ATHABASCA UNIVERSITY

AGENTS AS WEB SERVICES
BY

YLBER RAMADANI

A thesis essay submitted in partial fulfillment
Of the requirements for the degree of

MASTER OF SCIENCE in INFORMATION SYSTEMS

Athabasca, Alberta

January, 2005

© Ylber Ramadani, 2005

ATHABASCA UNIVERSITY

The undersigned certify that they have read and recommend for acceptance the
thesis project “AGENTS AS WEB SERVICES” submitted by YLBER RAMADAN in
partial fulfilment of the requirements for the degree of MASTER OF SCIENCE in
INFORMATION SYSTEMS.

B — \

Larbi Esmahi, Ph.D.

Supervisor

=,
,Wj:«.z‘}””” {gwu)

XiaoKun Zhang, Ph.D., Chair

e AV ur W

Harris Wang, Ph.D., Examiner

Date:

DEDICATION

| dedicate this essay to my lovely wife Aima, my son Keltrid, and my newly born
daughter Kaitlin. They have all supported me in their own ways. Without them it

would have been impossible to keep up the hard work and finish the essay on time.

ABSTRACT

This essay focuses on two important technologies, Web services and agent based
computing. H presents the state of the art of both technologies and then brings light
on advantages that agent based computing has over Web services. Based on the
research that has been done and the information collected, an agent based
architecture for consuming Web services is proposed. It is worth mentioning that the
work presented in this essay has two main objectives: to clearly explain the benefits
and advantages of using agent based technologies and to propose a solution that
supports these key benefits. The essay also tackles the issue of standardization and
possible obstacles that these emerging technologies are facing and suggests for
future research work that can be done. On personal level, working in this research
area was an amazing experience for me. The benefits were mulii-fold. | have
learned how to collect, organize and filter the information. On the technical side |
went through hundreds of relevant articles and the learning experience was unigue.
My writing skills are also improved a lot since all the time | had to think on how to

present my thoughts in an easy to read and follow manner.

i

ACKNOWLEDGEMENTS

| would like to express my sincere appreciation to Lara Sauer, Gerry Drappel, and
Larbi Esmahi for their continuous support and encouragement. Their interest,

suggestions and advice meant a lot to me. Thank you all.

TABLE OF CONTENTS

CHAPTER | - INTRODUCTIONoiiiiiic ettt 1
Statement of the PUIPOSE ...t 2
LAMIEATIONS .ot e 4
Organization of the Thesis ESSayccccoviiiviieieer et 5

Overview of Web Services ... s 5
Agent Based Software Development ... 5

CHAPTER Il - OVERVIEW OF WEB SERVICES ... 7
XML (Extensible Markup Language)..........ooooveeieiiii i eeeies e eeeas 10
SOAP (Simple Object ACCess ProtoCol) ...vvvivoviiiiieie e 13
WSDL (Web Services Description Language) ..o, 17
UDDI (Universial Description, Discovery and Integration)cccceeeeeeirennn, 18
Microsoft NET Web Services BasiCscceveeviiiieee e 20
Java Web Services BasiCscciooie ettt e 22

CHAPTER Il - AGENT BASED DEVELOPMENT FUNDAMENTALS ..., 26
What are Agent-Based Systems?. ... 26
Relationship between Agents and Objects ..o, 31
Agent-Oriented MethodologIieSo.ooviiveiiiee et 34
Agent-Oriented Development Tools and Platforms............c.occoiiiiiiine, 37
Agent Communication Language Fundamentals.............ccceoeeiiiiiinici i, 39
LIMIEAtIONS e e 42

CHAPTER IV - AGENT BASED WEB SERVICES ..ot 44
Agents and Grid CompuUliNg........ooooriiiii e 45
Semantic Web ... s 48
Automatic composition Of SEIVICES ..o 51

CHAPTER V - DISCUSSION AND FINDINGS ... 55
AGEMS IO thE FESCUB ... e e 55

C00PEIALION. ..o ittt e n e et e neeaaraaene 55
AUTONOMY Lottt a e e s e e s e e e e e e e s e st abaeeeeeeas 56
CONEXE AWATENESS. ..oevvvei ittt e ettt e st e e e e e s sbr e e ata s eraaas 58
Personalized services/dynamic adaptationc...cccoeiiiivee e, 59
Overview Of tNE reSEarch PrOCESS ...ccovoeiiivii et n e 61
Creating @an oUINE ... 61
Searching for relevant publicationscociv v 62
Categorizing and classifying reéSOUrCES ..o e 62
Filtering resources by relevance ..o 63
FINTINGS oo e e s ae bt et et s et an bt ttannnasrsnrnnnnnnnn 64
SUPPOrt fOr COOPEIatioN. ... et 65
SUPPOI fOr BUIONOMY . ..eoviii i 67
Support for CONtEXt AWAIENESS.cvivicere ettt 67
Personalized services/dynamic adaptation. ..o 68

CHAPTER VI - CONCLUSIONS AND RECOMMENDATIONSoooiiiiiiis 69

REFERENCES Lottt ettt e s e e ennee s 73

APPENDIX ..o et r e et et et b — ettt e taaeasaeean e neretateanaaanan 81

LIST OF TABLES

1. Table 1 Agent-Oriented Software Engineering methodologies.cceecveenen. 81
2. Table 2 Web Service composition prototypes vs. Interaction Layers................... 82
3. Table 3 Prototypes vs. Interaction DImensions...........coccoccniinii i 83

vi

LIST OF FIGURES

Figure 1. Web services rely on the functionalities of publish, find, and bind. 4
Figure 2. The érchitectural differences between (a) a monolithic application with
integrated capabilities, and (b) a distributed application using Web
services-based capabilities.cc.ooovi e 7
Figure 3. SOAP, UDD! and WSDL in a Web service interaction.............ccc.ccovvveen. 10
Figure 4. SOAP consists of three pars.......c.ooovic e 14
Figure 5. NET Web service COMponentscooovveieiiieeeecee e 22
Figure 6. A categorization of agent related technologies.cccocveiviiee i 39
Figure 7. Service Description with ACL Process Ontologyococeveivivvereeeecrien i 51
Figure 8. Overview of one the Proposed Approaches for Automatic Service
COMPOSILION ... e aree e e erre e eens 52
Figure 9. User devices interact with Web services via the personalization
COMPONENT ...t e b ce s e e e e e e renese bt erneeeesens 60
Figure 10. Proposed architecture for agent based Web servicescc.ccooeeeenn. 65

vii

CHAPTER |

INTRODUCTION

Web services have become a significant technology in the evolution of the
Web and distributed computing. Web services are able to improve corporate-
software development by reducing the time and expenses involved in developing
such software applications. Web services represent a set of related standards that
allow any two applications to communicate and exchange data via the Internet.

