
MOBILE COLLABORATIVE INFORMATION SYSTEM USING DISTRIBUTED
DATABASE ARCHITECTURE

BY

DUANE CATO

IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE IN INFORMATION SYSTEMS.

Athabasca University

October, 2009

Copyright © Duane Cato (#2452890), 2009

Document Ref: 009174

Version: 1.3

ATHABASCA UNIVERSITY

Project Committee Acceptance

The undersigned certify that they have read and recommend for acceptance the
project Mobile Collaborative Information System using Distributed Database
Architecture submitted by Duane Cato in fulfillment of the requirements for the
degree of MASTER OF SCIENCE in INFORMATION SYSTEMS.

Dr. Mahmoud
F. Abaza

Associate Professor School of
Computing and Information
Systems (Thesis Project
Supervisor) Signature:

Dr. Fuhua
(Oscar) Lin

Associate Professor/MSIS
Program Coordinator, School
of Computing and Information
Systems Signature:

Mr. Richard
Huntrods

Academic Coordinator, School
of Computing and Information
Systems Signature:

Mrs. Clover
Barnett, FCCA

Audit Director, Canadian Tire
Ltd. (Thesis Project Sponsor) Signature:

DEDICATION

Dedicated to my parents, who nurtured the scientist in me.

i

ABSTRACT

This thesis examines the feasibility of communal information sharing between
mobile devices using a distributed architecture for the underlying database
topology, through research aimed at satisfying two primary objectives:

i. Examination and review of available technologies and products
currently supporting distributed mobile database functionality,
and

ii. Development of a prototype groupware solution utilising
distributed database synchronisation to implement information-
sharing functions.

ii

ACKNOWLEDGEMENTS

I would like to acknowledge the support and help of a number of people, without
whom this thesis project would have never been completed. Specifically, Mrs.
Clover Barnett-Cobb, who was an ever-present source of inspiration and critique.
Dr. Mahmoud Abaza, who was a firm supervisor, with significant and useful
guidance in presentation and discourse. And especially, my wife, Karen Chen,
who was patient and supportive of my studies, providing the emotional, material
and intellectual backing for my efforts.

iii

Distribution

Copy No. Name Location

1 Athabasca University MSIS
Programme library

Programme
Library

2 Thesis Supervisor

3 Thesis Sponsor

4 Project Committee members

iv

TABLE OF CONTENTS

CHAPTER I -
BACKGROUND..1

Objective..2
Significance..2
Comparison of Mobile Distributed Databases...2
Prototype MDD Groupware Solution...3

CHAPTER II -
 MDD PRODUCTS AND DEVELOPMENTS..4

CHAPTER III -
METHODOLOGY..5

Distributed Database Infrastructure..5
Device Data Synchronization..6

CHAPTER IV -
COSTS DETERMINATION ..8

Distributed Information Management System Architecture...13

CHAPTER V -
PRODUCT COST ANALYSIS..15

MDD Evaluation Performance Benchmarks...16

CHAPTER VI -
PERFORMANCE EVALUATION METHODOLOGY ...17

Comparison Approach..17
Product Cost Calculation..18
Cost Evaluation Assumptions...19

CHAPTER VII -
PRODUCT PERFORMANCE COMPARISON...22

CHAPTER VIII -
EVALUATION CONCLUSIONS..25

CHAPTER IX -
PROTOTYPE BACKGROUND...26

CHAPTER X -
PROTOTYPE FUNCTIONAL REQUIREMENTS...27

Requirements for Prototype..27
Assumptions...28

CHAPTER XI -
PROTOTYPE HIGH-LEVEL APPROACH..29

Discussion Forum High-level Design..30
Tools and Instrumentation..35
Product Selection Methodology..38

v

CHAPTER XII -
PROTOTYPE UML DESIGN..39

CHAPTER XIII -
PROTOTYPE DETAILED DESIGN..41

Device Registry...42
Device Synchronization..43

CHAPTER XIV -
PROTOTYPE DESIGN DECISIONS..45

Discussion Forum High-level Design..45
Discussion Forum Design Challenges..46

CHAPTER XV -
PROTOTYPE CONCLUSIONS..47

CHAPTER XVI -
BIBLIOGRAPHY...49

References...49

vi

LIST OF FIGURES

Figure 1. Stationary-computing cost model..12

Figure 2. Mobile-computing cost model..12
Figure 3: Flowchart illustrating prototype execution...33
Figure 4: Diagram illustrating entity/table relationships in the prototype.............34
Figure 5: Prototype architecture technology stack...35
Figure 6: Prototype UML Activity diagram..39

Figure 7: Prototype design high-level class diagram..40
Figure 8: User sign in screen..41
Figure 9: Registration screen..41
Figure 10: Topic selection screen...41
Figure 11: Message Post screen..41

vii

LIST OF TABLES

Table 1: Host Bus path architecture comparison...9

Table 2: Candidate MDD Product Benchmarks...16

Table 3: Product customization factor determination...22

Table 4: Derived candidate product comparison costs..23

viii

CHAPTER I -
BACKGROUND

This thesis examines the feasibility of communal information sharing between
mobile devices using a distributed architecture for the underlying database
topology. For the purposes of this project, the following definitions are presented
to clarify the overall project objectives:

A distributed database can be defined as a database that is not stored at any
one single physical location, but rather is dispersed across a network of
interconnected computers or devices. For this project, the network of supporting
computers will be mobile devices (e.g., cellular telephones), i.e., a mobile
distributed database (MDD) system (Tanenbaum, Van Steen, 2002).

A homogeneous distributed database is a distributed database system that
implements each participating device (or node) as an instance of the same
underlying database infrastructure. All conclusions and solutions derived from
this research effort will be predicated upon the use of a homogeneous distributed
database architecturei.

The research planned for this project has two primary objectives:

iii. Examination and review of available technologies and products
currently supporting distributed mobile database functionality,
and

iv. Development of a prototype groupware solution utilising
distributed database synchronisation to implement information-
sharing functions.

It is hoped that the dual goals above will help present a more detailed and
complete perspective on current mobile distributed database solutions, while
also identifying potential directions for improvement and innovation.

1

Objective

As indicated in the preceding background, this research effort examines the
current state of research in mobile device distributed database (MDD)
technology, with particular focus on areas of performance, reliability and usability
(Tomasic, Garcia-Molina, 1996), with the eventual deliverable being a report
comparing mobile distributed database solutions along several critical
dimensions. The resulting analysis will be used to supplement design and
deployment of a prototype mobile groupware system utilizing distributed
database technology for data storage and management.

Significance

Although a great deal of work has been completed in the area of distributed
database architecture, the specific field of mobile distributed database
management continues to be a burgeoning area for research, due in large part to
the very rapid changes that have occurred in mobile device capability over the
past few years. Mobile devices now are capable of rapid processing, high-speed
communication and support high-level programming primitives (e.g., using Java
Platform, Micro Edition - J2ME) and are thus perfect candidates for empowering
the average user with improved data accessibility and collaboration, within a
mobile contextii. This can potentially provide benefits in increased usefulness,
timeliness, and availability of on-time, real-time information to the everyday
mobile user.

It is expected that research in the areas identified for this project will become
more important, and more prevalent in the near future, as the processing power,
data management capability and communications flexibility of commodity mobile
computing devices increases. This thesis attempts to provide additional
information and context for the inevitable discussions which will be necessary to
fully utilize and monetize solutions based upon this technology.

Comparison of Mobile Distributed Databases

The existing MDD comparison solutions report provides details of characteristics
and metrics for a number of identified candidate products. These dimensions
include:

• feature-set,

• availability,

• operating environment/platform, and

2

• cost and usability (V. Kumar, 2006).

These factors all impact the deliverability and usability of the solution in
developing, deploying and operating solutions based on the particular MDD
technology.

Prototype MDD Groupware Solution

The proposed groupware system focuses on distribution and sharing of
questions, answers and comments between members of a ‘study-group’, utilising
mobile devices to handle the tasks of posting, updating and most importantly,
storing communication between group constituents. The design is unusual in that
it includes no centralised storage database envisaged in the architecture of this
particular solution; all persistent and session data generated and utilised in the
course of operation exists as the sum total of information within component
participating mobile database nodes (Zondervan and Lee, 1999). Future
enhancement directions may include the possibility of implementing some sort of
offload or external backup mechanism, in order to provide long-term persistent
storage or archival capability.

It should also be noted that, as a prototype, the primary goal of this solution was
to illustrate existing design and operational morphologies of the specific MDD
identified from the evaluation phase of the project, as well as potentially identify
improvements and innovations in existing infrastructure and design, that could
lead to performance, reliability or functional improvements in the MDD arena.

i K. M. Hanna, B. N. Levine, and R. Manmatha. Mobile distributed information retrieval for highly-
partitioned networks. In IEEE ICNP, Nov 2003.
ii Lim, J. B. and Hurson, A. R. 2001. Transaction Processing in a Mobile, Multi-Database Environment.
Multimedia Tools Appl. 15, 2 (Nov. 2001), 161-185. DOI= http://dx.doi.org/10.1023/A:1011646626868

3

CHAPTER II -
 MDD PRODUCTS AND DEVELOPMENTS

This chapter provides some background on the usage and uptake of mobile
distributed databases, from both a commercial and non-commercial (e.g.,
academic) perspective.

