 

algorithm being used, if applicable, the heuristic being used and the NPCs involved in the 

testing identified by their priority number. Following these columns are the columns that 

contain the metrics for the test averaged from the three testing iterations performed. 

These metrics include the number of steps taken by the NPC to reach the goal, the 

number of collisions, if applicable, and the average of the times that were recorded for 

that particular NPC during the testing iterations rounded up to two decimal points. 

 The final column, ‘Test Avg Time’ takes the times recorded for the NPCs in a 

multi NPC test and averages them. This gives an overall timing for the NPCs to reach the 

goal and was used for comparison between the different algorithms within the same or 

different pathfinding strategies but not between different test environments. The ‘Test 

Avg Time’ was used for analysis of tests within testing groups to identify if they 

reinforced our analysis or was contrary to it. 

It is important to note that for all the tests performed, the time recorded is relative 

to that specific test. Due to the possibility of anomalies in the overall testing environment 

between tests, comparison of times between tests should be taken with a degree of 

inaccuracy and only generalizations should be made. Use of the times to determine exact 

conclusions between tests was not done. The timings for tests were taken as 

generalizations when doing comparisons between different tests. 

 There are many anomalies that could result in the times for a test to be unreliable 

such as the conditions of the computer during the testing. During testing all effort was 

taken to ensure that as few as possible processes were running on the computer that could 

affect the tests being run.  
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It was hoped that by performing three identical iterations for each test and then 

taking the averages would help to eliminate as many anomalies as possible. 

Test Environment 1 

In the following table are the summarized results for test environment 1. The 

complete results from testing can be found in Appendix A.  

Table 8: Summarized results for test Environment 1 

Test Environment 1       Average     

Test Interaction 

Strategy 

Algorithm Heuristic NPC Steps 

Taken 

Hits Time 

(seconds) 

Test Avg 

Time 

(seconds) 

1 Single NPC Dijkstra’s N/A N/A 24 N/A 3.45 
 

2 Single NPC BFS N/A N/A 24 N/A 3.01  

3 Single NPC A* Manhattan N/A 24 N/A 3.13  

4 Single NPC A* Euclidean N/A 24 N/A 3.28  

5 Single NPC A* Diagonal N/A 24 N/A 3.20  

6 Cooperative Dijkstra’s N/A 1 24 N/A 3.48 3.61 

    Dijkstra’s N/A 2 25 N/A 3.61  

    Dijkstra’s N/A 3 26 N/A 3.75  

7 Cooperative BFS N/A 1 24 N/A 3.40 3.53 

    BFS N/A 2 25 N/A 3.53  

    BFS N/A 3 26 N/A 3.66  

8 Cooperative A* Manhattan 1 24 N/A 3.49 3.62 

    A* Manhattan 2 25 N/A 3.62  

    A* Manhattan 3 26 N/A 3.74  

9 Cooperative A* Euclidean 1 24 N/A 3.48 3.61 

    A* Euclidean 2 25 N/A 3.61  

    A* Euclidean 3 26 N/A 3.75  

10 Cooperative A* Diagonal 1 24 N/A 3.47 3.60 

    A* Diagonal 2 25 N/A 3.60  

    A* Diagonal 3 26 N/A 3.73  

11 Cooperative A* Manhattan 1 24 N/A 3.50 3.63 

    A* Euclidean 2 25 N/A 3.63  

    A* Diagonal 3 26 N/A 3.76  

12 Non-

Cooperative 

Dijkstra’s N/A 1 24 N/A 3.44 

3.52 



 79

    Dijkstra’s N/A 2 25 N/A 3.56  

    Dijkstra’s N/A 3 25 N/A 3.56  

13 Non-

Cooperative 

BFS N/A 1 24 N/A 3.45 

3.53 

    BFS N/A 2 25 N/A 3.58  

    BFS N/A 3 25 N/A 3.58  

14 Non-

Cooperative 

A* Manhattan 1 24 N/A 3.44 

3.53 

    A* Manhattan 2 25 N/A 3.58  

    A* Manhattan 3 25 N/A 3.58  

15 Non-

Cooperative 

A* Euclidean 1 24 N/A 3.49 

3.58 

    A* Euclidean 2 25 N/A 3.62  

    A* Euclidean 3 25 N/A 3.62  

16 Non-

Cooperative 

A* Diagonal 1 24 N/A 3.46 

3.54 

    A* Diagonal 2 25 N/A 3.59  

    A* Diagonal 3 25 N/A 3.59  

17 Non-

Cooperative 

A* Manhattan 1 24 N/A 3.50 

3.59 

    A* Euclidean 2 25 N/A 3.63  

    A* Diagonal 3 25 N/A 3.63  

18 Competitive Dijkstra’s N/A 1 24 0 3.61 3.75 

    Dijkstra’s N/A 2 25 0 3.75  

    Dijkstra’s N/A 3 26 1 3.90  

19 Competitive BFS N/A 1 24 0 3.36 3.49 

    BFS N/A 2 25 0 3.49  

    BFS N/A 3 26 1 3.61  

20 Competitive A* Manhattan 1 24 0 3.47 3.61 

    A* Manhattan 2 25 0 3.60  

    A* Manhattan 3 26 1 3.77  

21 Competitive A* Euclidean 1 24 0 3.41 3.54 

    A* Euclidean 2 26 1 3.67  

    A* Euclidean 3 25 0 3.54  

22 Competitive A* Diagonal 1 24 0 3.49 3.62 

    A* Diagonal 2 25 0 3.62  

    A* Diagonal 3 26 1 3.76  

23 Competitive A* Manhattan 1 24 0 3.54 3.67 
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    A* Euclidean 2 25 0 3.67  

    A* Diagonal 3 26 1 3.81  

  

Test environment 1 did not contain any obstacles for the NPCs to have to navigate 

around. As such, this group of testing can act as a baseline for the best results for an NPC 

to reach the goal.  

 As can be expected with this group of testing, with no obstacles for the NPCs to 

navigate around, each test ran almost identical to all the others except for the tests that 

involved the A* algorithm using the Diagonal distance heuristic. These tests saw the 

NPCs move in long diagonal lines until they reached the goal. Interestingly, all the tests, 

even the Diagonal distance tests, took the exact same number of steps to reach the goal.  

 The results for our single NPC tests led us to several conclusions. The first 

conclusion being that the fastest test was test two which used the BFS algorithm. This 

was expected as our analysis pointed to BFS being the fastest algorithm if there are no 

obstacles that need to be navigated around.  

 Not surprisingly, based on our earlier analysis, Dijkstra’s algorithm was the 

slowest. Our earlier analysis had told us this would be the case due to the number of 

nodes that Dijkstra’s algorithm has to expand in order to find a path to the goal node. 

Additionally, our previous analysis suggested that when using the A* algorithm, the 

Euclidean and Diagonal distance heuristics should be the slowest among the three 

heuristics used, which was indeed the case for this test environment. 

 Not surprisingly, the above results were also the same for the multi NPC tests 

except for several anomalies such as test twelve which shows the multi NPC non-

cooperative test using Dijkstra’s algorithm as being the fastest of all the tests in the non-
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cooperative group. It is believed that further testing would see the times for this group fall 

into line with the other groups. 

 Another interesting result from this testing is that for the cooperative and 

competitive groups of tests the NPCs arrived at the goal one at a time based on their 

priorities which was the intended result of both of these pathfinding schemes. 

Table 9: Summarized group timings for Test Environment 1 

          

Interaction 

Strategy 

Algorithm Heuristic Test Avg 

Time 

(seconds) 

Scheme 

Avg 

(seconds) 

Cooperative Dijkstra’s N/A 3.61 3.60 

Cooperative BFS N/A 3.53  

Cooperative A* Manhattan 3.62  

Cooperative A* Euclidean 3.61  

Cooperative A* Diagonal 3.60  

Cooperative A* Manhattan 3.63  

Non-

Cooperative 

Dijkstra’s N/A 

3.52 3.55 

Non-

Cooperative 

BFS N/A 

3.53  

Non-

Cooperative 

A* Manhattan 

3.53  

Non-

Cooperative 

A* Euclidean 

3.58  

Non-

Cooperative 

A* Diagonal 

3.54  

Non-

Cooperative 

A* Manhattan 

3.59  

Competitive Dijkstra’s N/A 3.75 3.61 

Competitive BFS N/A 3.49  

Competitive A* Manhattan 3.61  

Competitive A* Euclidean 3.54  

Competitive A* Diagonal 3.62  

Competitive A* Manhattan 3.67  
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 From the above table which averages the run times for the different tests and the 

overall runtime for the group of tests we can see that our expectations from our earlier 

analysis are correct. The non-cooperative interaction scheme is the fastest amongst the 

three that we tested. 