Web services take advantage of object-oriented programming techniques and
enable developers to build applications by reusing existing software components.
This can significantly reduce the effort required to implement different types of
systems. Web services also improve distributed computing capabilities by
addressing the issue of limited interoperability. Web services operate using open
standards, unlike DCOM and CORBA. This means that Web services can,
theoretically speaking, enable any two software components residing in any two
hardware platforms to communicate regardiess of differences in programming
languages or platforms.

New types of applications are being created every day by using standard
Web services building blocks, and in this way greater economy of scale in

automating business and consumer interactions with the Web and with each other.

Statement of the Purpose

The main focus of this paper is to bring some light on current state of the art

on agent technology and how it can be used for implementing Web services as a

way of communicating among different applications on disparate platforms. The

agent technology fits well for Web services, since it supports dynamic scalability,

distribution of services, reduction of traffic and independence regarding failures.

Intelligent and mobite agents can offer a good alternative to integrate some of

the following properties to existing Web services:

Autonomy - Allows for making decisions on service access, the interface
configuration, and service provisioning without human assistance. It also
allows for automating the control and management tasks as well as
automating the service deployment and provision.

Personalization - Allows for the dynamic customization and configuration
of services. The agents can learn and adapt to the preferences of their
users and detect and update old versions of services.

Mobility/Context awareness - Supports the dynamic topology of service
provisioning. It enables Web-services to be provided instantly and
customized directly at the locations where a service is needed.
Cooperation/Sociability - Offers the potential to distribute service-related
processing and also offers a mechanism for the nodes in different
networks to cooperate in order to provide a service to the user. Allows for

the asynchronous and cooperative processing of tasks.

Web services are currently based on the triad of functionalities (Huhns, 2002).

As shown in Figure 1 (Huhns, 2002), these functionalities are:

e Publish - The Web Services Description Language (WSDL) describes
the services in a machine-readable form, where the names of
functions, their required parameters, and their results can be specified.

+ Find - Universal Description, Discovery, and Integration (UDDI) gives
clients, users and businesses a way to find needed services by
specifying a registry or “yellow pages” of services.

* Bind - Finally, the simple object access protocol (SOAP) provides the
common protocol systems need to communicate with each other so
that they can request services, such as to schedule appointments,

order parts, and deliver information.

The equivalent agent-based functionalities are shown in parentheses, and all
interactions are via an agent-communication language (ACL), which makes the

communication process simpler to handle.

Figure 1. Web services rely on the functionalities of publish, find, and bind.

Limitations

In the world of Web services, the major industry software vendors have
already agreed on the core standards. Microsoft, IBM, Sun Microsystems, BEA
Systems, Oracle and other companies have agreed on implementing SOAP, WSDL,
and UDD!. Additional technolo'gies may or may not become part of the standard,
Agent technologies are still new and it will take time and effort for the industry to

adopt and use them with Web services.

Organization of the Thesis Essay

Aside from the Introduction chapter, the essay is spread out in five other
chapters, which are briefly described in the following sections.

Overview of Web Services. This chapter covers the fundamentals of Web

services technology and different standards used in industry today such as XML,
WSDL, UDDI, and SOAP. It also describes the purpose of Web services and how
they compare with existing similar technologies like distributed computing.

Agent Based Software Development. This chapter provides an overview of

the state of the art in agent based software development. It also describes current
standards in use as well as available agent oriented Integrated Development
Environments (IDE).

Agent Based Web Services. This chapter gives a review of the current state

of the art in implementing web services using agents. It presents more of a
descriptive approach of what has been done in this field rather than presenting any
conclusions or recommendations. The material in this chapter provides a sound
foundation for the next chapter.

Discussion and Findings. This chapter presents the main benefits for using

intelligent agents to implement Web services. it focuses on issues that can be
solved only using agents or can be enhanced if implemented using agents. It also
summarizes the data gathering process used and also shows how the various
sources of information were analyzed. The last section presents original views in this

field of research with a simple proposed architecture,

Conclusions and Recommendations. This chapter presents the conclusions
after the research. It also provides recommendations related to the topic as well as

future research areas in this field.

CHAPTERII

OVERVIEW OF WEB SERVICES

Web services represent a new architectural paradigm for applications. Web
services implement different capabilities that are available to other applications (or
other Web services) via industry standard network and application interfaces and
protocols. An application can use the capabilities that a Web service offers by simply
invoking it across a network without having to integrate it. This means that Web
services act as reusable software building blocks which are also URL addressable.
Figure 2 depicts the architectural differences between monolithic, integrated

applications and Web services-based applications.

Figure 2. The architectural differences between {(a) a menolithic application with integrated

capabilities, and (b) a distributed application using Web services-based capabilities,

Application

Capability A l l Capability B] l Capability C ! l Capability D

e} Monolithic app o with in s Lt AR CoandD

Capabiiity A ! | Capability C E

URL Addresses

Ciient

M -
etk Application

Capability E] I Capability D

{h! Client application invoking remate Web servicas for capabiltiss A, B, G, and

Although organizations are just beginning to implement and consume Web
services, the basic standards and ideas have existed for several years. In 1999,
Hewlett-Packard became the first software vendor to introduce the concept of Web
services. HP’s product, e-Speak, was a platform that enabled developers to build
and implement “e-services”, which were program units very similar to Web services.
Because of the proprietary nature of e-Speak underlying technologies, this platform
never gained widespread industry support.

Microsoft was the first company to use the term “Web services” in June 2000,
when they introduced Web services as a key component of its .NET initiative. Today
nearly every major software vendor is marketing Web services tools and
applications.