The commercial environment for MDD products is largely undeveloped at this
time, primarily due to the relative immaturity of most of the products that are
available for building distributed mobile information management solutions. One
of the more interesting details discovered in this research is that mobile
databases are usually deployed as extensions of centralized data management
systems, which is an approach very much at odds with the philosophy of a
distributed peer-based database architecture. The most popular mobile database
as of this writing is actually Sybase SQL Anywhere which has approximately
68% of the mobile database market, and is largely deployed as a front-end to
“big-iron” database products., e.g., Sybase, SQL Server, DB2 and Oracle.
Additionally, there are other mobile database products in the space, such as
Oracle 10G/9i Lite, IBM DB2 Everywhere and Borland Jdatastore, however, all of
these products remain completely bound to centralized database systems for
back-end data persistence, management and processing. The most well-known
commercially available distributed database capable of mobile operation, would
be Perst, followed closely by db4o (which is not mobile-capable without
significant back-end centralized database synchronisation support).

The use of mobile distributed database architectures does not appear at this
point, to be a significant driver for mobile database information management
systems; however, the flexibility offered by the use of the distributed approach
for fault-tolerance, replication, synchronization and data persistence, has made it
a highly active field of study in academia. Of note in this regard, are products
such as J2MEMicroDB from Universitat Politècnica de Catalunya, Spain, which
continues to make significant inroads into improving robustness and functionality,
without sacrificing the advantages of the MDD paradigm for database operations.
This study presents more detail on the usability, and readiness for commercial
use of many of the products mentioned above, as well as outlines some of the
pitfalls and difficulties with utilising MDD-based architetcures for information
management solution delivery .

4

CHAPTER III -
METHODOLOGY

The two objectives of this research project, being interrelated, will be satisfied by
the following approaches:

i. The ‘current-state’ analysis of the capabilities, opportunities and
efficacy of differing mobile distributed database solutions, will
be developed through the identification, review, and qualitative/
quantitative comparison of candidates in the MDD solution
space.

ii. Design and development of a prototype groupware solution over
a P2P-based distributed database architecture, using one of the
preferred MDD candidates identified above, in combination with
development of any required extensions or custom distributed
data management functionality not already provided by the
chosen MDD infrastructure.

Distributed Database Infrastructure

In order to satisfy the unique needs of data management in a distributed
environment, distributed information retrieval (DIR) techniques are more
appropriate than the centralized methods common to monolithic stand-alone
databases. In a DIR, all participating nodes in the distributed environment are
indexed, to identify those that are likely candidates for locating the particular
information desired; only those that meet the search criteria are included in a
final list of search hosts. The assumption here is that each participating node in
the database, indexes its own subset of data, and thus can answer the question
of what information is contained therein. Also, this mechanism presupposes the
availability of all the hosts in the database: disconnected of nodes in the
database will lead to skewed, or even incorrect search results.

The improvement of the underlying fault-tolerance of the databases' network
connectivity will lead to a concomitant increase in the reliability and accuracy of
search and data management operations from the overall information
management system. Mechanisms for increasing the availability and
recoverability within a mobile distributed context are limited by a variety of
operational parameters (e.g., infrastructure cost, data transmission cost, network
latency, bandwidth , underlying connection protocol artifacts). For purposes of
this analysis, we focus principally on reducing data management and
transmission costs, through the use of enhanced data transmission protocols
and node selection schemes. Candidate methodologies for DIR node interaction
include:

5

i. Communication through a centralized server, which manages the
process of data synchronization between the nodes in the mobile
distributed database. Issues related to this method include
synchronization and federation update consistency, as well as
performance bottlenecks and single-point failure concerns.

ii. Communication in an ad hoc manner as necessary for
synchronization between individual nodes in the distributed database.
This remedies the single-point failure issues identified in (i), but only
changes the nature and cause of performance and synchronization
concerns.

iii. Communication between peers in the distributed database, using
an enhanced protocol and associated topology to avoid failure sensitivity
and performance issues associated with options (i) and (ii) above.
Synchronization issues continue to require creative management,
particularly in light of the more complex interaction now occurring between
peers.

Validation of the approaches indicated above, requires a quantitative
determination of cost for implementation, management and system resource
utilization. Assuming that external costs of management and implementation
remain consistent between the three options, the varying cost becomes that
required for ongoing system resource utilization. A methodology for evaluating
this cost as it applies to multiply synchronized devices is discussed in the
following section.

Device Data Synchronization

An additional factor to be considered in any approach for managing data across
a distributed system, is the identification of data to be synchronized across
participating nodes. Any algorithm designed should support synchronization of
multiple replicas of a distributed database, ensuring consistency of data between
all copies of the database. Issues which come to fore include:

• Storage constraints on portable devices precludes working with
the full dataset on the device; i.e., participating nodes may not
necessarily posess the entire data set of the database, but only
an operationally (or geographically) relevant subset.

• For disparate data platforms, data will have to be translated or
mapped between types. For our research, we have limited
ourselves to a consistent database platform across the
procured research devices, despite potential differences in

6

underlying hardware topology, in the interests of reducing
variability in the evaluation parameters.

Zondervan and Lee, (1999), indicate a preference for using an ID Mapping Table
(IMT) to manage data translation between desktop or server databases and
mobile device replicas. This was achieved within the context of the above
restrictions, by storing the IMT on the main server, and referencing it for
translation of data store-relevant documents between device and server. In the
multiple-mobile device scenario we envision, using an IMT is less of an issue, as
a consistent data platform between the individual devices makes an IMT of
limited value (since there is reduced requirement for translation of values
between nodes). We can assume therefore that the algorithm is operating as if a
1-1 imaginary IMT mapping exists between all items in a particular device node
and any other mobile device against which we want to replicate.

7

CHAPTER IV -
COSTS DETERMINATION

In order to develop and validate a realistic methodology for determination of the
run-time execution costs of a distributed mobile database, the construct can be
viewed in terms of its overarching distributed system characteristics. These
characteristics would of necessity, encompass both the attributes and designed
behavior of the system, specifically:

• internal node and distributed data constructs and structures

• number of cpu nodes and communication bus paths

• data allocation algorithm (static vs. dynamic)

• Distributed dictionary inverted indexing

• Distributed dictionary hardware infrastructure

One approach that has had good success is the use of inverted indices in
distributed dictionary/text-retrieval systems, presented as either a multi-cpu or
multi-db retrieval problem. In our scenario, this is relevant as it affects the
manner in which we deploy our data-management facilities across the distributed
database system, i.e., optimization and performance data indexed inversely
across multiple data resources will vary depending on the utilization and number
of cpu nodes, degree of inter-cpu I/O, as well as amount and quanta of cpu-data
resource communication. In this research environment, use of a distributed
dictionary can be viewed as an extrapolation of a simplified multi-host data
solution, where each participating host (node) has its own data, cpu and I/O
path. This is probably the simplest manner in which data can be fragmented
across multiple participating resources (without engaging exotic data
management structures or algorithms). As per Tomasic, A. Garcia-Molina,
H. 1993 p. 10,

“The documents reside in a uniformly distributed manner across all disks d in the
system
(d = Hosts * I/O BusesPerHost * DisksPer I/O Bus). Let the storage components
be numbered from 0 to d - 1 as in the Table below:

8

Table 1: Host Bus path architecture comparison

Parameter Value Description

Hosts 4 Number of
Hosts

I/O Buses Per
Host

4 Controllers and
I/O Buses per
Host

Stores Per I/O
Bus

2 Stores Per 1/O
bus

From research using the host scenario above, Tomasic and Garcia-Molina
concluded that although relatively simple, this is a highly effective design for text
retrieval, with ready application over parallel architectures. Their research
identified a number of performance characteristics of the text-retrieval
mechanism above:

• the choice of an index organization depends heavily on the
access time of the storage device and the bandwidth of
interprocessor communication. As the size of a query increases,
its response time may drop; more complex prefetch
optimizations were often less effective.

• results indicate that the host index organization is a good
choice, as it uses system resources effectively and can lead to
high query throughputs in many cases. While it does not
perform the best, it is not very far off from the best strategy.

• results also indicate that the system-based organization, even
with the prefetch organization, is not good unless disk and
network bandwidth utilization is high.

There are a number of factors that may be unsupportive of this approach:

• If the documents were stored on the same devices as the
indexes, then storage utilizations would be higher. This would
make the system organization more attractive since it reduces
the I/O load.

• Not modeling pipelining of I/O and CPU processing within a
query can reduce query response time, and would be more

9

beneficial to the system organization since it deals with longer
inverted lists.

• If the inverted lists are in sorted order, the intersection algorithm
can (in some cases) terminate having read only a fraction of the
inverted lists.