Test Environment 2 

The following table contains the summarized results for test environment 2. The 

complete results from testing can be found in Appendix A. 

Table 10: Summarized results for test Environment 2 

Test Environment 2       Average     

Test Strategy Algorithm Heuristic NPC Steps 

Taken 

Hits Time 

(seconds) 

Test Avg 

Time 

(seconds) 

1 Single NPC Dijkstra’s N/A N/A 28 N/A 3.96  

2 Single NPC BFS N/A N/A 36 N/A 4.96  

3 Single NPC A* Manhattan N/A 28 N/A 3.83  

4 Single NPC A* Euclidean N/A 28 N/A 3.93  

5 Single NPC A* Diagonal N/A 28 N/A 3.98  

6 Cooperative Dijkstra’s N/A 1 28 N/A 4.21 4.16 

    Dijkstra’s N/A 2 27 N/A 4.07  

    Dijkstra’s N/A 3 28 N/A 4.21  

7 Cooperative BFS N/A 1 36 N/A 4.80 4.92 

    BFS N/A 2 37 N/A 4.92  

    BFS N/A 3 38 N/A 5.05  

8 Cooperative A* Manhattan 1 28 N/A 3.93 3.89 

    A* Manhattan 2 27 N/A 3.80  

    A* Manhattan 3 28 N/A 3.93  

9 Cooperative A* Euclidean 1 28 N/A 3.97 3.93 

    A* Euclidean 2 27 N/A 3.84  

    A* Euclidean 3 28 N/A 3.97  

10 Cooperative A* Diagonal 1 28 N/A 4.00 3.96 

    A* Diagonal 2 27 N/A 3.87  

    A* Diagonal 3 28 N/A 4.00  
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11 Cooperative A* Manhattan 1 28 N/A 3.92 3.88 

    A* Euclidean 2 27 N/A 3.79  

    A* Diagonal 3 28 N/A 3.92  

12 Non-

Cooperative 

Dijkstra’s N/A 1 28 N/A 4.18 

4.09 

    Dijkstra’s N/A 2 27 N/A 4.04  

    Dijkstra’s N/A 3 27 N/A 4.04  

13 Non-

Cooperative 

BFS N/A 1 36 N/A 4.97 

5.05 

    BFS N/A 2 37 N/A 5.10  

    BFS N/A 3 37 N/A 5.10  

14 Non-

Cooperative 

A* Manhattan 1 28 N/A 3.97 

3.88 

    A* Manhattan 2 27 N/A 3.84  

    A* Manhattan 3 27 N/A 3.84  

15 Non-

Cooperative 

A* Euclidean 1 28 N/A 4.04 

3.95 

    A* Euclidean 2 27 N/A 3.91  

    A* Euclidean 3 27 N/A 3.91  

16 Non-

Cooperative 

A* Diagonal 1 28 N/A 4.10 

4.01 

    A* Diagonal 2 27 N/A 3.97  

    A* Diagonal 3 27 N/A 3.97  

17 Non-

Cooperative 

A* Manhattan 1 28 N/A 4.08 

3.99 

    A* Euclidean 2 27 N/A 3.94  

    A* Diagonal 3 27 N/A 3.94  

18 Competitive Dijkstra’s N/A 1 29 1 4.34 4.20 

    Dijkstra’s N/A 2 28 1 4.20  

    Dijkstra’s N/A 3 27 0 4.05  

19 Competitive BFS N/A 1 36 0 5.09 5.22 

    BFS N/A 2 37 0 5.22  

    BFS N/A 3 38 1 5.36  

20 Competitive A* Manhattan 1 29 1 4.01 3.88 

    A* Manhattan 2 28 1 3.88  

    A* Manhattan 3 27 0 3.75  

21 Competitive A* Euclidean 1 29 1 4.23 4.10 

    A* Euclidean 2 28 1 4.10  

    A* Euclidean 3 27 0 3.96  
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22 Competitive A* Diagonal 1 29 1 4.21 4.08 

    A* Diagonal 2 28 1 4.08  

    A* Diagonal 3 27 0 3.94  

23 Competitive A* Manhattan 1 29 1 4.19 4.06 

    A* Euclidean 2 28 1 4.06  

    A* Diagonal 3 27 0 3.93  

 

 The main feature of test environment 2 is a large backwards ‘C’ obstacle placed in 

the centre of the environment. As predicted, all tests that utilized the BFS algorithm had 

trouble negotiating around this obstacle resulting in additional steps and time being 

recorded for these tests.  

 Similar to test environment 1 we expected that tests utilizing Dijkstra’s algorithm 

would still be slower then other tests, except tests utilizing the BFS algorithm and this 

was indeed the case. The results of all the tests in all groups within this test environment 

came out exactly as expected from our initial analysis including what we expected from 

the different heuristics used for the A* algorithm. 

Table 11: Summarized group timings for Test Environment 2 

          

Strategy Algorithm Heuristic Test Avg 

Time 

(seconds) 

Scheme 

Avg 

(seconds) 

Cooperative Dijkstra’s N/A 4.16 4.12 

Cooperative BFS N/A 4.92  

Cooperative A* Manhattan 3.89  

Cooperative A* Euclidean 3.93  

Cooperative A* Diagonal 3.96  

Cooperative A* Manhattan 3.88  

Non-

Cooperative 

Dijkstra’s N/A 

4.09 4.16 

Non-

Cooperative 

BFS N/A 

5.05  

Non-

Cooperative 

A* Manhattan 

3.88  
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Non-

Cooperative 

A* Euclidean 

3.95  

Non-

Cooperative 

A* Diagonal 

4.01  

Non-

Cooperative 

A* Manhattan 

3.99  

Competitive Dijkstra’s N/A 4.20 4.26 

Competitive BFS N/A 5.22  

Competitive A* Manhattan 3.88  

Competitive A* Euclidean 4.10  

Competitive A* Diagonal 4.08  

Competitive A* Manhattan 4.06  

 

 While the overall test results were in line with our initial analysis, the overall 

group timings did present a different picture and were not what we expected. As can be 

seen in the above table, the cooperative groups of tests, on average, were as fast, actually 

.02 seconds faster, then the non-cooperative group of tests which were fastest overall in 

test environment 1. 

 This goes against what we expected based on our initial analysis. It is expected 

that with more iterations of testing the expected results would be achieved although it 

would require additional testing beyond this paper to verify that this is indeed the case. 

Test Environment 3 

The following table contains the summarized results for test environment 3. The 

complete results from testing can be found in Appendix A. 

Table 12: Summarized results for test Environment 3 

Test Environment 3       Average     

Test Strategy Algorithm Heuristic NPC Steps 

Taken 

Hits Time 

(seconds) 

Test Avg 

Time 

(seconds) 

1 Single NPC Dijkstra’s N/A N/A 28 N/A 3.91  

2 Single NPC BFS N/A N/A 34 N/A 4.55  
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3 Single NPC A* Manhattan N/A 28 N/A 3.95  