Next are presented some key points that clarify the advantages associated
with Web services.

+ Web services operate using open, text-based standards, which enable
components written in different languages and for different platforms to
communicate.

+ Web services promote a modular approach to programming, so multiple
organizations can communicate with the same Web service.

e Web services are comparatively easy and inexpensive to implement,
because they use existing infrastructure to exchange information. On top of
that, most applications can be repackaged as Web services, so companies

do not have to adopt entirely new software.

+ Web services can significantly reduce the cost of enterprise application
integration (EAI) and Business-To-Business (B2B) communications, and
therefore offering companies tangible returns on their investments. (Borck,
2002).

« Web services can be implemented in an incremental manner, rather than all
at once. This lowers the cost of adopting Web services and can reduce
organizational disruption resulting from the process of switching to a new
technology.

The most important advantage of Web services over previous distribute
computing technologies is that they employ open standards. Because of the fact that
Web services facilitate communications among disparate applications and platforms,
standardization and interoperability are crucial. World Wide Web Consortium (W3C -
an organization that defines Web technologies) and other standards bodies are
committed to ensuring that Web services protocols and specifications remain open
and interoperable across vendor implementations.

Part of what distinguishes Web services from similar computing models is the
use of XML and XML-based standards — most commonly SOAP, WSDL and UDDI.
These technologies enable communication among applications and hardware
platforms. These technologies enable communication among applications in a
manner that is independent of specific programming languages, operating systems
and hardware platforms.

Figure 3 depicts the role of various standards in common Web services

architectures (McGarr, 2002).

Figure 3. SOAP, UDDI and WSDL in a Web service interaction

Client gueries regisiry to locate
service

WSDL
Document

c
G
G

y

Registry refers client to WSDL
document

Client accesses WSDL document

WSDI. provides data to interact with
Web service

Client sends SOAP-message request

ONONOROMONC)

Web-service returns SOAP-message
response

Web Service

The following sections will briefly describe each of the technologies

mentioned above starting with a short overview of XML.

XML (Extensible Markup Lanquade)

.Deveioped based on the Standard Generalized Mark-up Language {SGML),
XML is a widely accepted standard for describing data and creating mark-up
languages. Unlike many other technologies, which begin as proprietary solutions
and later become standards, XML was defined by the W3C as an open, standard
technology. tn 1998, the XML version 1.0 specification was accepted as a W3C
Recommendation, which means that the technology is stable for deployment in

industry (World Wide Web Consortium, 2004).

10

XML is the foundation on which Web services are built. XML provides the
description storage, and transmission format for data exchanged via Web services.
XML is also used to create the Web services technologies that exchange data.

XML is similar in nature to the Hypertext Mark-up Language (HTML), having
elements, attributes, and values. Well formed XML documents can be displayed in
browsers, although this aspect of XML is not relevant {o Web services. Axmajor
difference between HTML and XML is that HTML contains a finite set of elements
and attributes, but XML allows any number of them to be defined.

XML elements and attributes independently define type and structure
information for the data they carry, including the capability to model data and
structure specific to a given software domain. The term software domain here is
used to represent any programming language, a middieware system, a packaged
application, or a database management system. XML -aware applications and tools
parse, map, and transform generic XML data types into and out of software domain-
specific types. Transforming a generic XML representation of data into an
application, or a software domain-specific representation of data, is an essential
aspect of Web services.

Two broad categories of XML usage in Web services are:

1. Data storage representation and format

2. Specification of the software that manipulates the data

For use in Web services, data can either be created in XML or converted {o

XML from one or more existing formats, such as ASCIi or the Java type system. For

11

example let us consider a fictive retail company which identified that the following

basic data type information is required for a customer record in an ASCII file:

Customer ID integer
Customer Name Character
Customer Address Character
Customer Phone Numeric
Postal Code Character
E-Mail Address Character
Credit Limit Decimal
Credit Rating Integer

After collecting this information from customer service department of the

fictive retail company the analysts can format the data in XML as follows:

<Customer>
<CustomerlD>12345</Customer|D>
<CustomerName>James Bond</CustomerName>
<CustomerAddress>007 Secret Agent Drive</CustomerAddress>
<CustomerPhone>777-777-7007</CustomePhone>
<PostalCode>J0B-0S7</PostalCode>
<EMailAddress>jbond007 @secretplace.spy</EMailAddress>

<CreditLimit>100000</CreditLimit>

12

<CreditRating>10</CreditRating>
</Customer>

The Customer element is created containing all the data items. After
representing the customer data as XML, the fictive retail company needs to create
the XML schema to validate the customer information to ensure that it would have
the correct structure and data types. XML schemas are a long topic and also outside

of the scope of this essay, although the later chapters will refer to them.

SOAP (Simple Object Access Protocol)

SOAP is one of the common standards used to deliver Web services. Initially
developed by representatives from DevelopMentor, Userland Software and
Microsoft, SOAP was conceptualized in 1998 and published as SOAP 0.9 in 1999
(Benfield, 2001). After several versions released from above companies, the
protocol was submitted to the W3C. The latest version of SOAP, SOAP 1.2, is
currently being defined by W3C.

The purpose of SOAP is to enable data transfer between distributed systems.
When an application communicates with a Web service, SOAP is the most
commonly used standard through which data is exchanged. A SOAP message that
is sent to a Web service invokes a method that is provided by that service, which
means that the message actually requests that the service executes a particular
task. The service uses information that is provided by the SOAP message to perform
its action. If needed, the Web service can return the result back via another SOAP

message.

13

SOAP is an XML-based communication protocol and it basically consists of a
set of standardized XML Schemas. The Schemas define a format for transmitting
XML messages over a network, including the types of data that the message can
include and the way in which the message must be structured so that the server
hosting the Web service can interpret it correctly (Howerton, 2002).

SOARP is layered over an Internet protocol, such as HTTP, and can be used to
transfer data across the Web and other networks. The use of HTTP allows Web
services to communicate across firewalls, beéause most firewalls are designed to
accept HTTP service requests.

As shown in figure 4, SOAP consists of three main parts: an envelope, a

header and a body (Newcomer, 2002) .