Despite optimizations derived from the reduced complexity for this analysis, it is
necessary to identify the resource costs related to the management of data
objects across the distributed nodes of the database. These costs can be
segregated into object management costs, communications costs and I/O costs,
and calculated using any of a variety of methodologies. For our purposes, the
approach outlined by Huang and Wolfson, (1994) will suffice, particularly due to
its specificity for determination of object allocation and access costs. Their
method analyzes the cost of distributed object management algorithms in
stationary and mobile computing environments. As a precursor to the discussion
of their methodology, we include a few definitions:

• An execution schedule is a sequence of requests, with its own
associated execution set (reads and writes).

• A saving-read is a read operation that results in saving the data
object locally rather than to a remote node

• An allocation schedule is an execution schedule where some of
the read requests are saving-reads. At the end of the allocation
schedule the data object is stored in the local databases of the
participating nodes. A legal allocation schedule is one in which
the execution set for every read request contains a reference to
a valid (in the network) node or processor; i.e., a node with the
latest version of the data object in its local database.

• Allocation scheme for a request is the set of nodes (or
processors) that have the latest version of the data object in the
local database, just before execution.

• A distributed object management algorithm (DOM) is defined as
an algorithm which generates a legal allocation schedule based
on an initial allocation schedule ψ.

In their approach, Huang and Wolfson outlined a methodology for comparison of
the competitiveness and costliness (in object resources) of differing distributed
object management algorithms (DOMs). Here, competitiveness is a measure of
the performance of a particular algorithm, while costliness refers to the resource
usage in terms of memory and disk requirements. The approach assumes that
there is a constant α (termed the competitiveness factor), at which, for a

10

sequence of read-write operations on a DOM (Ạ), the cost of algorithm Ạ is < α x
(best-case cost for a DOM). Another algorithm, Ḅ, is less competitive when the
cost of Ḅ is > α x (best-case cost for a DOM). That is, the object-allocation cost
of Ḅ is greater than the object-allocation cost of Ạ. Thus, a distributed object
management (DOM) algorithm is regarded as competitive if the ratio of the cost
of the algorithm to the optimal cost is at most α, for a random sequence of read-
write requests. This helps us to compare quantitatively the relative
competitiveness of algorithm designs from the candidate distributed database
products, as part of our evaluation process.

The difference between the cost quantification for distributed terrestrial vs.
distributed mobile environments is that in mobile computing, because of wireless
communication charges, local I/O cost is of lesser significance. In a stationary
computing scenario, the I/O cost makes up the bulk of read-write requests. A
distributed object management algorithm can thus be defined in terms of two
dimensions:

i. Information level of the algorithm,

ii. Approach of the allocation scheme during processing.

For the first dimension, the object management algorithm can either determine
the requirements of all read-write requests prior to processing (common in online
connected environments), or in the second instance, service a request and
determine an object allocation scheme without knowing the resource
requirements of future requests (an offline, disconnected algorithm scenario).

The second dimension is a variation of the allocation scheme. The traditional,
read-one-write-all, static allocation (SA) algorithm does not vary the allocation
scheme while processing reads and writes, whereas in a dynamic allocation
algorithm (which saves a copy of objects in its local database) the allocation
approach varies in response to context changes due to I/O requirements.

The method of Huang and Wolfson, describing the performance and costs of the
two approaches, identifies the ratio of the cost of transmitting a control message
to the cost of inputting/outputting the object to the local database on secondary
storage as cc, and the ratio of the cost of transmitting the object between two
processors to the I/O cost as cd. In the stationary computing model, the static
allocation algorithm is regarded as tightly competitive with respect to (1+cc+cd),
while the dynamic allocation algorithm is competitive according to (2+2xcc,) when
cd < 1, and competitive according to (2+cc,) when cd > 1. These results are
summarized in Figures 1 and 2.

11

It should be noted that the costs here are not directly related to a monetary
allocation , but are used to allow a determination of the resources required (from
a system perspective) to satisfy the underlying requirements of the distributed
system. These costs can be related to actual financial expenditures through
standard present/future value evaluations, if so desired.

The authors determined that the cost of a request in a stationary context can be
treated as the simplest case for a mobile distributed environment, resulting in a
formula for determination of both this as well as the cost of resource usage in a
mobile distributed environment:

 (1)

where oi is a transaction request, Y is the allocation scheme at oi, and X is the
corresponding execution set. The cost of a particular request oi is denoted by
COST(oi).

It was possible to identify basic metrics for the candidate distributed object
products surveyed for this research effort, and thus determine values of
COST(oi) for each one. The process used to evaluate the execution statistics
and performance of each candidate product is presented in the following section

12

Figure 1. Stationary­computing cost model Figure 2. Mobile­computing cost model

(MDD Product Cost Analysis), which will outline the methodology and resulting
performance statistics based on the execution profile of the various libraries.

Distributed Information Management System Architecture

This project proposes to use a distributed P2P data-management solution using
mobile nodes for storage of information in the system. Data will be replicated
across the system nodes to provide redundancy, fault-tolerance, rapid access
and recovery. This system is designed to reduce network communication costs,
as well as reduce latency in communication between data storage resources in
satisfying system queries.

The rationale for use of a P2P-based information retrieval system (IR) is
supported by the research of Hanna, Levine, Manmatha, Nov 2003, where they
indicate some of the advantages of non-ad hoc protocols for data
communication in distributed mobile system context:

• Connectivity of multiple nodes to information without need for a
central server

• No need for a single authority to perform indexing or central
data management tasks to respond to system queries

• Ensures delivery of data without need for dedicated
communication routes to any node; i.e., data can be delivered
to participating mobile devices, regardless of physical partitions
in the network.

The following operational characteristics of the mobile distributed system have
been identified as relevant to this study:

• Each device participating in the system stores only a portion of
the total dataset, and any node will query only its own collection
and collections of neighbours that can be directly contacted.

• The number and set of connected neighbours can change
dynamically - the criteria for determining what constitutes a
direct connection between nodes will depend upon the
underlying network topology. For partitioned radio LANs, direct
connectivity criteria are much more clearly defined than for
devices connected using a WAN or telephony network for data
communication.

By comparing the effectiveness and cost metrics of a centralized server topology
vs. the distributed mobile P2P data transport mechanism, it was shown that
measurable viability and performance advantages may be realised from the latter

13

approach to satisfying mobile data retrieval and reliability requirements. The
methodology used to determine this quantitative difference in meeting fault-
tolerance performance criteria utilises a basic cost model comparison of the
transaction requirements for performing basic I/O operations in the mobile
context. This is the basis for the assumptions and formulae used in the cost-
model comparisons for the candidate products of this research paper.

14

CHAPTER V -
PRODUCT COST ANALYSIS

In order to comprehensively evaluate the MDD products in this study, both raw
performance characteristics, as well as derived metrics, were compared. Criteria
for distributed database performance evaluation included I/O, node response-
time (database ACK), and real-time node resource usage (memory, disk).The
following methodology was used to test and evaluate the candidate set of
products:

• Identified performance characteristics data and literature for the
candidate products.

• Created a distributed database instance for each product for
use with the test infrastructure.

• Implemented a test harness for the MDD product libraries,
suitable for evaluating operational and performance
characteristics of data transactions against the MDD instances
above.

• Performed a set of quantifiable updates and searches against
the databases, capturing statistics of performance, as indicated
by expressions in previous section.

• Generated cost comparison matrix for the candidate products,
using both experimentally derived and literature data above.

As indicated in the “Tools and Instrumentation” section later in this document,
the candidate J2ME database platforms under consideration in this study were
as follows:

i. Perst

ii. Berkeley DB Java Edition

iii. db4o

iv. J2MEMicroDB

15

MDD Evaluation Performance Benchmarks

Table 2: Candidate MDD Product Benchmarks.

Candidate
product Mobile Benchmark

Delete
record time

ms

Insert
record time

ms

Search record
time
ms

Scan/update
record
 time
 ms

Perst Android G1 phone 37811 18214 15743 9747

Berkeley DB
Java Edition

Mobile Java
product is not
distributed, stand-
alone only

db4o

J2ME version
requires server
components due
to missing base
libraries

J2MEMicroDB
Tungsten C
(running IBM J9) 7710 2000 6610

The following section presents the product cost methodology and publicly
available benchmark and performance data for the candidate MDD libraries.

16

CHAPTER VI -
PERFORMANCE EVALUATION METHODOLOGY

Comparison Approach

Although primarily technology-focused, this research effort was also concerned
with examining how actual person-related goals may be further advanced
through the use of MDD solutions. It attempted to determine real-world scenarios
in which current and future advances in MDD can improve communications and
information transformation activities between individuals, social groups and
corporate bodies. To this end, comparison candidate database solutions were
compared on the following criteria:

i. Mobile database availability – this refers to the presence of an
actual database product that runs on mobile devices. Since it
has been identified that the preferred solution will be J2ME-
compatible (allowing for greater cross-platform compatibility),
only databases supporting this will be included.

ii. Distributed data synchronization and update – specifically refers
to the ability of multiple participating nodes to share, update and
maintain consistent, replicated data with each other.

iii. Object-based architecture – this allows the storage and
manipulation of discrete information elements within the
distributed database, increasing algorithm and system design
simplicity, as well as enhancing opportunities for reuse of data
objects in other areas or development endeavours.

iv. Availability and licensing options – that is, is the database
solution encumbered by commercial patents or copyright
restrictions preventing ready research and investigation.