4 Single NPC A* Euclidean N/A 28 N/A 3.94  

5 Single NPC A* Diagonal N/A 28 N/A 3.98  

6 Cooperative Dijkstra’s N/A 1 28 N/A 4.11 4.11 

    Dijkstra’s N/A 2 29 N/A 4.24  

    Dijkstra’s N/A 3 27 N/A 3.98  

7 Cooperative BFS N/A 1 34 N/A 4.89 5.02 

    BFS N/A 2 35 N/A 5.02  

    BFS N/A 3 36 N/A 5.16  

8 Cooperative A* Manhattan 1 28 N/A 4.12 4.12 

    A* Manhattan 2 29 N/A 4.26  

    A* Manhattan 3 27 N/A 3.98  

9 Cooperative A* Euclidean 1 28 N/A 4.14 4.14 

    A* Euclidean 2 29 N/A 4.28  

    A* Euclidean 3 27 N/A 4.00  

10 Cooperative A* Diagonal 1 28 N/A 4.12 4.12 

    A* Diagonal 2 29 N/A 4.26  

    A* Diagonal 3 27 N/A 3.99  

11 Cooperative A* Manhattan 1 28 N/A 4.18 4.18 

    A* Euclidean 2 29 N/A 4.32  

    A* Diagonal 3 27 N/A 4.05  

12 Non-

Cooperative 

Dijkstra’s N/A 1 28 N/A 4.22 

4.22 

    Dijkstra’s N/A 2 29 N/A 4.36  

    Dijkstra’s N/A 3 27 N/A 4.08  

13 Non-

Cooperative 

BFS N/A 1 34 N/A 4.95 

5.04 

    BFS N/A 2 35 N/A 5.09  

    BFS N/A 3 35 N/A 5.09  

14 Non-

Cooperative 

A* Manhattan 1 28 N/A 4.14 

4.14 

    A* Manhattan 2 29 N/A 4.28  

    A* Manhattan 3 27 N/A 4.00  

15 Non-

Cooperative 

A* Euclidean 1 28 N/A 4.21 

4.21 

    A* Euclidean 2 29 N/A 4.35  

    A* Euclidean 3 27 N/A 4.07  

16 Non- A* Diagonal 1 28 N/A 4.23 4.22 
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Cooperative 

    A* Diagonal 2 29 N/A 4.36  

    A* Diagonal 3 27 N/A 4.08  

17 Non-

Cooperative 

A* Manhattan 1 28 N/A 4.11 

4.11 

    A* Euclidean 2 29 N/A 4.25  

    A* Diagonal 3 27 N/A 3.98  

18 Competitive Dijkstra’s N/A 1 28 0 4.21 4.21 

    Dijkstra’s N/A 2 29 0 4.35  

    Dijkstra’s N/A 3 27 0 4.07  

19 Competitive BFS N/A 1 34 0 4.99 5.13 

    BFS N/A 2 35 0 5.13  

    BFS N/A 3 36 1 5.26  

20 Competitive A* Manhattan 1 28 0 4.12 4.12 

    A* Manhattan 2 29 0 4.26  

    A* Manhattan 3 27 0 3.98  

21 Competitive A* Euclidean 1 28 0 4.18 4.18 

    A* Euclidean 2 29 0 4.32  

    A* Euclidean 3 27 0 4.04  

22 Competitive A* Diagonal 1 28 0 4.12 4.11 

    A* Diagonal 2 29 0 4.25  

    A* Diagonal 3 27 0 3.98  

23 Competitive A* Manhattan 1 28 0 3.86 3.86 

    A* Euclidean 2 29 0 3.99  

    A* Diagonal 3 27 0 3.74  

 

 Test environment 3 was very close in obstacle layout as test environment 2 except 

for the addition of the continuation of the top, relative to row one, from the backwards 

‘C’ like obstacle to the far right end of the environment. The reason behind this test 

environment was to see if creating an obstacle that goes nowhere along with having only 

a small corridor to the goal would cause any issues with the different algorithms and 

heuristics. 
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 Again, as expected, all tests utilizing the BFS algorithm were the slowest and took 

the most number of steps. Additionally, all other tests followed what we expected from 

our initial analysis although, several tests utilizing Dijkstra’s algorithm were lower on 

average then was expected but not to the point that it would contradict our earlier 

analysis. 

Table 13: Summarized group timings for Test Environment 3 

          

Strategy Algorithm Heuristic Test Avg Time 

(seconds) 

Scheme Avg 

(seconds) 

Cooperative Dijkstra’s N/A 4.11 4.28 

Cooperative BFS N/A 5.02  

Cooperative A* Manhattan 4.12  

Cooperative A* Euclidean 4.14  

Cooperative A* Diagonal 4.12  

Cooperative A* Manhattan 4.18  

Non-

Cooperative 

Dijkstra’s N/A 

4.22 4.32 

Non-

Cooperative 

BFS N/A 

5.04  

Non-

Cooperative 

A* Manhattan 

4.14  

Non-

Cooperative 

A* Euclidean 

4.21  

Non-

Cooperative 

A* Diagonal 

4.22  

Non-

Cooperative 

A* Manhattan 

4.11  

Competitive Dijkstra’s N/A 4.21 4.27 

Competitive BFS N/A 5.13  

Competitive A* Manhattan 4.12  

Competitive A* Euclidean 4.18  

Competitive A* Diagonal 4.11  

Competitive A* Manhattan 3.86  
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 The timings of the three main testing groups were not what we expected. All three 

testing groups have almost the same average times. It is not known if additional test 

iterations would see these timings fall in line with what we expected but this is beyond 

the scope of this testing. 

Test Environment 4 

The following table contains the summarized results for test environment 4. The 

complete results from testing can be found in Appendix A. 

Table 14: Summarized results for test Environment 4 

Test Environment 4       Average     

Test Strategy Algorithm Heuristic NPC Steps 

Taken 

Hits Time 

(seconds) 

Test Avg 

Time 

(seconds) 

1 Single NPC Dijkstra’s N/A N/A 24 N/A 3.44  

2 Single NPC BFS N/A N/A 24 N/A 3.42  

3 Single NPC A* Manhattan N/A 24 N/A 3.52  

4 Single NPC A* Euclidean N/A 24 N/A 3.52  

5 Single NPC A* Diagonal N/A 24 N/A 3.52  

6 Cooperative Dijkstra’s N/A 1 24 N/A 3.66 3.80 

    Dijkstra’s N/A 2 25 N/A 3.80  

    Dijkstra’s N/A 3 26 N/A 3.93  

7 Cooperative BFS N/A 1 24 N/A 3.59 3.73 

    BFS N/A 2 25 N/A 3.73  

    BFS N/A 3 26 N/A 3.86  

8 Cooperative A* Manhattan 1 24 N/A 3.60 3.73 

    A* Manhattan 2 25 N/A 3.73  

    A* Manhattan 3 26 N/A 3.87  

9 Cooperative A* Euclidean 1 24 N/A 3.61 3.74 

    A* Euclidean 2 25 N/A 3.74  

    A* Euclidean 3 26 N/A 3.88  

10 Cooperative A* Diagonal 1 24 N/A 3.64 3.78 

    A* Diagonal 2 25 N/A 3.78  

    A* Diagonal 3 26 N/A 3.92  



 90

11 Cooperative A* Manhattan 1 24 N/A 3.65 3.79 

    A* Euclidean 2 25 N/A 3.79  

    A* Diagonal 3 26 N/A 3.92  

12 Non-

Cooperative 

Dijkstra’s N/A 1 24 N/A 3.69 

3.79 

    Dijkstra’s N/A 2 25 N/A 3.83  

    Dijkstra’s N/A 3 25 N/A 3.83  

13 Non-

Cooperative 

BFS N/A 1 24 N/A 3.59 

3.68 

    BFS N/A 2 25 N/A 3.72  

    BFS N/A 3 25 N/A 3.72  

14 Non-

Cooperative 

A* Manhattan 1 24 N/A 3.63 

3.72 

    A* Manhattan 2 25 N/A 3.76  

    A* Manhattan 3 25 N/A 3.76  

15 Non-

Cooperative 

A* Euclidean 1 24 N/A 3.55 

3.64 

    A* Euclidean 2 25 N/A 3.68  

    A* Euclidean 3 25 N/A 3.68  

16 Non-

Cooperative 

A* Diagonal 1 24 N/A 3.65 

3.74 

    A* Diagonal 2 25 N/A 3.78  

    A* Diagonal 3 25 N/A 3.78  

17 Non-

Cooperative 

A* Manhattan 1 24 N/A 3.64 

3.73 

    A* Euclidean 2 25 N/A 3.78  

    A* Diagonal 3 25 N/A 3.78  

18 Competitive Dijkstra’s N/A 1 24 0 3.64 3.78 

    Dijkstra’s N/A 2 26 1 3.92  

    Dijkstra’s N/A 3 25 0 3.78  

19 Competitive BFS N/A 1 24 0 3.34 3.46 

    BFS N/A 2 25 0 3.46  

    BFS N/A 3 26 1 3.59  

20 Competitive A* Manhattan 1 24 0 3.46 3.59 

    A* Manhattan 2 25 0 3.59  

    A* Manhattan 3 26 1 3.72  

21 Competitive A* Euclidean 1 24 0 3.54 3.68 

    A* Euclidean 2 25 0 3.67  

    A* Euclidean 3 26 1 3.81  



 91

22 Competitive A* Diagonal 1 24 0 3.60 3.73 

    A* Diagonal 2 26 1 3.86  

    A* Diagonal 3 25 0 3.72  

23 Competitive A* Manhattan 1 24 0 3.56 3.69 

    A* Euclidean 2 25 0 3.69  

    A* Diagonal 3 26 1 3.83  

 

 The obstacles for test environment 4 created a vertical line in the middle of the 

environment with only a small opening in the middle for the NPCs to pass through while 

navigating to the goal. The primary purpose of this environment is to test instances where 

multiple NPCs attempt to pass through the same point at the same time.  

 As can be expected from this type of environment, tests utilizing the BFS 

algorithm were once again the fastest or almost fastest. This is because there was no 

obstacle designed to make these tests pursue a path that does not lead to the goal.  

 Additionally, all the tests for all the testing groups came out exactly as expected 

from our previous analysis.  