Figure 4. SOAP consists of three parts

Unit of
communication

Envelope &
'
Header Attributes, or
Biock .l 1| gualities. of the
Biock communication

ame with arguments »> Block
J Block

-
Message: method] Body
.

ar document

The envelope wraps the entire message and contains the header and body

elements. The header is an optional element that provides information related to

14

security, routing, etc. The body of the SOAP message contains the application-
specific data that is being communicated. The data is marked up as XML and
adheres to a specific format, which is already defined by the Schemas mentioned
earlier. SOAP messages are received and interpreted by SOAP servers, which
trigger Web services to perform their tasks.

SOAP is not the only protocol that can enable Web services. For éxampie,
XML-RPC is an older technology that provides similar functionality. It is important to
mention that most major software vendors have already chosen to support SOAP
over other similar technologies. A note worth mentioning is the advantages of SOAP

(Cauldwell et. al., 2001):

» Simplicity - Most basic SOAP messages involve small amounts of code, and
usually there is no need for special software to send and receive SOAP
messages.

e Extensibility — SOAP provides mechanisms that allow developers to extend
the standard in order to meet specific needs.

s [nteroperability - Because SOAP uses XML to communicate over HTTP, it
can theoretically be used to transfer data between any two systems that are
connected to the Internet, regardiess of the programming languages,

operating systems and hardware platforms.

The following example shows a simple application of SOAP, which is a one way

broadcast message 1o a list of communication mechanisms (PDA, Cell Phone, E-

15

mail etc.). The header block contains the list of devices to which the message will be

sent. The body block contains the actual notification message to be delivered.

<env.Envelope xmins:env=http://www.w3.0rg/2001/12/soap-envelope>

<env:Header>

<n:broadcastService xmins:n= “http://www xyz.com/broadcastServices">

<n:list>PDA, Cell, Email, VoiceMail, IM</n:list>
<n:broadcastService>
</env:Header>
<env:Body>

<m:Functiocn xmins:m="hitp://www.xyz.com/broadcastServices/send”>

<m:message>Peter, you are late for the concall againl</m:message>
</m:Function>
</env:Body>

<env.Envelope>

In this example, the meeting reminder message will be broadcast to the listed
devices by the “send” Web service located at the following address:

hitp://www xyz.com/broadcastServices. Separate namespaces (broadcastService

and Function) are used to qualify the element and attributes for each part of the
message. The envelope references version 1.2 envelope namespace,

www. w3.org/2001/12/soap-envelope.

16

WSDL (Web Services Description Language)

Another important standard in enabling Web services is WSDL. An important
feature of Web services is that they are self-describing. This means that every Web
service is accompanied by information that enables developers to invoke that
service. These descriptions typically are written in WSDL, which is an XML-based
language through which a Web service can expose to other applications fhe
methods that the service provides and how those methods can be accessed.

When SOAP and other Web services technologies were first developed,
software vendors realized that applications calling services across a network wouid
need information about a specific service before interacting with it. However, each
vendor began building its own method of description, resulting in service
descriptions that were incompatible with one another. The WSDL specification
emerged when Microsoft and 1BM decided to combine their description technologies
into a universal standard. In March 2001, Microsoft, IBM and Ariba submitted WSDL
1.1 to the W3C. Currently the W3C is working on a version 2.0 of the language
(World Wide Web Censortium, 2004). Although the technology is still under
development, nearly all Web services products now provide support for WSDL 1. 1.

Most Web services published on the Internet are accompanied by an
associated WSDL document, which lists the service's capabilities, states its location
on the Web and provides instructions regarding its use. A WSDL document defines
different types of messages a Web service can send and receive, as well as
specifies the data that a calling application must provide for the Web service to

perform its task. WSDL documents also provide specific technical information that

17

informs applications about how to connect to and communicate with Web services
over HTTP or another communications protocol.

It is important to realize that WSDL is a language meant to be read by
applications, rather than by computer users. Although the structure of WSDL
documents might appear complex, applications capable to understand WSDL can
process the documents and extract the information they need. Furthermore, most
Web services development tools generate WSDL documents automatically. This
means that, if a programmer develops a Web service, the software used to build the
service creates an appropriate WSDL document for that service automatically.
Therefore, it is not necessary for developers to understand the syntax of WSDL fully

when building and deploying Web services.

UuDDI {(Universial Description, Discovery and Integration)

The third major Web services standard, UDDI, enables developers and
businesses to publish and locate Web services on a network. UDDI is originally
designed by Microsoft, IBM and Ariba, and it initially started as a way for companies
to share information about their businesses and business processes with potential
partners and affiliates (Korzeniowski, 2002). UDDI specification allows companies
to describe their own services and electronic processes, discover those of other
companies and also integrate others services into their systems. Although UDDl is a
relatively new standard (the first version was published in September 2000), it has
acquired significant industry backing. UDDI version 2.0 was refeased in June 2001

while UDDI! 3.0.1, the latest version, was released in October 2003.

18

UDD! defines an XML-based format in which companies can describe their
electronic capabilities and business processes. The specification also provides a
standardized method of registering and locating the descriptions on a network, such
as the Internet. Part of the information that companies can supply is data regarding
available Web services. Companies can store their information either in private
UDDI registries, which are accessible only to approved business panneré, orin
public UDDI registries, which any interested party can use. The largest, most
comprehensive public UDDI registry is the UDDI Business Registry (UBR), which
was developed to facilitate the formation of new business relationships. Microsoft
and IBM host implementations of the UBR that adhere to UDDI 1.0, and Microsoft,
IBM, Hewlett-Packard and SAP host UBR implementations that adhere to UDDI 2.0.
A UDDI registry's structure is conceptually similar to that of a phone book. Registries
contain "white pages", where companies list contact informatién and textual
description of themselves; "yellow pages,” which provide classification information
about companies and details on companies’ electronic capabilities; and "green
pages,” which list technical data relating to services and business prbcesses
(Wilson, 2001). Information regarding businesses and services is highly categorized,
enabling companies to search for desired partners or services. Information
technology staff could use the technical information in the registries to link
electronically to other businesses. In this manner, UDDI simplifies the process of
creating B2B relationships and connecting electronic systems to exchange data and

services.