In addition to the criteria indicated above, this research project attempted to draw
clear conclusions on the state of mobile distributed database solutions by
considering the following related perspectives and questions:

i. What impact does the mobile distributed database field have at the
social and technological interface?

ii. How does the use of this technology affect the overall aspect of
human social, corporate or intimate communications?

iii. Both quantitative and qualitative aspects of this research were
evaluated. Specifically, it was desired that a comparison of the

17

following measures enables a picture to be modeled of the
technology and its social impact:

● MDD performance criteria (Corwin, B. N. and Braddock, R. L. 1992)iii,

● MDD operating parametersiv,

● Project usage and breakdown,

● Market and platform compatibility, and

● Existing solution deployment vs. future projected take-up

All MDD evaluation criteria will be sourced from relevant and current trade,
system design and research publications. Quantitative data will be collated and
analysed using statistical and comparative methods (e.g. ratio, categorical,
interval), while qualitative analyses will include commentary from both
developers and users of the various MDD packages available.

Product Cost Calculation

As part of the overall cost determination for the above products, a factor Ɣ that
represents the degree of customization needed to fully satisfy MDD functional
capability was derived as part of the evaluation criteria for the study.

This necessitated some modification to the formulae provided earlier for the cost
of a particular request COST(oi), i.e., a customization effort factor for a product
Ɣƥ.

Determination of the customization factor Ɣƥ can be accomplished through the
use of a simple ratio between the number of satisfied MDD requirements (ɼsat)
against the total number of MDD characteristics (ɼtot) . Thus:

 Ɣƥ = ɼ sat (2)

 ɼtot

iii Corwin, B. N. and Braddock, R. L. 1992. Operational performance metrics in a distributed system. Part I.:
Strategy. In Proceedings of the 1992 ACM/SIGAPP Symposium on Applied Computing: Technological
Challenges of the 1990's (Kansas City, Missouri, United States). H. Berghel, G. Hedrick, E. Deaton, D.
Roach, and R. Wainwright, Eds. SAC '92. ACM Press, New York, NY, 867-872. DOI=
http://doi.acm.org/10.1145/130069.130101
iv Yee, W. G., Donahoo, M. J., Omiecinski, E., and Navathe, S. B. 2001. Scaling replica maintenance in
intermittently synchronized mobile databases. In Proceedings of the Tenth international Conference on
information and Knowledge Management (Atlanta, Georgia, USA, October 05 - 10, 2001). H. Paques, L.
Liu, and D. Grossman, Eds. CIKM '01. ACM Press, New York, NY, 450-457. DOI=
http://doi.acm.org/10.1145/502585.502661

18

Since the cost of all requests of COST(oi) can be used to determine total
average cost for a product (based on number of requests n), we see that:

COST(ƥa) =
Σ0

n COST(on) (3)

n

giving the execution cost of a particular candidate product as:

COST(ƥ) = Ɣƥ · COST(ƥa) (4)

As part of the process of determining the product execution cost, candidate
MDD performance and I/O metrics were collected from vendor literature and
independent evaluation results (see performance benchmarks table). As well,
product and usage information provided further details of the MDD capabilities
for each product, allowing the determination of the customization factor (see
following table). The product execution cost was then calculated, and is included
in the table.

Cost Evaluation Assumptions

In order to quantitatively account for the overall cost of customization of the
candidate MDD products in the comparison effort, the cost expressions derived
above were optimized using the following assumptions and observations: about
the project's reduced distributed node environment:

• For any set of read/write operations, the number of nodes that
end up with the latest data will be equivalent to the number of
nodes in our set. Running in a simulated environment, this will
be equal to the number of unique instances we have
intercommunicating, ie., this will be the number of actual
devices running a MDD instance for the application.

• X = An allocation schedule is an execution schedule where
some of the read requests are saving-reads. At the end of the
allocation schedule the data object is stored in the local
databases of the participating nodes. Then, we can say that
X=number of transactions.

• Y = Allocation scheme for a request is the set of nodes (or
processors) that have the latest version of the data object in the
local database, just before execution. Hence,
Y=number of mobile devices.

• Knowing read time, write time from the benchmarks for each
product; the average time for any read or write operation

19

against the local device was calculated. Thus,
average read/write time ≈ local operation time.

That is, it was assumed that all transactions make up the
allocation schedule, and the allocation scheme is the set of
all devices. It was further assumed that any instance is
completely updated after all operations (read & write) have
completed.

• Finally, we further assume that network ping times for
benchmark test networks, taken as a fraction of the network
communication cost are a good approximation for control
message transmission time across the network.

Benchmark network type
(e.g., Bluetooth, GPRS,

Simulated)

Fractional network
control communication
time/txn (network ping)

ms

TCP/Bluetooth (tcpbluetooth) 37.5000

TCP/Simulated (tcpsimulated) 0.0980

Thus,

ti/o = total time to transmit both data and control (request) message from one
device to another.

tc = time for transmitting control (request) message from one device to another.

td = time for transmitting data message from one device to another.

tlocal = time to store data message on local device.

Allowing the following relations to be derived:

tc= tcpbluetooth

tlocal = average read-write time from benchmark values

td, the transmission time for data block between devices can be worked out by
calculating (5) below:

td, = data transmission time = ping transmission time x data block size
 ping block size

Using the following data block parameters from the benchmark data:

transaction data block size (bytes) = Integer (8) + String(255)=263 bytes

20

Since ping control message = 32 bytes, and benchmark data blocks were 263
bytes,

td = (37.5000 x 263)/32

= 308.2 ms

ti/o = tc+td = 37.5 + 308.2

= 345.7 ms

Calculating cc and cd using the above network communication and benchmark
times (6):

cc = ratio of the cost of transmitting a control message
 cost of I/O for the object to the local database on secondary storage

cd = ratio of the cost of transmitting the object between two processors
 I/O cost

and,
cc,=tc/tlocal

cd = td/ti/o

Finally, the determination of the customization factor allowed the analysis to take
into account the degree of source code modification that would be required to
provide the candidate product with full MDD capabilities.

21

CHAPTER VII -
PRODUCT PERFORMANCE COMPARISON

In this section, we present comparisons based on qualitative review of the
candidate product literature, along with quantitative performance data from the
database product comparisons results.

The following table outlines the determination of the product customization
factor.

Table 3: Product customization factor determination.

Perst
Berkeley DB
Java Edition db4o J2MEMicroDB

MDD requirements
Mobile context 1 1
J2ME support 1 1
Local Autonomy 1 1 1 1

No Reliance on a Central Site 1
Continuous Operation 1 1 1 1

Data Location Independence 1
Data Fragmentation
Independence 1

Data Replication Independence 1 1 1

Distributed Query Processing 1 1
Distributed Transaction
Management 1 1
Hardware Independence 1 1

Operating System Independence 1 1
Network Independence 1 1
Database Independence 1 1
Total Score 9 6 6 10

Customization factor Ɣƥ 0.69 0.31 0.46 0.77

22

The table below outlines the summarized results of the performance evaluation
and comparison costs of the candidate products:

Table 4: Derived candidate product comparison costs.

Candidate
product

Write
time
(ms)

Read
time
(ms) # transactions

Avg.
read/write

time
(tlocal) ms

Customization
factor
Ɣ ƥ Cost()ƥ

Perst 65772 25490 10000 4.56 0.69 49731.13
Berkeley DB Java
Edition 0 0 0.31 0
db4o 0 0 0.46 0
J2MEMicroDB 14320 8610 1000 11.47 0.77 2115.65

The first candidate product reviewed, db4o, although a Java-based mobile
database, does not support distributed synchronization between mobile
instances, without the use of a number of traditional database server
components (i.e., installations of a “big-iron” RDBMS such as Oracle or MySQL),
as well as the db4o proprietary distributed synchronization manager, dRS. For
these reasons, db4o is an unlikely candidate for easy customisation in a purely
MDD environment.

Similarly, Berkely DB does not have a mobile Java-based product which provides
a distributed capability; this suggests a high customization requirement to port
the solution to a mobile J2ME context from the available J2SE framework. This
expectation is borne out by the customizability factor determined previously.
Additionally, the lack of verifiable public benchmark data for these two products
in a mobile context, disqualifies them from further consideration as sufficiently
viable mobile distributed database solutions (using the criteria defined for this
project).

The other candidate products examined in this part of the thesis project, were
Perst and J2MEMicroDB, both of which are J2ME capable, support multiple node
capability and are significantly customizable, due to their open-source licensing
regimes. However, a number of items differentiate the two products, particularly
from the standpoints of customizability and product maturity. Perst is a well-
known, mature product in the distributed database market space, having been
first introduced in 2003, and possesses a significant installed base.
J2MEMicroDB is a newer product, and does not have the existing uptake that is
exhibited by Perst; this may be a result of it's academic origins, as it is not
heavily promoted as a mobile database solution commercially.