Table 15: Summarized group timings for Test Environment 4 

          

Strategy Algorithm Heuristic Test Avg 

Time 

(seconds) 

Scheme Avg 

(seconds) 

Cooperative Dijkstra’s N/A 3.80 3.76 

Cooperative BFS N/A 3.73  

Cooperative A* Manhattan 3.73  

Cooperative A* Euclidean 3.74  

Cooperative A* Diagonal 3.78  

Cooperative A* Manhattan 3.79  

Non-

Cooperative 

Dijkstra’s N/A 

3.79 3.72 

Non-

Cooperative 

BFS N/A 

3.68  

Non-

Cooperative 

A* Manhattan 

3.72  



 92

Non-

Cooperative 

A* Euclidean 

3.64  

Non-

Cooperative 

A* Diagonal 

3.74  

Non-

Cooperative 

A* Manhattan 

3.73  

Competitive Dijkstra’s N/A 3.78 3.66 

Competitive BFS N/A 3.46  

Competitive A* Manhattan 3.59  

Competitive A* Euclidean 3.68  

Competitive A* Diagonal 3.73  

Competitive A* Manhattan 3.69  

 

 The testing group timings were, again, not as expected. For this test environment, 

the competitive interaction scheme was the fastest amongst the three schemes tested. As 

well, both the cooperative and non-cooperative interaction schemes were similar in their 

timings where it was expected that the non-cooperative interaction scheme would be the 

fastest of all the schemes with this test environment. 

Test Environment 5  

The following table contains the summarized results for test environment 5. The 

complete results from testing can be found in Appendix A. 

 
Table 16: Summarized results for test Environment 5 

Test Environment 5     Average 

Test Strategy Algorithm Heuristic NPC Avg 

Steps 

Avg Speed 

(seconds) 

1 N/A A* Manhattan 1 16 2.42 

  N/A Dijkstra's N/A 2 16 2.42 

  N/A BFS N/A 3 16 2.42 

  N/A A* Euclidean 4 16 2.42 

2 N/A A* Manhattan 1 16 2.53 

  N/A A* Euclidean 2 16 2.53 
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  N/A A* Diagonal 3 16 2.53 

  N/A A* Manhattan 4 16 2.53 

 

 The intention of test environment 5 was to pit the different algorithms and 

heuristics against one another in order to determine which of them is the fastest. 

Unfortunately, the design of the application proved to make this round of testing moot.  

 The testing application was designed to iterate through the NPCs, developing their 

paths one at a time until they are all complete. They then proceed to implement their 

paths one step at a time until they reach their goal.  

 Basically the time to compute the paths do not have an affect on the total time for 

the NPCs to reach the goal as the time to compute the paths is taken as a whole not by 

individual NPC. It would be interesting to be able to separate out the times to develop the 

paths in order to see which strategy is the fastest but that is not possible with this testing 

application. 

 Fortunately, this effect does not affect any of the other tests. The individual tests 

will show the time to compute the path and implement it for a single strategy and the tests 

utilizing multiple NPCs would include the time taken to calculate and implement the 

paths for one strategy only so comparison of these times is possible. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 There were several conclusions that can be taken from the testing that was 

conducted and discussed in the previous chapter. The first major outcome was that the 

results of the tests contained in each testing group conformed almost exactly for all the 

different test environments to the conclusions of the analysis performed in chapter three 

of this paper. This means that the different tests that were conducted within each test 

group performed as expected with only a few variations that can be explained by 

anomalies in the test environment. 

 For the majority of tests, the outcomes were as expected for the type of test 

environment being used, which means that the results were predictable based on the type 

of obstacles placed in the test environment. The slowest algorithm on average was 

Dijkstra’s algorithm except for those tests where there was an obstacle that interfered 

with the BFS algorithms ability to develop a direct path to the goal. In these cases, the 

tests that utilized the BFS algorithm were the slowest. On average, all A* tests were 

faster then the equivalent test using a different algorithm in the same test group. As well, 

the heuristics used in conjunction with the A* algorithm preformed as expected with only 

minor variations.  

 The Manhattan distance heuristic was generally the fastest followed by Euclidean 

distance, which was expected to be slower due to the number of nodes it needs to expand 

in order to develop a path, and finally, the Diagonal distance heuristic was usually the 

slowest of the three heuristics. This was expected as the Diagonal distance heuristic 

performs three calculations per node which creates significant overhead. 
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 While the results of the tests within the testing groups conformed to what was 

expected based on the initial analysis conducted on the algorithms and the various 

options, the overall average times for each of the test groups that were compared to each 

other did not conform to what was expected. It was expected that the non-cooperative 

interaction scheme tests would be the fastest followed by the cooperative and competitive 

interaction schemes tests. The reasoning behind this was that with non-cooperative 

interaction there was no additional processing required when this algorithm was used to 

develop a path to the goal or during the navigation to the goal. As well, the NPCs for the 

non-cooperative pathfinding tests did not engage in any form of collision detection or 

avoidance and could actually pass through each other removing the possibility of the 

other NPCs acting as obstacles to be navigated around.  

 The cooperative and competitive interaction schemes contain additional 

processing that, it was thought, would make them slower then the non-cooperative 

scheme but this did not seem to be the case. This conclusion will be explored further in 

the following sections. 

Implications 

 There are several implications of these results in regards to the statement of 

purpose for this paper. The main purpose of this paper was to investigate and design a 

workable pathfinding strategy in a 2.5D game world for multiple NPCs that is optimal in 

term of the number of steps taken by the NPCs to the goal and in the resources required. 

 The testing that was carried out included several different tests using various 

pathfinding algorithms and interaction schemes and either a single NPC or multiple 

NPCs. These tests were designed to determine which pathfinding algorithm was optimal 
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in light of the number of steps taken and the resources used, which for our testing was 

represented by the time required for the NPC to reach the goal.   

 The single NPC tests gave a baseline for each of the pathfinding algorithms and 

showed the fewest amount of steps that were needed for the NPC to reach the goal as 

well as the least amount of time needed by the algorithm to develop the path to the goal 

and implement it. For each of the multi NPC tests there were at least one NPC that 

matched the number of steps to the goal as was seen in the single NPC tests. As well, if 

the test involved using collision detection, which essentially implements the competitive 

interaction scheme, the NPCs would reach the goal one step ahead of each other 

suggesting that the collision detection actually forced priority ordering on the NPCs. This 

affect was also seen when the NPC interaction scheme was cooperative which pre-

calculates the paths for all the NPCs prior to their navigating to the goal. 

 Unlike the cooperative and competitive interaction schemes, the non-cooperative 

scheme would have the NPCs arrive at the goal in the same order they started in. For our 

testing, this meant that the number one NPC would arrive first followed by the number 

two and three NPCs arriving at the same time and usually from the same node meaning 

that the number two and three nodes paths usually became the same after the few first 

initial steps. This was made possible because of the absence of collision detection and 

avoidance. 

 Another interesting point to make regarding the BFS algorithm and the number of 

steps taken for the NPC to reach the goal is that the BFS algorithm performance 

depended greatly on the layout of the obstacles in the test environment. This algorithm 

was very susceptible to being ‘fooled’ by obstacles into following paths that did not lead 
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to the goal but if there were no such obstacles, this algorithm usually performed the best. 

The reason for this lies in the BFS algorithm being a greedy algorithm that always 

follows the path that appears to be optimal at each step of developing the path with the 

hope that this will lead to the globally optimal path to goal [41]. 

 Along with the BFS algorithm, the testing results seem to show that all the 

algorithms were impacted by the design of the obstacles in the testing environment but 

not to the extent that the BFS algorithm was affected. A look at the results shows that for 

all testing groups, the overall times for the tests are faster for test environments one and 

four and longer for test environments two and three. This points to the conclusion that all 

the algorithms incurred a slight penalty developing a path around the obstacles in test 

environments two and three which were the backwards ‘C’ shaped obstacles were as test 

environments one and four had either no obstacles or no obstacles that would not cause a 

serious problem and penalty for any of the algorithms to develop a path to the goal. 

 In order to determine the overall best pathfinding algorithm, the following table 

was developed which summarizes the test results data. This table applies a value to the 

relative finishing position of the algorithm when compared to the other tests in its testing 

group. Tests number eleven, seventeen and twenty three were eliminated since these tests 

comprised three different heuristics. In the table, the lower the number the faster the test 

in comparison to the other tests and ties are scored by the tied items receiving the same 

score and the next item receiving a score the same as if there was not a tie before it. 