19

Many companies have shown strong interest in UDDI regisiries. Most of the
organizations that provide Web services support UDDI and have incorporated the
standard into their products. For example, NTT Communications of Tokyo is in the
process of building additional implementations of the UDD! Business Registry.
However, businesses have been slow to enter information in the public registries.
industry experts believe that companies will begin using these services by building
private reqistries to share services with partners. Large organizations can also
create private registries to organize their own Web services and make the services
available to other departments. Once the technology has matured and users are
comfortable using it, public exchange of data and services will become more
popular.

It is difficult for large organizations 1o change the way in which they
communicate, form partnerships, locate clients and transact business. Some
companies are hesitant to abandon older B2B communication mechanisms,
whereas others are concerned about the security issues raised by exposing
corporate data or applications on the Web. However, organizations are slowly
realizing that technologies such as UDDI can improve business processes and

provide competitive advantages.

Microsoft NET Web Services Basics

if you are developing a web application using .NET framework, a Web service
is an application stored on one machine that can be accessed by another machine

over a network. In its simplest form, a Web service is a class, or a logical grouping of

20

methods that simplifies program organization. Methods are defined within a class to
perform tasks and return information when their tasks are complete. .NET Web
service classes contain certain methods (called Web service methods) that are
specified as part of the Web service. These methods can be invoked remotely using
either document-style or RPC-based messaging.

Creating Web services in Visual Studio .NET is a simple process. A developer
first creates a project of type ASP .NET Web Service. Among several files that are
automatically generated by Visual Studio .NET, the following are specific to Web

services applications {see Figure 5 below):

+ ASMKX file — provides documentation for the Web service
« DISCO file — potential clients use this file to discover the Web service
» Web service code file — contains all the code that provides the functionality
of the Web service. The code can be written in any .NET compatible
language (VB .NET, C++ NET, C# .NET etc.).
Once the developer adds the necessary programming logic to the Web service code
file and successfully compiles the application, then a client application can consume
the Web service. However, clients must be able to find the Web service and learn

about its capabilities.

21

Figure 5. .NET Web service components

Potential Clients

/

ysdisce file
ASMX file

{Provides access
to WSDL and
DISCO files)

Web Service code

. j

Discovery of Web services (DISCO) is a Microsoft-specific technology used to
locate Web services in a particular directory on a server. There are three types of
discovery files: .disco files, .vsdisco files and .map files. The ASMX file (which is in
the form of an ASP .NET Web page) can be viewed in a Web browser and contains

descriptions of Web service methods and ways to test these methods.

Java Web Services Basics

The Java language and Java 2 Enterprise Edition (J2EE) platform provide
features for building and deploying Web services. Two main benefits of the Java
language and the J2EE platform are vendor independence and application
paortability. Applications built on the J2EE platform may be deployed on J2EE

implementations from a large number of vendors. Using Java to develop Web

22

services provides the benefit of vendor independence in addition to the inherent
platform independence of Web services.

Java provides support for Web services through the Java Web Setrvices
Developer Pack (Java WSDP). Java WSDP contains libraries for generating XML
and SOAP, processing XML, accessing service registries, and calling RPC-based
Web services. Java WSDP provides Java developers with a one-stop AP solution
for the development of Java Web service applications.

Java WGSDP brings together a set of Java APIs for XML-based Java
applications by supporting key XML standards such as SAX, DOM, XSLT, SOAP,
WSDL., UDDI, and ebXML.. These APls are bundled together with a set of runtime
tools which allow Java WSDP io provide a build, deploy, and test environment for
Web services applications and components. The pack includes the following toolset

(Sun Microsystems, 2005)

e Java XML Pack - is an architectural solution toolkit that is intended to
ease software development by providing a set of high level APls and
reference implementations that abstract the complexities behind XML
processing.

o JavaServer Pages Standard Tag Libraries - is an initiative to
standardize on a single set of reusable tag libraries that expose
functionality to solve common problems faced in Web application

development.

23

s Apache Tomcat container - is an open-source implementation of a Web
container under the Apache Software Foundation. The container conforms
to the latest specifications and provides runtime services for hosting and
executing Servilets and JSPs.

» Java WSDP Registry Server - is an implementation of the UDDI version
3.0. The Java WSDP Registry Server serves the purpose of testing
applications written using Java AP! for XML Registries (JAXR).

e ANT Build Tool - is a build tool similar to make and gnumake. It has
gained a lot of attention and acceptance from the community for building
and deploying Java code. ANT uses XML for specifying the various tasks
that must be executed in the build process. It provides many defined tasks
that can be used by the developer while compiling, building, or deploying
the application code.

Java WSDP is available at the Sun Java site. Full documentation, which
explains the functionalily of each Java XML APl included in the pack, also is
available for download. In addition, the Web services tutorial is also available for
download. This tutorial takes the developer through each AP| with examples, and it
provides instructions on how to set up the Java WSDP environment and how to
deploy and test Web service applications.

The latest version of Java WSDP is version 1.5 and is available at

http://iava.sun.com/webservices/webservicespack himl It includes the Java XML

APis and the runtime environment.

24

These development packs are released by Sun Microsystems on a quarterly
basis, which ensures support for emerging XML standards and the most recent

specifications.

25

CHAPTER {ll

AGENT BASED DEVELOPMENT FUNDAMENTALS

Since the 1980s, software agents and multi-agent systems have grown into
what is now one of the most active areas of research and development activity in
computing generally. There are many reasons for the current intensity of interest, but
certainly one of the most important is that the concept of an age'nt as an
autonomous system, capable of interacting with other agents in order to satisfy its
design objectives, is a natural one for software designers. Just as we can
understand many systems as being composed of essentially passive objects, which
have state, and upon which we can perform operations, so we can understand many

others as being made up of interacting, semi-autonomous agents.

What are Agent-Based Systems?

Before proceeding any further, it is important to gain an understanding of
exactly what is meant by an agent-based system. An agent-based systemis a
system in which the key abstraction used is that of an agent. Agent-based systems
may contain a single agent, (as in the case of user interface agents or software
secretaries), but arguably the greatest potential lies in the application of multi-agent

systems. Agent-based system is a system that enjoys the following properties:

26

Autonomy - agents encapsulate some state (that is not accessibie to other
agents), and make decisions about what to do based on this state, without the
direct intervention of humans or other agents.