Of further impact, is the large disparity in performance between these two J2ME
local databases, without including any distributed capabilities. Perst shows an
almost 2-fold order of magnitude speed differential with J2MEMicroD in basic
mobile database read/write/update operations (see the tables in the previous
section). This is a significant factor, particularly considering the added impact of
communication time for database transactions in a distributed context is taken

23

into account. Both Perst and J2MEMicroDB have significant support
mechanisms and regular maintenance updates, indicating a vibrant
development culture around both. A point of interest is the customization
approaches for these products are significantly different, since they have quite
distinct approaches in handling database concerns in the limited-resource,
distributed environments under consideration. Neither of the products appears to
compromise in pursuing highly customizable, developer-friendly usage patterns
in the codebases, which bodes well for the MDD development space on a whole.
All of these quantitative and qualitative characteristics point to Perst being a
significantly more suitable MDD solution candidate for information management
problems with a distributed mobile component than any of the other reviewed
products. J2MEMicroDB, by virtue of it's high level of support, ease-of use, and
portability, does come a close second in our evaluation.

24

CHAPTER VIII -
EVALUATION CONCLUSIONS

The conclusion of this project thesis indicates that, of our candidate product set
of mobile distributed database solutions, Perst is the most capable MDD solution
candidate for distributed information management solutions, as a result of it's
high level of support, ease-of use, portability, customizability and satisfaction of
MDD functional criteria. In particular, Perst, though not a distributed database
solution readily capable of multi-nodal input, showed itself to be easily
customizable for that purpose, and in fact, was used in the secondary portion of
this project thesis, as the base for the MDD prototype application.

The analysis and research presented in this paper, outlines the primary criteria,
characteristics and factors that affect the uptake and usage of mobile distributed
databases as an information management solution component. From the results
of our product comparison and performance examination, it is clear that the field
is still in a maturing stage, but there are some clear leaders, which are being
used in highly significant applications for organizational and competitive benefit.
It seems likely that the MDD product space will expand through both continuing
open-source and proprietary development of existing solutions, as well as from
inroads and participation by mainstream database vendors, such as Oracle (with
Berkely DB) and db4o (which supports multiple database vendors). At this
juncture, it would be premature to suggest that any one approach to handling
problems in the mobile database space can be more appropriately handled using
MDD solutions; what is clear, is that MDD solutions can and will continue to be a
very real component in satisfying the increasing information-sharing needs of our
society.

25

CHAPTER IX -
PROTOTYPE BACKGROUND

The prototype distributed information system was intended to provide both a
distributed database infrastructure and application framework for the sharing of
questions, answers and commentary between participating individuals via a
mobile network (Kam-yiu Lam, 2000). It was designed and developed using an
object-oriented design methodology, with a plugin-architecture for actual
database access. This was necessary due to the diverse nature of database
APIs that were available during the assessment phase of the project; the final
database access API chosen was largely dependent on the particular MDD
solution selected for the final prototype design.

This portion of the project was included to serve both an exploratory and
confirmatory purpose; it is expected that it will help examine and illustrate the
issues and compromises which are required to implement a distributed database
system over a mobile connectivity framework (Mao, Z. and Douligeris, C. 2004),
as well as investigate potential ways in which improvements may be made in
these same mechanisms. As such, there has been significant emphasis on
qualitative measurement of the prototype’s performance, operation and usability.
To this end, the high-level approach and operating requirements have been
identified for the prototype's operation, and are presented in the subsequent
sections.

26

CHAPTER X -
PROTOTYPE FUNCTIONAL REQUIREMENTS

The prototype application presents a simplified single-page interface, displaying
a scrolling list of the most recent posts in the group discussion session which the
mobile device is currently monitoring. User/mobile device access is
authenticated against a master list for the system; however, there has not been a
rigorous application of security protocols in this project. As authenticated devices
sign into the system, they will receive the list of current discussion groups, from
which one may be chosen to continue communication. Subsequent posts and
messages will be maintained within this group, until the user transfers to another
available group (or starts a new one).

It should be reiterated here, that this group discussion system used only
participating mobile devices as the backing database store for all operations;
there was no "central" database or external persistent store, although future
developments may include provision for an archival mechanism implemented in
that manner (Lewis, L. F. and Keleman, K. S. 1988).

Requirements for Prototype

As an example of an MDD-based solution, this prototype illustrates the capture
of data from multiple nodes (mobile phones), and the synchronization of that
data between nodes on an ongoing basis, without need for a centralized server.
Some of th basic requirements can be itemized as follows:

• User authentication – users should be authenticated against the
database for security

• Database node registration – lacking a central database, nodes
are registered with each other manually. In a real-world
scenario, this would probably be handled using an advertising
service component of the application.

• Multi-node data synchronization – data must be
replicated/synchronized between all registered mobile devices
using the application.

• J2ME (Java Mobile Edition) capable – the application should be
packaged and distributed as a portable Java midlet, to illustrate
use in multiple device types and environments.

It should be noted that as a prototype, there are a number of assumptions that
have been made about the operation and context of the application. These are
outlined in the Assumptions section highlighted below.

27

Assumptions

i. The application does not attempt to enforce data validation.
Invalid input can crash the program, since the application
does not enforce real-world restrictions and checks.

ii. The prototype currently is deployed expecting J2ME
HTTP/TCP communication. It has not been designed to
communicate over non TCP-based mobile contexts.

iii. Lacking a centralised node tracking database, al nodes
have to manually register with each other to support
synchronization. In a real-world scenario, a simple solution
to this would involve advertising new nodes in a TCP
broadcast, or use of a centralised registry.

28

CHAPTER XI -
PROTOTYPE HIGH-LEVEL APPROACH

This section of the research project used one of the reviewed MDD candidates
as a suitable base to develop a prototype groupware information system utilising
existing and custom-developed functionality. The prototype was designed to
illustrate the following characteristics (Motzkin, D. 1991) of distributed database
systems:

i. Distributed data synchronization and update –
specifically refers to the ability of multiple participating
nodes to share, update and maintain consistent,
replicated data with each other. This capability may
require some further development to create a working
prototype, depending on the database solution used for
the research.

ii. Management of node failure through fault-tolerance and
fail-over mechanisms. This would include use of
previously mentioned redundancy arrangements as a
base upon which to build.

iii. Secure internal database communications over
inherently insecure medium (e.g., public mobile network
or Internet).

iv. Increased availability through multiple, ubiquitous node
participation.

v. Persistence of data through use of back-end storage and
backup to non-mobile site.

vi. Scalability (increased ability to service data requests),
through greater node participation in the distributed
database system.

The prototype application presents a simplified single-page interface, displaying
a scrolling list of the most recent posts in the group discussion session which the
mobile device is currently monitoring. User/mobile device access is
authenticated against a master list for the system; however, there has not been a
rigorous application of security protocols in this project. As authenticated devices
sign into the system, they receive the list of current discussion groups, from
which one may be chosen to continue communication.

29

The completed prototype allowed evaluation of the performance characteristics
of a MDD-based information system (Triantafillou, P. 1996), including
measurement of metrics such as:

i. Node synchronization dissonance - that is, degree of
differences between participating database nodes
(devices)

ii. information propagation rates - the rate at which all
participating nodes present the same view of the data

iii. Node/database failure rate - how often a device node
loses connectivity (and thus a valid data view) with other
nodes.

iv. Data loss, retransmit and error handling quantification -
how much of actual data being transmitted between
nodes is to satisfy error, loss or exceptional conditions

v. Database implementation cost - a base figure for the cost
of delivery of this type of information system using MDD
architecture, for comparison with cost using a centralised
database infrastructure.

In addition, other indicators derived from the above metrics can be used to
present a more comprehensive picture of the operating characteristics of the
MDD chosen for the project.

Discussion Forum High-level Design

Database

As concluded in the first part of this project dissertation, only two candidate
products satisfied the key requirements identified as necessary for a high-
performance, solution-ready mobile distributed database. These were Perst and
J2MEMicroDB, both of which are J2ME capable, support multiple node capability
and are significantly customizable, due to their open-source licensing regimes.
However, as concluded, a number of items mitigated against the selection of
J2MEMicroDB as the preferred product in this analysis: the relative immaturity of
the product, it's rather poor performance in benchmarks, as well as its very
limited multi-node support make it less likely to immediately be a successful
solution in mainstream MDD solution sets.

It should be noted that the above does not suggest that the selected product,
Perst, does not have some limitations. During the development of this prototype,
it was identified that the master-slave approach favoured by Perst for supporting

30

replication and distributed database synchronization, would not satisfactorily
handle the requirements of the prototype The master-slave approach enforces
read-only capability on all slave nodes, while allowing only the master node to
handle updates (writes) to the database. This of course, runs counter to the
primary goal of allowing data-entry from any node, with synchronization of all
nodes periodically, without need for a centralized server.