Table 17: Comparison of running times 

Test 
Environment Test Group Dijkstra's BFS 

A* 
Manhattan 

A* 
Euclidean 

A* 
Diagonal 

1 Single NPC 5 1 2 4 3 

1 Cooperative 3 1 5 3 2 

1 Non-Cooperative 1 2 2 5 4 

1 Competitive 5 1 3 2 4 
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2 Single NPC 3 5 1 2 4 

2 Cooperative 4 5 1 2 3 

2 Non-Cooperative 4 5 1 2 3 

2 Competitive 4 5 1 2 3 

         

3 Single NPC 1 5 3 2 4 

3 Cooperative 3 5 1 4 1 

3 Non-Cooperative 3 5 1 2 3 

3 Competitive 4 5 1 3 2 

         

4 Single NPC 2 1 3 3 3 

4 Cooperative 5 1 1 3 4 

4 Non-Cooperative 5 2 3 1 4 

4 Competitive 5 1 2 3 4 

 Total 57 50 31 43 51 

  

 This table reinforces our conclusions from our analysis discussed in chapter three. 

It essentially breaks down the results from our testing and gives us a view of which 

algorithm out of all the algorithms performs the best in most circumstances and test 

environments.  

 From our testing results and analysis we can conclude that the A* algorithm using 

the Manhattan distance heuristic is the best algorithm for most situations and varying 

environments with fixed obstacles. In fact overall, the A* algorithm seems to perform 

better then the other algorithms used for this comparison which was the conclusion of our 

previous analysis. 

Table 18: Comparison of interaction schemes 

Test 
Environment Cooperative Non-Cooperative Competitive 

1 2 1 3 

2 1 2 3 

3 2 3 1 

4 3 2 1 

Total 8 8 8 
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 The above table summarizes the various interaction schemes that were considered 

during our testing. Each interaction scheme was assigned a value based on the averaged 

time that the algorithms ran using these schemes. The lower the number, the lower the 

time taken for the tests to run. 

 From this table we can see that none of the interaction schemes performed better 

then the others. This goes against our analysis which suggested that the non-cooperative 

interaction scheme would perform better then the others because it does not contain the 

additional calculations used by the cooperative and competitive schemes. 

 There is no apparent reason why the non-cooperative interaction scheme did not 

perform better then the other schemes. Additional testing would have to be conducted in 

order to address this conclusion which seems to go against our analysis. 

Future Research 

 Pathfinding is a large and complex topic with many different facets and, as such, 

it is impossible to address all possible research directions in one paper. As a result, there 

is plenty of room for additional future research that can build upon the work of this paper. 

Some of the possible research directions are discussed here. 

 This paper dealt exclusively with a fixed goal, fixed obstacle test environment. 

Further research could look into the performance of the various pathfinding strategies 

when dealing with a moving goal and/or moving obstacles. This would force the NPCs to 

constantly reevaluate their paths and develop new paths on the fly. 

 A further extension to the research performed and documented in this paper 

would include performing the tests using a larger test environment. This would enable 

true resource testing where the amount of memory could be monitored if the test 
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environment was large enough. With the resources available to modern computers, it 

would take an exceptionally large environment to push the memory availability of a 

computer but it is a possibility and not overly difficult to develop. 

 Additional testing could adapt the test application to have the NPCs function as 

true autonomous agents so they could be compared to each other in the same test 

environment. This would allow for more exact testing where the times recorded from the 

tests can be compared to each other in the same test directly and exactly without having 

to consider that the times are generalizations. This would be the best method for truly 

determining the optimal pathfinding strategy. 

 The research and in depth analysis conducted for this paper only considered the 

most popular and widely discussed pathfinding algorithms and interaction schemes which 

make up a pathfinding strategy. As such there is a lot of additional research that could be 

done into other algorithms, additional heuristics and additional interaction schemes. 

Some of the possible research extensions were touched on in the research review section 

of this paper and can act as a good starting point. 

Conclusion 

 The purpose of this paper was to determine which pathfinding strategy was best 

under most circumstances in a 2.5D game world. This paper used analysis and testing in 

an attempt to satisfy this goal with the result being that the A* algorithm using the 

Manhattan distance heuristic came out as the best algorithm and heuristic combination. 

Unfortunately, we were not able to effectively make a decision of which interaction 

scheme was better overall. As such, our recommended pathfinding strategy would, which 

is a combination of an algorithm and interaction scheme, would have to be the 
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aforementioned A* algorithm utilizing Manhattan distance with any of the three 

interaction schemes since they performed equally well.  
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APPENDIX A 

TESTING RESULTS 
Table 19: Test results for Test Environment 1 

Test Environment 1       

Test 

1     

Test 

2     

Test 

3     Average   

Test Interaction 

Strategy 

Algorithm Heuristic NPC Steps  Hits Time 

(secs) 

Steps  Hits Time 

(secs) 

Steps  Hits Time 

(secs) 

Steps Hits Time 

(secs) 

1 Single NPC Dijkstra’s N/A N/A 24 0 3.40 24 0 3.39 24 0 3.56 24 N/A 3.45 

2 Single NPC BFS N/A N/A 24 0 3.06 24 0 2.99 24 0 2.98 24 N/A 3.01 

3 Single NPC A* Manhattan N/A 24 0 2.99 24 0 3.21 24 0 3.19 24 N/A 3.13 

4 Single NPC A* Euclidean N/A 24 0 3.18 24 0 3.32 24 0 3.34 24 N/A 3.28 

5 Single NPC A* Diagonal N/A 24 0 3.18 24 0 3.16 24 0 3.27 24 N/A 3.20 

6 Cooperative Dijkstra’s N/A 1 24 0 3.22 24 0 3.59 24 0 3.62 24 N/A 3.48 

    Dijkstra’s N/A 2 25 0 3.34 25 0 3.73 25 0 3.76 25 N/A 3.61 

    Dijkstra’s N/A 3 26 0 3.47 26 0 3.88 26 0 3.89 26 N/A 3.75 

7 Cooperative BFS N/A 1 24 0 3.40 24 0 3.38 24 0 3.43 24 N/A 3.40 

    BFS N/A 2 25 0 3.53 25 0 3.51 25 0 3.56 25 N/A 3.53 

    BFS N/A 3 26 0 3.66 26 0 3.64 26 0 3.69 26 N/A 3.66 

8 Cooperative A* Manhattan 1 24 0 3.38 24 0 3.53 24 0 3.55 24 N/A 3.49 

    A* Manhattan 2 25 0 3.51 25 0 3.66 25 0 3.68 25 N/A 3.62 

    A* Manhattan 3 26 0 3.63 26 0 3.79 26 0 3.81 26 N/A 3.74 

9 Cooperative A* Euclidean 1 24 0 3.41 24 0 3.51 24 0 3.52 24 N/A 3.48 

    A* Euclidean 2 25 0 3.54 25 0 3.64 25 0 3.66 25 N/A 3.61 
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    A* Euclidean 3 26 0 3.67 26 0 3.78 26 0 3.79 26 N/A 3.75 

10 Cooperative A* Diagonal 1 24 0 3.49 24 0 3.40 24 0 3.51 24 N/A 3.47 

    A* Diagonal 2 25 0 3.62 25 0 3.53 25 0 3.65 25 N/A 3.60 

    A* Diagonal 3 26 0 3.75 26 0 3.66 26 0 3.78 26 N/A 3.73 

11 Cooperative A* Manhattan 1 24 0 3.44 24 0 3.54 24 0 3.51 24 N/A 3.50 

    A* Euclidean 2 25 0 3.57 25 0 3.67 25 0 3.64 25 N/A 3.63 

    A* Diagonal 3 26 0 3.72 26 0 3.80 26 0 3.77 26 N/A 3.76 

12 Non-

Cooperative 

Dijkstra’s N/A 1 24 0 3.22 24 0 3.49 24 0 3.60 24 N/A 3.44 

    Dijkstra’s N/A 2 25 0 3.33 25 0 3.62 25 0 3.74 25 N/A 3.56 

    Dijkstra’s N/A 3 25 0 3.33 25 0 3.62 25 0 3.74 25 N/A 3.56 

13 Non-

Cooperative 

BFS N/A 1 24 0 3.40 24 0 3.44 24 0 3.50 24 N/A 3.45 

    BFS N/A 2 25 0 3.53 25 0 3.57 25 0 3.63 25 N/A 3.58 

    BFS N/A 3 25 0 3.53 25 0 3.57 25 0 3.63 25 N/A 3.58 

14 Non-

Cooperative 

A* Manhattan 1 24 0 3.29 24 0 3.48 24 0 3.56 24 N/A 3.44 

    A* Manhattan 2 25 0 3.42 25 0 3.62 25 0 3.70 25 N/A 3.58 

    A* Manhattan 3 25 0 3.42 25 0 3.62 25 0 3.70 25 N/A 3.58 

15 Non-

Cooperative 

A* Euclidean 1 24 0 3.40 24 0 3.55 24 0 3.52 24 N/A 3.49 

    A* Euclidean 2 25 0 3.53 25 0 3.68 25 0 3.66 25 N/A 3.62 

    A* Euclidean 3 25 0 3.53 25 0 3.68 25 0 3.66 25 N/A 3.62 

16 Non-

Cooperative 

A* Diagonal 1 24 0 3.51 24 0 3.54 24 0 3.32 24 N/A 3.46 

    A* Diagonal 2 25 0 3.64 25 0 3.67 25 0 3.45 25 N/A 3.59 
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    A* Diagonal 3 25 0 3.64 25 0 3.67 25 0 3.45 25 N/A 3.59 