Reactivity - agents are situated in an environment, {(which may be the
physical world, a user via a graphical user interface, a collection of other
agents, the Internet, or perhaps many of these combined), are able to
perceive this environment, and are able to respond in a timely fashion to
changes that occur in it.

Pro-activeness - agents do not simply act in response to their environment,
they are able to exhibit goal-directed behaviour by taking the initiative.
Sociability - agents interact with other agents (and possibly humans) using.
an agent communication language, and typically have the ability to engage in
social activities (such as cooperative problem solving or negotiation) in order
to achieve their goals.

These properties are more demanding than they might appear at first. To see

why, let us consider them in turn. Let us consider pro-activeness which can be
described as goal directed behaviour. It is not hard to build a system that exhibits
goal directed behaviour because most of the systems today are based on
procedures written in Visual Basic, functions written in C++, or methods written in
Java. When we write such a procedure, we describe it in terms of the assumptions
on which it relies (it's pre-condition) and the effect it has if the assumptions are valid
(it's post-condition). The effects of the procedure are its goal, for example what the

author of the software intends the procedure to achieve. If the pre-condition is true

27

when the procedure is invoked, then we expect that the procedure will execute
correctly, after that it will terminate, and that upon termination, the post-condition will
be true, i.e., the goal will be achieved. This is goal directed behaviour and the
procedure is simply a plan or recipe for achieving the goal. The presented
programming model works fine for most environments. For example, it works well
when we consider functional systems, those which take some input x, and produce
as an output some function f{x) of this input. Compilers are a classic example of
functional systems (Wooldridge & Ciancarini, 2000).

But for non-functional systems, this simple model of goal directed
programming is not acceptable, as it makes an important limiting assumption. it
assumes that the environment does not change (static environment) while the
procedure is executing. If the environment does change {dynamic environment), and
in particular, if the assumptions (pre-condition) underlying the procedure become
false while the procedure is executing, then the behaviour of the procedure may not
be defined which often leads to its premature termination (procedure crash).
Similarly, it is assumed that the goal, which also is the reason for executing the
procedure, remains valid at least until the procedure terminates. If the goal does not
remain valid, then there is simply no reason to continue executing the procedure.

In many environments, neither of these assumptions is valid. In particular, in
domains that are too complex for a single agent to observe completely, also known
as multi-agent systems (a system that is populated with more than one agent that
can change the environment), or where there is uncertainty in the environment,

these assumptions do not stand. In such environments, blindly executing a

28

procedure without any consideration to whether the assumptions related to the
procedure are valid is a poor strategy. In such dynamic environments, an agent must
be reactive, in just the way that we described above. This means that it must be
responsive to events that occur in its environment. These events affect either the
agent’'s goals or the assumptions related to the procedures that the agent is
executing in order to achieve its goals.

in general, building purely goal directed systems is not hard. Similarly,
building purely reactive systems, ones that continually respond to their environment,
is also not difficult. It is possible to implement them as lookup tables that simply
match environmental stimuli to various action responses. However, what turns out to
be very hard is building a system that achieves an intelligent balance between goal-
directed and reactive behaviour. It is desirable to have agents that will attempt to
achieve their goals systematically, perhaps by making use of complex procedure-iike
recipes for action. On the other hand we do not want our agents to continue blindly
executing these procedures in an attempt to achieve a goal when it is clear that the
procedure will not work, or when the goal is for some reason no longer valid. In such
circumstances, we want agents to be able to react to the new situation, in time for
the reaction to be of some use. However, we do not want our agent to be reacting in
continuous mode, and never focusing on a goal long enough to actually achieve it.
This problem of effectively integrating goal-directed and reactive behaviour is one of
the key problems facing the agent designer. Many proposals have been made

related to building such agents, but the probiem still remains open.

29

Next social ability of agents is discussed, one of the component of flexible
autonomous action. Social ability is trivial if it is seen in a narrow, one-sided view:
every day, millions of computers across the world routinely exchange information
with both humans and other computers. This ability to exchange bits of information
does not represent real social ability. The type of social ability which involves the
ability to dynamically negotiate and coordinate is much more complex, and much
less understood, than simply the ability to exchange bit streams.

An obvious question to ask is why agehts and multi-agent systems are seen
as an important new direction in software engineering. There are several reasons:

« Natural metaphor - Just as the many domains can be conceived of
consisting of a number of interacting but essentially passive objects, so many
others can be conceived as interacting, active, purposeful agents. For
example, a scenario currently driving a lot of research activity in the agent

. field is that of software agents capable of buying and selling goods via the

Internet on behalf of clients. It is natural to view the software participants in

such transactions as semi-autonomous agents.

» Distribution of data or control - For many software systems, it is not
possible to identify a single point of control. Instead, overall control of the
systems is distributed across a number computing nodes, which are
frequently distributed geographically. In order to make such systems work
effectively, these nodes must be capable of autonomously interacting with

each other. These nodes must be implemented as agents.

30

e lLegacy systems - A natural way of incorporating legacy systems into
modern distributed information systems is to provide ancther abstraction layer
on top of them, which can be done by wrapping them with an agent layer that
will enable them to interact with other agents.

+ Open systems - Many systems are open in the sense that it is impossible to
know at design time exactly what components the system will be comprised
of, and how these components will be used to interact with each other. To
operate effectively in such systems, the ability to engage in flexible

autonomous decision making is critical.

Relationship between Agents and Objecis

Programmers familiar with object-oriented approach often fail to see anything
new in the idea of agents. When one stops to consider the relative properties of
agents and objects, this is perhaps not surprising. Objects are defined as
computational entities that encapsulate some state, are able to perform actions, or
methods on this state, and communicate by message passing. There are clearly
close links between agents and objects.