Operation

In order to provide our prototype with the ability to support synchronization
between the multiple nodes, the application design uses Perst as the underlying
local database on each node, and adds the capability to “register” all
participating nodes, with periodic synchronization of updates between all the
database nodes. Thus, we have the following sequence of actions for the
operation of any instance of the prototype application:

• Local mobile device starts MDDForum application

• Local Perst database is opened

• Register other device nodes with this instance

i. Application gets names/addresses of previously
registered database nodes

ii. Application contacts all nodes, and updates itself with
most recent data from them

• MDDForum application synchronizes local database with other
nodes

• User authenticates against distributed database

• Present user authentication screen, and subsequent UI forms.

• Perform regular database operations for forum functionality
(e.g., posts, reads, etc.). For purposes of this research, we
propose a HTTP-based protocol for communication between
database nodes.

• Periodically synchronize local updates with other database
nodes.

Communication

The prototype application has been designed to utilise TCP/IP for network
communication between database nodes, largely because of the ubiquity of

31

operating system support for that protocol in the mobile device space. In a real-
world deployment,it is likely that additional flexibility and functionality would be
derived from the use of TCP/IP, as this allows the participation of a more
diverse set of devices , each of which may operate using differing hardware
network interfaces, while participating in the same distributed database. For
example, one mobile device may use a 802.11b (Wifi) mechanism for
communication, while another participates through the use of a 802.15.1
(Bluetooth) connection. For development and demonstration purposes, this
project utilised a wholly TCP/Bluetooth network for node-node communication.

The following diagrams (overleaf) further illustrate the design and underlying
architecture decisions made to support the prototype operation:

32

33

Figure 3: Flowchart illustrating prototype execution.

Prototype database architecture

Tables used for the prototypes simple forum authentication and post mechanism
are:

• MessagePost(String userID, String TopicID, MessageID,
Message)

• User(UserID, Username)

• Topics(TopicID, Topic)

The diagram on the following page illustrates the overall architecture and
infrastructure approach for the MDD prototype application.

34

Figure 4: Diagram illustrating entity/table relationships in the prototype.

Tools and Instrumentation

The following additional tools and devices were used to evaluate the various
MDD products and develop custom code for the research project:

• J2ME-capable MDD database candidates:

35

Figure 5: Prototype architecture technology stack.

i. Perst (http://www.mcobject.com/perst/), which is
an Open Source J2ME/C# database for
constrained devices. It does not have a pre-
packaged distributed solution, but its GPL-
based open source license makes it very
amenable to adding new functionality as part
of the project.

ii. Berkeley DB Java Edition
(http://www.sleepycat.com/products/je.shtml), is an
embedded all-Java solution; however,
research has indicated that it does not have
significant capability in the constrained J2ME
environment. Additionally, it appears to have
clear limitations on its distributed database
capabilities, particularly in the mobile context,
leading to significant effort required to add the
specialised functionality needed to satisfy the
project prototype aims, and disqualifying it from
use in the prototype phase of the project.

iii. db4o (http://www.db4objects.com/) is also a
multi-platform embedded database, with an all-
Java option. It does have a version with limited
functionality to run in a J2ME environment;
however it differs from the other products
considered in this project, in it's need for a
server-based database component to handle
advanced distributed database functionality.
This limitation disqualified db4o from use as a
prototype base for this project.

iv. J2MEMicroDB
(http://morfeo.upc.es/crom/mod/wiki/view.php?
id=16&name=dfwikipage&page=Introduction+to+J2M
ESDLIB#toc3) is an open source project
developed by the Universitat Politècnica de
Catalunya that provides J2ME developers with
several APIs to manage a limited-environment
relational database on a mobile device. It is a
fairly new product, but shows great potential in
satisfying a number of requirements for a
mobile database. However, it does not
currently provide any support for distributed
database, replication, or synchronization.

36

http://www.mcobject.com/perst/
http://morfeo.upc.es/crom/mod/wiki/view.php?id=16&name=dfwikipage&page=Introduction+to+J2MESDLIB#toc3
http://morfeo.upc.es/crom/mod/wiki/view.php?id=16&name=dfwikipage&page=Introduction+to+J2MESDLIB#toc3
http://morfeo.upc.es/crom/mod/wiki/view.php?id=16&name=dfwikipage&page=Introduction+to+J2MESDLIB#toc3
http://www.db4objects.com/
http://www.sleepycat.com/products/je.shtml

• J2ME-capable mobile device(s), with local area network
capability (e.g., Bluetooth). Project working devices were
Palm Treo 650 and Palm Centro. Limiting total cost of
hardware purchases was a factor in choosing devices for
this research.

• Personal computer compatible USB Bluetooth devices for
communication and configuration of communication with
mobile devices in wireless LAN.

• Java development environment was JDeveloper, in addition
to the Sun Java Micro Edition Java Wireless Toolkit 2.5.201
CLDC development application and libraries.

• Office suite and spreadsheet software for data collation,
data analysis and presentation of results was OpenOffice
2.4 (http://openoffice.org).

• Version control and document management software used
was CVS.

As much as possible, the project endeavoured to use free or open-source
solutions and products to satisfy project tasks and deliverable requirements. This
helped keep project research costs to a minimum, as well as reduced the
likelihood of infringing upon patents or copyrights of third-party agencies or
solution providers. To further reduce likelihood of such violations, all external
material (not developed by this researcher) has been attributed clearly to its
inventor and/or owner of record; any inaccuracies or oversights are unintentional
and will be corrected immediately upon notification.

The population for the test-bed of the project included a total of 3 (three) mobile
devices. This evaluation sample size permitted some degree of real-world impact
studies, particularly in the areas of node interference, data synchronisation and
data replication. The prototype evaluation scenario used a local area network
topology of TCP/IP over Bluetooth for communication between devices (Qusay
H. Mahmoud, 2003), (Michael Cymerman, 2001), although in the real-world,
performance will be influenced by the speeds prevalent from mobile device data
providers, possibly utilising GPRS or other packet-switched high-bandwidth
solutions. In a real-world scenario, this difference would necessitate some
comparison of topologies and their underlying performance characteristics, with
a view to factoring this into the effect on the performance of any MDD application
operating characteristics.

37

http://openoffice.org/

Product Selection Methodology

A critical comparison of the MDD requirements for the prototype, and the
feature-set of the candidate products, allowed an initial ranking of the suitability
of the candidates for the project objectives. The analysis scored the candidate
database solutions, by taking into account several criteria.

From the candidate product evaluation portion of this project, the identified
product which most appeared to most closely satisfy the key requirements for a
competitive MDD, was Perst, primarily due to its performance, J2ME small-
footprint support, distributed node capability and permissive licensing scheme. In
addition, the value calculated for the customizability factor (measure of the effort
required to improve the node-node read/write capability of the product), was
significantly better for Perst than for it's nearest competitor, J2MEMicroDB. As a
result, Perst was selected as the underlying database to be used for developing
the MDD prototype.

38

CHAPTER XII -
PROTOTYPE UML DESIGN

The diagrams below provide UML diagrams illustrating the activity and class
design of the prototype application. Note that low-level program details are not
included in these summary diagrams for sake of brevity.

39

Figure 6: Prototype UML Activity diagram.

40

Figure 7: Prototype design high­level class diagram.

CHAPTER XIII -
PROTOTYPE DETAILED DESIGN

This section provides detailed code snippets on the portions of the prototype
design relevant to this study, i.e., customizations added to support multi-node
read/write capability and synchronization, as well as the distributed database
node registry mechanism. Additionally, this section illustrates the operation of the
prototype as it is executed, through a number of screenshots.

Below are screen shots of the prototype running on a Palm Centro with IBM Java
J9.2.2.14/ARM.

The following snippets of code illustrate the distributed node registry mechanism,
as well as the approach used to keep all registered databases against a
particular device synchronized:

41

Figure 8: User sign in screen Figure 9: Registration screen

Figure 10: Topic selection screen Figure 11: Message Post screen

Device Registry

 /**
 * provides form for entering the hostname/ip for another device
 * with an instance of the prototype database.
 * Calls the MMD registration function to be used for
 * later synchronization
 */
 public void regDBNode(){
 System.err.println("Register database node Command pressed..");
 fRegDB = new Form("Register DB Node"); //display new form to register database
 regDBField = new TextField("Register Node:", "",30, TextField.ANY);
 fRegDB.append(regDBField);

//add the command buttons to post and exit
 fRegDB.addCommand(regDBOKCommand);

fRegDB.addCommand(regDBCancelCommand);
fRegDB.setCommandListener(this);

 display.setCurrent(fRegDB);
 }

public class MDDatabase {
Storage db;
Hashtable databaseInstances=new Hashtable();
String nodeID;
String hostname;
.
.
.
 /**
 * Registers a database instance node with this instance, so that it can be
 * synchronized after updates
 * @param nodeID - identifier that uniquely identifies an instance of the database
 * usually use a hash of the hostname of the device running the node, but can be any unique id
 * @param dbNode - identifies the node instance
 */
 public void registerDatabaseNode(String nodeID, String dbNode){
 System.err.println("Registering database node: "+nodeID+"/"+dbNode);
 //add the default Perst replication port
 databaseInstances.put(nodeID,dbNode+":"+ getReplicatePort());
 }
.
.