17 Non-

Cooperative 

A* Manhattan 1 24 0 3.41 24 0 3.53 24 0 3.55 24 N/A 3.50 

    A* Euclidean 2 25 0 3.54 25 0 3.67 25 0 3.68 25 N/A 3.63 

    A* Diagonal 3 25 0 3.54 25 0 3.67 25 0 3.68 25 N/A 3.63 

18 Competitive Dijkstra’s N/A 1 24 0 3.52 24 0 3.61 24 0 3.69 24 0 3.61 

    Dijkstra’s N/A 2 25 0 3.69 25 0 3.75 25 0 3.82 25 0 3.75 

    Dijkstra’s N/A 3 26 1 3.86 26 1 3.89 26 1 3.96 26 1 3.90 

19 Competitive BFS N/A 1 24 0 3.32 24 0 3.47 24 0 3.29 24 0 3.36 

    BFS N/A 2 25 0 3.45 25 0 3.60 25 0 3.41 25 0 3.49 

    BFS N/A 3 26 1 3.57 26 1 3.73 26 1 3.53 26 1 3.61 

20 Competitive A* Manhattan 1 24 0 3.26 24 0 3.56 24 0 3.60 24 0 3.47 

    A* Manhattan 2 25 0 3.38 25 0 3.69 25 0 3.73 25 0 3.60 

    A* Manhattan 3 26 1 3.51 26 1 3.92 26 1 3.87 26 1 3.77 

21 Competitive A* Euclidean 1 24 0 3.50 24 0 3.24 24 0 3.49 24 0 3.41 

    A* Euclidean 2 26 1 3.76 26 1 3.49 26 1 3.75 26 1 3.67 

    A* Euclidean 3 25 0 3.63 25 0 3.36 25 0 3.62 25 0 3.54 

22 Competitive A* Diagonal 1 24 0 3.38 24 0 3.53 24 0 3.55 24 0 3.49 

    A* Diagonal 2 25 0 3.51 25 0 3.66 25 0 3.68 25 0 3.62 

    A* Diagonal 3 26 1 3.65 26 1 3.80 26 1 3.82 26 1 3.76 

23 Competitive A* Manhattan 1 24 0 3.46 24 0 3.61 24 0 3.55 24 0 3.54 

    A* Euclidean 2 25 0 3.59 25 0 3.75 25 0 3.68 25 0 3.67 

    A* Diagonal 3 26 1 3.73 26 1 3.88 26 1 3.82 26 1 3.81 
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Table 20: Test results for Test Environment 2 

Test Environment 2       

Test 

1     

Test 

2     

Test 

3     Average   

Test Strategy Algorithm Heuristic NPC Steps  Hits Time 

(secs) 

Steps  Hits Time 

(secs) 

Steps  Hits Time 

(secs) 

Avg 

Steps 

Hits Avg 

Time 

1 Single NPC Dijkstra’s N/A N/A 28 0 3.71 28 0 4.00 28 0 4.18 28 0 3.96 

2 Single NPC BFS N/A N/A 36 0 4.89 36 0 4.93 36 0 5.06 36 0 4.96 

3 Single NPC A* Manhattan N/A 28 0 3.90 28 0 3.68 28 0 3.91 28 0 3.83 

4 Single NPC A* Euclidean N/A 28 0 3.86 28 0 3.96 28 0 3.96 28 0 3.93 

5 Single NPC A* Diagonal N/A 28 0 3.90 28 0 3.97 28 0 4.06 28 0 3.98 

6 Cooperative Dijkstra’s N/A 1 28 0 4.23 28 0 4.16 28 0 4.23 28 0 4.21 

    Dijkstra’s N/A 2 27 0 4.10 27 0 4.03 27 0 4.08 27 0 4.07 

    Dijkstra’s N/A 3 28 0 4.23 28 0 4.16 28 0 4.23 28 0 4.21 

7 Cooperative BFS N/A 1 36 0 4.37 36 0 4.95 36 0 5.07 36 0 4.80 

    BFS N/A 2 37 0 4.49 37 0 5.08 37 0 5.20 37 0 4.92 

    BFS N/A 3 38 0 4.61 38 0 5.21 38 0 5.33 38 0 5.05 

8 Cooperative A* Manhattan 1 28 0 3.80 28 0 3.96 28 0 4.03 28 0 3.93 

    A* Manhattan 2 27 0 3.68 27 0 3.83 27 0 3.90 27 0 3.80 

    A* Manhattan 3 28 0 3.80 28 0 3.96 28 0 4.03 28 0 3.93 

9 Cooperative A* Euclidean 1 28 0 3.92 28 0 4.03 28 0 3.97 28 0 3.97 

    A* Euclidean 2 27 0 3.79 27 0 3.90 27 0 3.84 27 0 3.84 

    A* Euclidean 3 28 0 3.92 28 0 4.03 28 0 3.97 28 0 3.97 

10 Cooperative A* Diagonal 1 28 0 3.93 28 0 4.03 28 0 4.05 28 0 4.00 
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    A* Diagonal 2 27 0 3.80 27 0 3.89 27 0 3.91 27 0 3.87 

    A* Diagonal 3 28 0 3.93 28 0 4.03 28 0 4.05 28 0 4.00 

11 Cooperative A* Manhattan 1 28 0 3.71 28 0 4.02 28 0 4.03 28 0 3.92 

    A* Euclidean 2 27 0 3.58 27 0 3.89 27 0 3.90 27 0 3.79 

    A* Diagonal 3 28 0 3.71 28 0 4.02 28 0 4.03 28 0 3.92 

12 Non-

Cooperative 

Dijkstra’s N/A 1 28 0 4.11 28 0 4.21 28 0 4.22 28 0 4.18 

    Dijkstra’s N/A 2 27 0 3.97 27 0 4.08 27 0 4.08 27 0 4.04 

    Dijkstra’s N/A 3 27 0 3.97 27 0 4.08 27 0 4.08 27 0 4.04 

13 Non-

Cooperative 

BFS N/A 1 36 0 4.89 36 0 4.95 36 0 5.06 36 0 4.97 

    BFS N/A 2 37 0 5.01 37 0 5.09 37 0 5.19 37 0 5.10 

    BFS N/A 3 37 0 5.01 37 0 5.09 37 0 5.19 37 0 5.10 

14 Non-

Cooperative 

A* Manhattan 1 28 0 3.85 28 0 4.03 28 0 4.04 28 0 3.97 

    A* Manhattan 2 27 0 3.73 27 0 3.89 27 0 3.90 27 0 3.84 

    A* Manhattan 3 27 0 3.73 27 0 3.89 27 0 3.90 27 0 3.84 

15 Non-

Cooperative 

A* Euclidean 1 28 0 3.95 28 0 4.08 28 0 4.08 28 0 4.04 

    A* Euclidean 2 27 0 3.82 27 0 3.95 27 0 3.95 27 0 3.91 

    A* Euclidean 3 27 0 3.82 27 0 3.95 27 0 3.95 27 0 3.91 

16 Non-

Cooperative 

A* Diagonal 1 28 0 4.08 28 0 4.09 28 0 4.13 28 0 4.10 

    A* Diagonal 2 27 0 3.95 27 0 3.96 27 0 3.99 27 0 3.97 

    A* Diagonal 3 27 0 3.95 27 0 3.96 27 0 3.99 27 0 3.97 

17 Non- A* Manhattan 1 28 0 4.04 28 0 4.09 28 0 4.10 28 0 4.08 
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Cooperative 