While there are obvious similarities, there are also significant differences
between agents and objects. The first is in the degree to which agents and objects
are autonomous. One of the defining characteristics of ob}ecborientéd programming
is the principle of encapsulation. In programming languages like Java, it is possibie
to declare instance variables (and methods) to be private, which means they are

only accessible from within the object (we can of course also declare them public,

31

meaning that they can be accessed from anywhere, and indeed we must do this for
methods so that they can be used by other objects). In this way, an object can be
thought of as exhibiting autonomy over its state: it has control over it. But an object
does not exhibit control over its behaviour. That is, if an object has a public method
m, then other objects can invoke m whenever they wish, once an object has made a
method public, then it subsequently has no control over whether or not that method
is executed.

Of course, an object must make methods available to other objects, or else
we would not be able to build a system based on them. Declaring object’'s methods
as public does not create any issues, because if we build a system, then we design
the objects that go in it, and they can be assumed to share a “common goal”. But in
many types of multi-agent systems, (in particular, those that contain agents built by
different organizations or individuals), no such commeon goal can be assumed. It
cannot be for granted that an agent x will execute an action {(method) a just because
another agent y wants it to, because a may not be in the best interests of x.
Therefore, we do not think of agents as invoking each others methods, but rather as
entities that request actions to be performed. If y requests x to perform a, then x
may perform the action or it may not. The level of control with respect to the decision
about whether to execute an action is therefore different in agent and object
systems. In the object-oriented case, the decision lies with the object that invokes
the method. In agent-based systems, the decision lies with the agent that receives

the request. This distinction between objects and agents has been nicely

32

summarized in the following slogan: “Objects do it for free; agents do it because they
want to” (Wooldridge & Ciancarini, 2000).

The second important distinction between object-based and agent-based
systems is with respect to the notion of flexible (reactive, pro-active, social)
autonomous behaviour. The standard object model does not provide anything
related to building systems that integrate this type of behaviour. One could point out
that it is possible to build object-oriented applications that do integrate this type of
behaviour. But this argument is off the point, because the standard object-oriented
programming model has nothing to do with this type of behaviour.

The third important distinction between the standard object-oriented model
and the general view of agent systems is that each agent is considered to have its
own thread of control. Agents are assumed to be continuously active, and typically
are engaged in an infinite loop of observing their environment, updating their internal
state, and selecting and executing an action to perform. In contrast, objects are
assumed to be inactive for most of the time, becoming active only when another
object requires their services by using method invocation.

A lot of work has been recently devoted to concurrency in object-oriented
programming. For example, the Java language provides built-in constructs for
multithreaded programming. There are also many programming languages available
(most of them as prototypes only) that were specifically designed to allow concurrent
object-based programming. All these languages do not capture the idea of agents
being autonomous entities. Perhaps the closest that the object-oriented community

comes is using the concept of active objects.

33

An active object is one that encompasses its own thread of control. Active
objects are generally autonomous, meaning that they can exhibit some behaviour
without being operated upon by another object. Passive objects, on the other hand,
can only undergo a state change when explicitly acted upon (Booch, 1994).

Therefore, active objects are essentially agents that do not necessarily have
the ability to exhibit flexible autonomous behaviour.

To summarize this comparison, objects and agents have at least three
distinctions:

e Agents embody stronger notion of autonomy than objects, and in
particular, they decide for themselves whether or not to perform an
action on request from another agent.

* Agents are capable of flexible (reactive, pro-active, social) behaviour,
and the standard object model has nothing to say about such types of
behaviour.

» A multi-agent system is inherently muiti-threaded, which means each

agent is assumed to have at least one thread of control.

Agent-Oriented Methodologies

Agents have been increasingly recognized as the next candidate for software
engineering approach. Methodologies are the means provided by software
engineering to facilitate the process of developing software and, as a result, to

increase the quality of software products. By definition, a software engineering

34

methodology is a structured set of concepts, guidelines or activities to assist people
in undertaking software development.

Itis also important for a methodology to provide notations which allow the
developers to model the target system and its environment. in addition to the
methodology, there are also tools that support the use of such methodologies. For
instance, diagram editors help the developers drawing symbols, models described in
the methodology. The Rational Unified Process (RUP) is a good example of a
software engineering methodology. It uses the notation described in the Unified
Modelling Language (UML) and its typical tool support is Rational Rose.

Despite their current dominance, RUP, UML and other object-oriented
methodologies are regarded as unsuitable to the analysis and design of agent-based
systems. The main reason is the inherent differences between the two entities,
agents and objects, as discussed in previous section. As a result, object-oriented
methodologies generally do not provide techniques and model to encapsulate
intelligent behaviour of agents. Therefore, there is a need for software engineering
methodologies which are specially tailored to the development of agent-based
systems.

in answering this demand, there have been an increasing number of agent-
oriented methodologies proposed in recent years (see Table 1 in Appendix). A
common property of these methodologies is that they are developed based on the
approach of extending existing methodologies to include the relevant aspects of
agents. They are broadly categorized into two groups: extensions of Object-Oriented

methodologies and extensions of Knowledge Engineering frameworks.,

35

Extensions of Object-Oriented (OO) methodologies extend existing OO
methodologies or adapt them to the aim of Agent Oriented Software Engineering.
There are several reasons for following this approach. First of all, agent-oriented
methodologies which extend object-oriented design can benefit from the similarities
between agents and objects. Secondly, they can capitalize on the popularity and
maturity of OO methodologies. There is a high possibility that they will be accepted
easier compared to other non OO methodologies. Finally, several techniques such
as use cases and class responsibilities card (CRC) used for object identification can
be used for agents with the similar purpose.

Extensions of Knowledge Engineering (KE) techniques cover aspects of
agents that are not addressed in OO methodologies. For instance, OO
methodologies do not define techniques for modeling the mental state of agents. In
addition, the social relationship between agents can hardly be captured using OO
methodologies. These are some of the arguments for adopting KE methodologies for
AOSE. They are suitable for modelling agent knowledge due to the fact that the
process of capturing knowledge is addressed by many KE methodologies.
Additionally, existing technigues and models in KE such as ontology libraries, and
probiem solving method libraries can be reused in agent-oriented methodologies.

As shown in Table 1, there are a large number of agent-oriented

methodologies available.