42

Device Synchronization

 /**
 * Synchronizes all database instances registered with this instance, so they have
 * same set of transaction data
 * using Perst dynamic replication to move entire database
 * This requires finding out if remote db has dirty pages, and if so, we accept
 * it's update. All nodes are responsible for updating themselves.
 */
 public void synchronize(){
 System.err.println("Synchronizing database nodes...");
 //array of all known nodes
 int i=0;
 String[] slaveNodes = new String[databaseInstances.size()];

 this.db.close(); // close main db storage for sync process
 //get the array of all known nodes to be updated from this instance as slaves
 for (Enumeration e=databaseInstances.elements();e.hasMoreElements();)
 slaveNodes[i++] = (String)e.nextElement();
 //this is the master - we know by checking the flag set by checking
 //our list of nodes.
 if (this.isMaster()) {
 ReplicationMasterStorage db =
 StorageFactory.getInstance().createReplicationMasterStorage(
 // port at which master will accept connections of new
 // replicas,-1 means that connections of new replicas are not supported
 -1,
 // list of slave node addresses
 slaveNodes,
 false ? asyncBufSize : 0); // size of asynchronous buffer
 // Disable synchronous flushing of disk buffers because
 // in case of fault database can be recovered from slave node
 db.setProperty("perst.file.noflush", Boolean.TRUE);
 // set replication mode
 db.setProperty("perst.replication.ack", Boolean.FALSE);
 db.open(dbName, pagePoolSize); // open master storage
 sendUpdates(); // ... Work with the database
 db.close(); // close master storage
 }
 else { //this is a node to get replicated updates
 System.out.println("started slave replication");
 // Create replica which accepts master connection at the
 // specified port
 ReplicationSlaveStorage db =
 StorageFactory.getInstance().createReplicationSlaveStorage(getReplicatePort());
 // Disable synchronous flushing of disk buffers because
 // in case of fault database can be recovered from slave node
 db.setProperty("perst.file.noflush", Boolean.TRUE);
 // set replication mode
 db.setProperty("perst.replication.ack", Boolean.FALSE);
 db.open(dbName, pagePoolSize); // open slave storage
 // Slave node receives modifications from master in separate
 // thread. Concurrently it can execute its own read-only
 // transactions. But to perform some processing at slave node
 // only when some data is changed (transaction is committed by
 // master node)then the
 // ReplicationSlaveStorage.waitForModifications() method can be
 // used to wait for update of the database.
 while (db.isConnected()) { // while master is alive
 // Wait until master commits new transaction
 db.waitForModification();
 // Start special read-only transaction at replica
 db.beginThreadTransaction(
 Storage.REPLICATION_SLAVE_TRANSACTION);

43

 applynewUpdates(); // Do some processing of the database
 db.endThreadTransaction();
 }
 db.close(); // close slave storage
 }
 this.db.open(dbName, PAGE_POOL_SIZE); //re-open the database, ready to do more work
 }

44

CHAPTER XIV -
PROTOTYPE DESIGN DECISIONS

This chapter of the research provides more detail on the planned operation of
the prototype, and some of the design caveats, exceptions and assumptions.

A number of design decisions were made to support the objectives of the
prototype, i.e., to demonstrate distributed database functionality at work, and
provide some illustration of the challenges likely in this type of application
environment. Many of the decisions made about the design approach were
geared towards limiting the overall scope of the project, primarily for reasons of
effort and time, with the knowledge that these compromises should and would
not compromise the overall usability of the prototype evaluation. Because of the
highly complex nature of distributed database topologies and communication, it
was decided early on to ensure that only the simplest case of a distributed
network would be considered in this project, i.e., a two-node network.

To additionally reduce likelihood of being sidetracked by performance and
behaviour artifacts in the prototype execution, the application was designed to
perform only the barest minimum of validations and exception-handling, with the
understanding that a real-world application will have a definite increment in
resource effort and time to ensure robust, consistent operation in a variety of
executing environments. Additional assumptions and challenges are presented
below.

Discussion Forum High-level Design

The performance of the MDD prototype was relatively good, from a purely
qualitative standpoint; of greater concern was the multiple occurrences of data
consistency and update errors between nodes, due to concurrency and multi-
update issues. Because the underlying Perst database software is designed for
replication between databases using a single master to handle updates to many
slaves, it was particularly difficult to design an approach that allowed for usage of
multiple masters in the distributed database.

In the prototype, a simple list of the nodes registered with a device, were treated
as slaves to be updated by this master. This means that at any one time,
multiple nodes could be attempt to be the master updated in the database node
cluster. To avoid this, a fair election mechanism has to be developed;
unfortunately, the review and testing of such a master-selection mechanism is
out of the scope of this paper.

45

Discussion Forum Design Challenges

Some of the challenges faced in the development of this prototype included:

• The use of J2ME as the development platform for the Prototype
required learning details of an API and event management
schema that is quite different from the traditional J2SE
AWT/JFC approach. The J2ME API, being Form-based, is
much more simplified, and offers less flexibility in handling UI
components than the AWT.

• Learning both the API for the underlying Perst database, as well
as adding functionality to support unique functionality proved to
be significant hurdles.

• The mechanism for handling synchronization between
participating nodes in the distributed database, proved to be
non-intuitive and more complex than expected, due to the
vendor-specific API compromises that had to be made to work-
around the master-slave update limitations of the product.

• A little-known difference between the J2ME and J2SE Java
development environments is in the networking capability. Many
of the classes and utility functions available in the J2SE java.net
package are unavailable in the J2ME environment; this
includes, classes for hostname identification, many socket
connection routines, and socket to stream functionality. As a
result, this prototype limited all network operations to the
simplest available in the J2ME environment – it should be
understood that a production-quality J2ME distributed database
application will have to face this challenge through either
custom network management classes or the use of an alternate
architecture which offloads the network communication burden
onto a centralized server (this appears to be the approach taken
by db4o).

46

CHAPTER XV -
PROTOTYPE CONCLUSIONS

The clearest conclusion to be drawn from the design, development, and
performance of this prototype, is that there remains a great deal of work to be
done in improving the reliability, flexibility and consistency of distributed
databases, especially in the mobile context. Despite the use of a well-known,
well-regarded, and highly customizable product as the base for prototype
application development (Perst), there were still a myriad of challenges and
issues which mitigated against the provision of a robust solution to even the
limited scope identified by this two-part project. Our research prototype
application performed successfully as designed, with data input and sharing
between mobile nodes occurring as expected, within the limits of the parameters
set for the application execution, and the defined research examination criteria.

As indicated in the previous section on the prototype design, a number of design
decisions were made to reduce the use of certain exception handling and
network management operations which might be considered the norm in a non-
distributed, immotile environment: the relative immaturity of the underlying
technology (J2ME and Perst, turned out to be a significant counterpoint to the
achieved aims of code portability and device independence.

Additionally, the requirement to handle the bulk of the distributed database node
replication and synchronization logic (as opposed to making use of a database-
level capability), significantly impacted the reliability and consistency of the
prototype application. As indicated earlier, it appears that for a well-behaved
mobile distributed database application, a fairly robust synchronization and node
management mechanism has to be developed or delivered with the underlying
database.

However, the conclusions of this portion of research on distributed database in
mobile devices, is not entirely negative, since it was possible to evaluate multiple
products for suitability as infrastructure components in our prototype solution.
Further, it was possible to design and develop an actual application that
executed on multiple mobile devices and shared data between them, albeit with
limited consistency. Finally, this researcher was able to develop custom
database node registration and synchronization routines that enhanced the
underlying mobile database to support multi-nodal input and replication. It is
clear however, that there are a few areas that pose challenges to the significant
uptake and usage of mobile distributed database solutions:

• Underlying platform technology and capability must be improved
– this speaks directly to the library, connectivity and functionality
limitations of environments such as J2ME.

47

• Distributed database solutions must become much more
reliable, in order to provide better capability for managing real-
world scenarios of multi-site data input and data update
consistency.

• Customizability of products must be balanced with robust
behaviour out of the box – consistency in limited-resource or
mobile distributed environments should not require significant
development to implement.

It appears likely that we are at the cusp of much more significant development in
the mobile distributed database space; personal devices are becoming ever
more powerful, with greater connectivity options, making them highly desirable
targets for business, commercial and entertainment applications. With this in
mind, and based on the limited success achieved with this project's simplified
prototype application, it seems highly probable that there will be significant
development and improvement in some (if not all) of the products examined in
this paper, particularly Perst and J2MEMicroDB. Both of these products are
already production-ready, assuming significant custom development; what
remains is to reduce the barrier to entry for MDD application developers to make
use of these tools in solving future information management problems.