    A* Euclidean 2 27 0 3.91 27 0 3.95 27 0 3.97 27 0 3.94 

    A* Diagonal 3 27 0 3.91 27 0 3.95 27 0 3.97 27 0 3.94 

18 Competitive Dijkstra’s N/A 1 29 1 4.26 29 1 4.36 29 1 4.40 29 1 4.34 

    Dijkstra’s N/A 2 28 1 4.13 28 1 4.22 28 1 4.26 28 1 4.20 

    Dijkstra’s N/A 3 27 0 3.97 27 0 4.07 27 0 4.11 27 0 4.05 

19 Competitive BFS N/A 1 36 0 4.93 36 0 5.24 36 0 5.09 36 0 5.09 

    BFS N/A 2 37 0 5.06 37 0 5.38 37 0 5.22 37 0 5.22 

    BFS N/A 3 38 1 5.19 38 1 5.52 38 1 5.36 38 1 5.36 

20 Competitive A* Manhattan 1 29 1 3.69 29 1 4.11 29 1 4.24 29 1 4.01 

    A* Manhattan 2 28 1 3.57 28 1 3.98 28 1 4.10 28 1 3.88 

    A* Manhattan 3 27 0 3.45 27 0 3.85 27 0 3.96 27 0 3.75 

21 Competitive A* Euclidean 1 29 1 4.18 29 1 4.23 29 1 4.29 29 1 4.23 

    A* Euclidean 2 28 1 4.05 28 1 4.09 28 1 4.16 28 1 4.10 

    A* Euclidean 3 27 0 3.91 27 0 3.96 27 0 4.02 27 0 3.96 

22 Competitive A* Diagonal 1 29 1 4.16 29 1 4.21 29 1 4.27 29 1 4.21 

    A* Diagonal 2 28 1 4.02 28 1 4.08 28 1 4.13 28 1 4.08 

    A* Diagonal 3 27 0 3.89 27 0 3.94 27 0 3.99 27 0 3.94 

23 Competitive A* Manhattan 1 29 1 4.12 29 1 4.24 29 1 4.22 29 1 4.19 

    A* Euclidean 2 28 1 3.99 28 1 4.11 28 1 4.08 28 1 4.06 

    A* Diagonal 3 27 0 3.86 27 0 3.97 27 0 3.95 27 0 3.93 
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Table 21: Test results for Test Environment 3 

Test Environment 3       

Test 

1     

Test 

2     

Test 

3     Average   

Test Strategy Algorithm Heuristic NPC Steps  Hits Time 

(secs) 

Steps  Hits Time 

(secs) 

Steps  Hits Time 

(secs) 

Avg 

Steps 

Hits Avg 

Time 

1 Single NPC Dijkstra’s N/A N/A 28 0 3.68 28 0 3.97 28 0 4.09 28 0 3.91 

2 Single NPC BFS N/A N/A 34 0 4.35 34 0 4.60 34 0 4.70 34 0 4.55 

3 Single NPC A* Manhattan N/A 28 0 3.95 28 0 3.94 28 0 3.97 28 0 3.95 

4 Single NPC A* Euclidean N/A 28 0 3.86 28 0 3.96 28 0 4.00 28 0 3.94 

5 Single NPC A* Diagonal N/A 28 0 3.92 28 0 4.02 28 0 4.00 28 0 3.98 

6 Cooperative Dijkstra’s N/A 1 28 0 3.89 28 0 4.28 28 0 4.17 28 0 4.11 

    Dijkstra’s N/A 2 29 0 4.02 29 0 4.41 29 0 4.30 29 0 4.24 

    Dijkstra’s N/A 3 27 0 3.76 27 0 4.14 27 0 4.03 27 0 3.98 

7 Cooperative BFS N/A 1 34 0 4.86 34 0 4.91 34 0 4.89 34 0 4.89 

    BFS N/A 2 35 0 4.99 35 0 5.05 35 0 5.03 35 0 5.02 

    BFS N/A 3 36 0 5.13 36 0 5.19 36 0 5.17 36 0 5.16 

8 Cooperative A* Manhattan 1 28 0 4.02 28 0 4.15 28 0 4.19 28 0 4.12 

    A* Manhattan 2 29 0 4.16 29 0 4.29 29 0 4.33 29 0 4.26 

    A* Manhattan 3 27 0 3.89 27 0 4.01 27 0 4.05 27 0 3.98 

9 Cooperative A* Euclidean 1 28 0 4.08 28 0 4.14 28 0 4.19 28 0 4.14 

    A* Euclidean 2 29 0 4.23 29 0 4.27 29 0 4.34 29 0 4.28 

    A* Euclidean 3 27 0 3.94 27 0 4.00 27 0 4.06 27 0 4.00 
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10 Cooperative A* Diagonal 1 28 0 4.13 28 0 4.06 28 0 4.16 28 0 4.12 

    A* Diagonal 2 29 0 4.27 29 0 4.20 29 0 4.30 29 0 4.26 

    A* Diagonal 3 27 0 4.00 27 0 3.93 27 0 4.03 27 0 3.99 

11 Cooperative A* Manhattan 1 28 0 4.12 28 0 4.17 28 0 4.25 28 0 4.18 

    A* Euclidean 2 29 0 4.26 29 0 4.31 29 0 4.39 29 0 4.32 

    A* Diagonal 3 27 0 3.98 27 0 4.04 27 0 4.12 27 0 4.05 

12 Non-

Cooperative 

Dijkstra’s N/A 1 28 0 4.13 28 0 4.24 28 0 4.29 28 0 4.22 

    Dijkstra’s N/A 2 29 0 4.26 29 0 4.38 29 0 4.43 29 0 4.36 

    Dijkstra’s N/A 3 27 0 3.99 27 0 4.10 27 0 4.15 27 0 4.08 

13 Non-

Cooperative 

BFS N/A 1 34 0 4.82 34 0 5.03 34 0 5.01 34 0 4.95 

    BFS N/A 2 35 0 4.95 35 0 5.16 35 0 5.15 35 0 5.09 

    BFS N/A 3 35 0 4.95 35 0 5.16 35 0 5.15 35 0 5.09 

14 Non-

Cooperative 

A* Manhattan 1 28 0 4.13 28 0 4.13 28 0 4.15 28 0 4.14 

    A* Manhattan 2 29 0 4.27 29 0 4.27 29 0 4.29 29 0 4.28 

    A* Manhattan 3 27 0 3.99 27 0 3.99 27 0 4.01 27 0 4.00 

15 Non-

Cooperative 

A* Euclidean 1 28 0 4.23 28 0 4.22 28 0 4.17 28 0 4.21 

    A* Euclidean 2 29 0 4.37 29 0 4.36 29 0 4.31 29 0 4.35 

    A* Euclidean 3 27 0 4.09 27 0 4.08 27 0 4.04 27 0 4.07 

16 Non-

Cooperative 

A* Diagonal 1 28 0 4.27 28 0 4.23 28 0 4.18 28 0 4.23 

    A* Diagonal 2 29 0 4.40 29 0 4.37 29 0 4.31 29 0 4.36 

    A* Diagonal 3 27 0 4.13 27 0 4.08 27 0 4.04 27 0 4.08 
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17 Non-

Cooperative 

A* Manhattan 1 28 0 4.07 28 0 4.15 28 0 4.12 28 0 4.11 

    A* Euclidean 2 29 0 4.21 29 0 4.28 29 0 4.26 29 0 4.25 

    A* Diagonal 3 27 0 3.94 27 0 4.01 27 0 3.99 27 0 3.98 

18 Competitive Dijkstra’s N/A 1 28 0 4.11 28 0 4.22 28 0 4.29 28 0 4.21 

    Dijkstra’s N/A 2 29 0 4.25 29 0 4.36 29 0 4.43 29 0 4.35 

    Dijkstra’s N/A 3 27 0 3.98 27 0 4.09 27 0 4.15 27 0 4.07 

19 Competitive BFS N/A 1 34 0 4.91 34 0 4.99 34 0 5.06 34 0 4.99 

    BFS N/A 2 35 0 5.05 35 0 5.13 35 0 5.20 35 0 5.13 

    BFS N/A 3 36 1 5.19 36 1 5.26 36 1 5.34 36 1 5.26 

20 Competitive A* Manhattan 1 28 0 4.01 28 0 4.18 28 0 4.16 28 0 4.12 

    A* Manhattan 2 29 0 4.15 29 0 4.32 29 0 4.30 29 0 4.26 

    A* Manhattan 3 27 0 3.88 27 0 4.04 27 0 4.03 27 0 3.98 

21 Competitive A* Euclidean 1 28 0 4.16 28 0 4.19 28 0 4.20 28 0 4.18 

    A* Euclidean 2 29 0 4.29 29 0 4.32 29 0 4.34 29 0 4.32 

    A* Euclidean 3 27 0 4.02 27 0 4.05 27 0 4.06 27 0 4.04 

22 Competitive A* Diagonal 1 28 0 4.01 28 0 4.13 28 0 4.21 28 0 4.12 

    A* Diagonal 2 29 0 4.14 29 0 4.26 29 0 4.35 29 0 4.25 

    A* Diagonal 3 27 0 3.87 27 0 3.99 27 0 4.07 27 0 3.98 

23 Competitive A* Manhattan 1 28 0 3.55 28 0 3.93 28 0 4.10 28 0 3.86 

    A* Euclidean 2 29 0 3.67 29 0 4.07 29 0 4.24 29 0 3.99 

    A* Diagonal 3 27 0 3.43 27 0 3.81 27 0 3.97 27 0 3.74 
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Table 22: Test results for Test Environment 4 

Test Environment 4       

Test 

1     

Test 

2     

Test 

3     Average   

Test Strategy Algorithm Heuristic NPC Steps  Hits Time 

(secs)  

Steps  Hits Time 

(secs) 

Steps  Hits Time 

(secs) 

Avg 

Steps 

Hits Avg 

Time 

1 Single NPC Dijkstra’s N/A N/A 24 0 3.24 24 0 3.51 24 0 3.57 24 0 3.44 

2 Single NPC BFS N/A N/A 24 0 3.36 24 0 3.44 24 0 3.45 24 0 3.42 

3 Single NPC A* Manhattan N/A 24 0 3.50 24 0 3.51 24 0 3.56 24 0 3.52 

4 Single NPC A* Euclidean N/A 24 0 3.46 24 0 3.55 24 0 3.54 24 0 3.52 

5 Single NPC A* Diagonal N/A 24 0 3.46 24 0 3.55 24 0 3.55 24 0 3.52 

6 Cooperative Dijkstra’s N/A 1 24 0 3.62 24 0 3.69 24 0 3.67 24 0 3.66 

    Dijkstra’s N/A 2 25 0 3.76 25 0 3.83 25 0 3.81 25 0 3.80 

    Dijkstra’s N/A 3 26 0 3.89 26 0 3.97 26 0 3.94 26 0 3.93 

7 Cooperative BFS N/A 1 24 0 3.52 24 0 3.60 24 0 3.64 24 0 3.59 

    BFS N/A 2 25 0 3.65 25 0 3.74 25 0 3.79 25 0 3.73 

    BFS N/A 3 26 0 3.78 26 0 3.88 26 0 3.93 26 0 3.86 

8 Cooperative A* Manhattan 1 24 0 3.47 24 0 3.65 24 0 3.67 24 0 3.60 

    A* Manhattan 2 25 0 3.60 25 0 3.79 25 0 3.81 25 0 3.73 

    A* Manhattan 3 26 0 3.74 26 0 3.93 26 0 3.95 26 0 3.87 

9 Cooperative A* Euclidean 1 24 0 3.59 24 0 3.60 24 0 3.63 24 0 3.61 

    A* Euclidean 2 25 0 3.73 25 0 3.73 25 0 3.76 25 0 3.74 

    A* Euclidean 3 26 0 3.87 26 0 3.87 26 0 3.90 26 0 3.88 

10 Cooperative A* Diagonal 1 24 0 3.60 24 0 3.71 24 0 3.62 24 0 3.64 



 116

    A* Diagonal 2 25 0 3.73 25 0 3.85 25 0 3.76 25 0 3.78 

    A* Diagonal 3 26 0 3.87 26 0 3.98 26 0 3.90 26 0 3.92 

11 Cooperative A* Manhattan 1 24 0 3.58 24 0 3.70 24 0 3.66 24 0 3.65 

    A* Euclidean 2 25 0 3.72 25 0 3.84 25 0 3.80 25 0 3.79 

    A* Diagonal 3 26 0 3.85 26 0 3.98 26 0 3.94 26 0 3.92 

12 Non-

Cooperative 

Dijkstra’s N/A 1 24 0 3.69 24 0 3.70 24 0 3.69 24 0 3.69 

    Dijkstra’s N/A 2 25 0 3.83 25 0 3.84 25 0 3.83 25 0 3.83 

    Dijkstra’s N/A 3 25 0 3.83 25 0 3.84 25 0 3.83 25 0 3.83 

13 Non-

Cooperative 

BFS N/A 1 24 0 3.46 24 0 3.66 24 0 3.64 24 0 3.59 

    BFS N/A 2 25 0 3.59 25 0 3.80 25 0 3.78 25 0 3.72 

    BFS N/A 3 25 0 3.59 25 0 3.80 25 0 3.78 25 0 3.72 

14 Non-

Cooperative 

A* Manhattan 1 24 0 3.61 24 0 3.65 24 0 3.63 24 0 3.63 

    A* Manhattan 2 25 0 3.74 25 0 3.79 25 0 3.76 25 0 3.76 

    A* Manhattan 3 25 0 3.74 25 0 3.79 25 0 3.76 25 0 3.76 

15 Non-

Cooperative 

A* Euclidean 1 24 0 3.46 24 0 3.58 24 0 3.60 24 0 3.55 

    A* Euclidean 2 25 0 3.59 25 0 3.72 25 0 3.74 25 0 3.68 

    A* Euclidean 3 25 0 3.59 25 0 3.72 25 0 3.74 25 0 3.68 

16 Non-

Cooperative 

A* Diagonal 1 24 0 3.63 24 0 3.67 24 0 3.64 24 0 3.65 

    A* Diagonal 2 25 0 3.76 25 0 3.81 25 0 3.78 25 0 3.78 

    A* Diagonal 3 25 0 3.76 25 0 3.81 25 0 3.78 25 0 3.78 

17 Non- A* Manhattan 1 24 0 3.64 24 0 3.62 24 0 3.67 24 0 3.64 
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Cooperative 

    A* Euclidean 2 25 0 3.78 25 0 3.76 25 0 3.80 25 0 3.78 

    A* Diagonal 3 25 0 3.78 25 0 3.76 25 0 3.80 25 0 3.78 

18 Competitive Dijkstra’s N/A 1 24 0 3.59 24 0 3.68 24 0 3.66 24 0 3.64 

    Dijkstra’s N/A 2 26 1 3.86 26 1 3.95 26 1 3.95 26 1 3.92 

    Dijkstra’s N/A 3 25 0 3.73 25 0 3.82 25 0 3.80 25 0 3.78 

19 Competitive BFS N/A 1 24 0 3.16 24 0 3.39 24 0 3.46 24 0 3.34 

    BFS N/A 2 25 0 3.28 25 0 3.52 25 0 3.59 25 0 3.46 

    BFS N/A 3 26 1 3.40 26 1 3.65 26 1 3.73 26 1 3.59 

20 Competitive A* Manhattan 1 24 0 3.37 24 0 3.47 24 0 3.54 24 0 3.46 

    A* Manhattan 2 25 0 3.50 25 0 3.60 25 0 3.68 25 0 3.59 

    A* Manhattan 3 26 1 3.62 26 1 3.74 26 1 3.81 26 1 3.72 

21 Competitive A* Euclidean 1 24 0 3.50 24 0 3.55 24 0 3.58 24 0 3.54 

    A* Euclidean 2 25 0 3.63 25 0 3.68 25 0 3.71 25 0 3.67 

    A* Euclidean 3 26 1 3.76 26 1 3.82 26 1 3.85 26 1 3.81 

22 Competitive A* Diagonal 1 24 0 3.56 24 0 3.58 24 0 3.65 24 0 3.60 

    A* Diagonal 2 26 1 3.82 26 1 3.85 26 1 3.92 26 1 3.86 

    A* Diagonal 3 25 0 3.68 25 0 3.71 25 0 3.78 25 0 3.72 

23 Competitive A* Manhattan 1 24 0 3.46 24 0 3.61 24 0 3.60 24 0 3.56 

    A* Euclidean 2 25 0 3.59 25 0 3.74 25 0 3.74 25 0 3.69 

    A* Diagonal 3 26 1 3.73 26 1 3.88 26 1 3.87 26 1 3.83 
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Table 23: Test results for Test Environment 5 

Test Environment 5     

Test 

1   

Test 

2   

Test 

3   Average 

Test Strategy Algorithm Heuristic NPC Steps  Time 

(secs) 

Steps  Time 

(secs) 

Steps  Time 

(secs) 

Avg 

Steps 

Avg 

Speed 

1 N/A A* Manhattan 1 16 2.14 16 2.5 16 2.61 16 2.42 

  N/A Dijkstra's N/A 2 16 2.14 16 2.5 16 2.61 16 2.42 

  N/A BFS N/A 3 16 2.14 16 2.5 16 2.61 16 2.42 

  N/A A* Euclidean 4 16 2.14 16 2.5 16 2.61 16 2.42 

2 N/A A* Manhattan 1 16 2.46 16 2.62 16 2.51 16 2.53 

  N/A A* Euclidean 2 16 2.46 16 2.62 16 2.51 16 2.53 

  N/A A* Diagonal 3 16 2.46 16 2.62 16 2.51 16 2.53 

  N/A A* Manhattan 4 16 2.46 16 2.62 16 2.51 16 2.53 

 

 