48

CHAPTER XVI -
BIBLIOGRAPHY

References

1. Andrew S. Tanenbaum, Marten Van Steen, 2002, Distributed Systems
Principles and Paradigms

2. Tomasic, A. and Garcia-Molina, H. 1996. Performance issues in
distributed shared-nothing information-retrieval systems. Inf. Process.
Manage. 32, 6 (Nov. 1996), 647-665. DOI=
http://dx.doi.org/10.1016/S0306-4573(96)00019-2

3. Vijay Kumar (2006), Mobile Database Systems (Wiley Series on Parallel
and Distributed Computing) (Hardcover) by Vijay Kumar (2006). ISBN-10:
0471467928

4. Quinton Zondervan and Alexandre Lee, 1999, Data Synchronization of
Portable Mobile Devices in a Distributed Database System, Quinton
Zondervan and Alexandre Lee, Lotus Development Corporation, 1999
(http://domino.watson.ibm.com/cambridge/research.nsf/0/c71ebac11ec6e54f852566
1600797829/$FILE/mobile.pdf)

5. Motzkin, D. 1991. Distributed database design—optimization vs feasibility.
Inf. Syst. 15, 6 (Jan. 1991), 615-625. DOI=
http://dx.doi.org/10.1016/0306-4379(90)90064-V

6. Mao, Z. and Douligeris, C. 2004. A distributed database architecture for
global roaming in next-generation mobile networks. IEEE/ACM Trans.
Netw. 12, 1 (Feb. 2004), 146-160. DOI=
http://dx.doi.org/10.1109/TNET.2003.820435

7. Kam-yiu Lam, 2000, Transaction Processing in Mobile Distributed Real-
time Database Systems, Kam-yiu Lam, Department of Computer Science,
City University of Hong Kong, 2000
(http://ipdps.cc.gatech.edu/1998/wpdrts/kylam.pdf)

8. Huang, Y. and Wolfson, O. 1994. Object Allocation in Distributed
Databases and Mobile Computers. In Proceedings of the Tenth
international Conference on Data Engineering (February 14 - 18, 1994).
IEEE Computer Society, Washington, DC, 20-29. (http://citeseer.ist.psu.edu/
ACMLINK/http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=655255)

49

http://citeseer.ist.psu.edu/ACMLINK/http:/portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=655255
http://citeseer.ist.psu.edu/ACMLINK/http:/portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=655255
http://ipdps.cc.gatech.edu/1998/wpdrts/kylam.pdf
http://dx.doi.org/10.1016/0306-4379(90)90064-V
http://domino.watson.ibm.com/cambridge/research.nsf/0/c71ebac11ec6e54f8525661600797829/$FILE/mobile.pdf
http://domino.watson.ibm.com/cambridge/research.nsf/0/c71ebac11ec6e54f8525661600797829/$FILE/mobile.pdf
http://dx.doi.org/10.1016/S0306-4573(96)00019-2

9. Byun, S. and Moon, S. 1998. Fault-tolerant quorum consensus scheme
for replication control in mobile distributed database systems: FTQC. J.
Database Manage. 9, 3 (Jun. 1998), 16-24.

10. Lewis, L. F. and Keleman, K. S. 1988. Issues on group decision support
system (GDSS) design. J. Inf. Sci. 14, 6 (Jul. 1988), 347-354. DOI= http://
dx.doi.org/10.1177/016555158801400605

11. Triantafillou, P. 1996. Availability and performance limitations in
multidatabases. Inf. Syst. 21, 7 (Nov. 1996), 577-593. DOI=
http://dx.doi.org/10.1016/S0306-4379(96)00029-4

12. Michael Cymerman, 2001, Device programming with MIDP, Part 1 The
concepts behind MIDP APIs and J2ME. By Michael Cymerman,
JavaWorld.com, 01/05/01
(http://www.javaworld.com/javaworld/jw-01-2001/jw-0105-midp.html)

13. Qusay H. Mahmoud, 2003, Wireless Application Programming with J2ME
and Bluetooth by Qusay H. Mahmoud February 2003
(http://developers.sun.com/techtopics/mobility/midp/articles/bluetooth1/)

14. Qusay H. Mahmoud 2003, J2ME Low-Level Network Programming with
MIDP 2.0 by Qusay H. Mahmoud April 2003
(http://developers.sun.com/techtopics/mobility/midp/articles/midp2network/)

15. Alier, M.; Casado, P.; Casany, M.J., 2007, J2MEMicroDB: a new Open
Source lightweight Database Engine for J2ME Mobile Devices by Alier,
M.; Casado, P.; Casany, M.J., Multimedia and Ubiquitous Engineering,
2007. MUE apos;07. International Conference on Volume , Issue , 26-28
April 2007 Page(s):247 – 252.

16. Philipp Bolliger and Marc Langheinrich, Distributed Persistence for
Limited Devices, Philipp Bolliger and Marc Langheinrich, Inst. for
Pervasive Computing, ETH Zurich, Switzerland

17. Hassan Artail, Manal Shihab, Haidar Safa 2008, A distributed mobile
database implementation on Pocket PC mobile devices communicating
over Bluetooth, Hassan Artail, Manal Shihab, Haidar Safa, Department of
Electrical and Computer Engineering, American University of Beirut, P.O.
Box 11-0236, Riad El-Solh 1107 2020, Beirut, Lebanon, April 2008

18. Eric Falsken , 2008, Enabling the Mobile Enterprise with db4o, By Eric
Falsken, db4objects Inc., 2008,
http://www.db4o.com/about/productinformation/whitepapers/db4o Whitepaper -
Enabling the Mobile Enterprise with db4o.pdf

50

http://www.db4o.com/about/productinformation/whitepapers/db4o Whitepaper - Enabling the Mobile Enterprise with db4o.pdf
http://www.db4o.com/about/productinformation/whitepapers/db4o Whitepaper - Enabling the Mobile Enterprise with
http://www.db4o.com/about/productinformation/whitepapers/db4o Whitepaper - Enabling the Mobile Enterprise
http://www.db4o.com/about/productinformation/whitepapers/db4o Whitepaper - Enabling the Mobile
http://www.db4o.com/about/productinformation/whitepapers/db4o Whitepaper - Enabling the
http://www.db4o.com/about/productinformation/whitepapers/db4o Whitepaper - Enabling
http://www.db4o.com/about/productinformation/whitepapers/db4o Whitepaper - Enabling
http://www.db4o.com/about/productinformation/whitepapers/db4o Whitepaper -
http://www.db4o.com/about/productinformation/whitepapers/db4o Whitepaper
http://www.db4o.com/about/productinformation/whitepapers/db4o
http://developers.sun.com/techtopics/mobility/midp/articles/midp2network/
http://developers.sun.com/techtopics/mobility/midp/articles/bluetooth1/
http://www.javaworld.com/javaworld/jw-01-2001/jw-0105-midp.html
http://dx.doi.org/10.1016/S0306-4379(96)00029-4

19. db4objects Inc., 2008, db4o: Java & .NET Object Database -
Benchmarks: Performance advantages to store complex object structures,
db4objects Inc., 2008,
http://www.db4o.com/about/productinformation/benchmarks/

20. McObject Benchmarks Embedded Databases on Android Smartphone,
http://www.mcobject.com/march9/2009

21. Database Options for the Mobile Application Developer by Bryan Morgan,
Jul 19, 2001, http://www.informit.com/articles/article.aspx?p=22285&seqNum=4

51

http://www.informit.com/articles/article.aspx?p=22285&seqNum=4
http://www.mcobject.com/march9/2009
http://www.db4o.com/about/productinformation/benchmarks/

	CHAPTER I -
BACKGROUND
	Objective
	Significance
	Comparison of Mobile Distributed Databases
	Prototype MDD Groupware Solution

	CHAPTER II -
 MDD PRODUCTS AND DEVELOPMENTS
	CHAPTER III -
METHODOLOGY
	Distributed Database Infrastructure
	Device Data Synchronization

	CHAPTER IV -
COSTS DETERMINATION
	Distributed Information Management System Architecture

	CHAPTER V -
PRODUCT COST ANALYSIS
	MDD Evaluation Performance Benchmarks

	CHAPTER VI -
PERFORMANCE EVALUATION METHODOLOGY
	Comparison Approach
	Product Cost Calculation
	Cost Evaluation Assumptions

	CHAPTER VII -
PRODUCT PERFORMANCE COMPARISON
	CHAPTER VIII -
EVALUATION CONCLUSIONS
	CHAPTER IX -
PROTOTYPE BACKGROUND
	CHAPTER X -
PROTOTYPE FUNCTIONAL REQUIREMENTS
	Requirements for Prototype
	Assumptions

	CHAPTER XI -
PROTOTYPE HIGH-LEVEL APPROACH
	Discussion Forum High-level Design
	Tools and Instrumentation
	Product Selection Methodology

	CHAPTER XII -
PROTOTYPE UML DESIGN
	CHAPTER XIII -
PROTOTYPE DETAILED DESIGN
	Device Registry
	Device Synchronization

	CHAPTER XIV -
PROTOTYPE DESIGN DECISIONS
	Discussion Forum High-level Design
	Discussion Forum Design Challenges

	CHAPTER XV -
PROTOTYPE CONCLUSIONS
	CHAPTER XVI -
BIBLIOGRAPHY
	References