38

Agent-Oriented Development Tools and Platforms

A number of tools and platforms are available that support activities or phases
of the process of agent-oriented software development. Most of them are built on top
of and integrated with Java. While almost all availabie tools and piatforms have their
focus on implementation support, some of them do also support analysis, design,
and test/debugging activities. It is beyond the scope of this essay to desc‘ribe and
compare the available tools and platforms in detail. However, in the following
paragraphs some of the most prominent tools and platforms are listed. Examples of

often cited academic and research prototypes are the following (Weiss, 2002):

o ZEUS is a toolkit that has been developed at the British Telecom Intelligent
System Research Lab.

« JADE ("Java Agent DEvelopment Framework“) has been developed at the
University of Parma, Haly.

« LEAP ("Lightweight Extensible Agent Platform"} is intended to be executable
on small devises such as PDAs or phones. LEAP is being developed within
European’s Fifth Framework program by several industrial and academic
contract partners (MOTOROLA, ADAC, BROADCOM, BT, Siemens, and the
University of Parma).

+ agenTool is a Java-based graphical development environment that supports
the MaSE method. agenTool was originally developed at the Artificial

Intelligence Lab of the Air Force Institute of Technology, Ohio.

37

RETSINA is a complex environment for networked intelligent agents that
include different (multi) agent architectures, location and discovery services,
middle agents, and configuration management support. RETSINA has been
developed at Camegie Mellon University.

JATLite ("Java Agent Template, Lite"), which has been developed at the
Stanford Center for Design, is a package of Java programs that allows
creating software agenis that communicate over the Internet.

FIPA-OS is a component-based toolkit. for the development of FIPA compliant
agents. Two types of FIPA-OS are available, namely, "standard” for execution
on standard computers and "micro” for execution on PDAs.

MADKIT is a platform which is being developed at LIRMM (France). MADKIT
is based on the Aalaadin model.

Other examples are SIM AGENT, JAFMAS ("Java-based Agent Framework

for Multi-Agent Systems"), ABS ("Agent Building Shell") which employs the language

COOL, OAA ("Open Agent Architecture"), and Agentis which is a modeling

framework for BDI agents.

Below are listed some examples of commercial products for developmental

support:

AgentBuilder is a tool offered by Reticular Systems Inc., USA. AgentBuilder is
available in two versions: AgentBuiider Lite (entry-level) and AgentBuilder
Pro.

JACK is a commercial agent framework by Agent Oriented Software Pty. Lid.,

Melbourne, Australia. JACK is oriented towards BD1 agents.

38

» Intelligent Agent Factory by Bits & Pixels, Texas, USA.
o Grasshopper is an advanced development platform for mobile agents

launched by IKV++, Germany.

Agent Communication Language Fundamentals

A wide variety of systems, languages, frameworks and standards are
associated with software agents. This is due in part to the vagueness of the term
“software agent’, This section represents an attempt to split apart these approaches,
and show how Knowledge Query and Manipulation Language (KQML) relates to
each of them. Figure 6 shows categorization of technologies important to software
agents (Mayfield, 1996). We divide agent technologies into two broad categories:

agent languages and coordination protocols.

Figure 6. A categorization of agent related technologies.

Software agent technologies

v._/'/‘ﬂ MMM
’,,_—*""M "‘m_,_,h__b%v
Agent languages Coordination protocols
CORBA
e
LOpeabioc
- : OLE
Agent communication Scripting Ianguages
languages STk
Javs
Talezeript
Theorefical Models of buman
frameworks communication

Languages for
software agents

BEOAML

39

The agent languages category comprises all languages that can be used to
implement software agents. Virtually any programming language can be used for
software agent development. One class of languages that has gained much
attention lately is the so called scripting languages class, especially those designed
for mobile applications. Languages like Tcl/Tk, Java and Telescript offer the
advantage of a level of abstraction that seems particularly attractive for the
development of software agents. They are placed under the agent languages folder,
because they can be used to program software agents. They differ from agent
communication languages though because they are designed primarily to control
processes on a single platform. To the extent that these languages contain
communication primitives tailored to agent development, they are largely concerned
with the transportation of a single agent from one machine to another (Mayfield,
1996).

In contrast, agent communication languages are designed specifically to
describe and facilitate communication among two or more agents. Three broad sub-

categories may be identified under the label of agent communication languages:

o Models of human communication

o Theoretical frameworks

« Communication languages for software agents

Human communication is traditionally modeled in terms of speech act theory.

Considerable work has been done to capture the assumptions and conventions of

40

interaction between human agents and subsequently translate them into workable
paradigms for the development of their artificial counterparts. Often, such work leads
to theoretical frameworks for artificial agents with human-like capabilities. Such
frameworks attempt to account for all aspects of the internal state of an artificial
autonomous agent, with a particular attention to how this state changes as the agent
interacts (and/or communicates) with the world or with other agents. Sometimes, as
in the case of Agent Oriented Programming, those frameworks may evolve into
implemented software systems. In contrast, agent communication languages (ACL)
are concerned strictly with the communication between such computational entities.
An ACL (the sub-category that includes KQML) is more than a protocol for
exchanging data, because information about what is exchanged by the agents is
also communicated. An ACL may be thought as a communication protocol {or a
collection of protocols) that supports many message types.

The other main class of software agent technologies is that of standards and
coordination protocols. CORBA, ILU, OpenDoc, OLE, etc., are efforts that are often
proclaimed as solutions to the agent communication problem. Driving such work is
the difficulty of running applications in dynamic, distributed environments. The
primary concern of these technologies is to ensure that applications can exchange
data structures and methods across disparate platforms. Although the results of
such efforts will be useful in the development of software agents, they do not provide
complete answers to the problems of agent communication. After all, software

agents are more than collections of data structures and methods on them. Thus,

41

these standards and protocols are best viewed as a foundation on which agent

languages might be built.

Limitations

AOSE is at an early stage of evolution. While there are many good arguments to
support the view that agents represent an important direction for software
engineering, there is a deficiency of actual experience to support these arguments.
Preliminary methodologies and software tools to support the deployment of agent
sysfems are beginning to appear, but slowly. This section, points out some of the
key obstacles that must be overcome in order for AOSE to become “mainstream”:

» Sorting out the relationship of agents to other software paradigms - objects in

particular. |

it is not yet clear how the development of agent systems will coexist

with other software paradigms, such as object-oriented development.
* Agent-oriented methodologies.

Although a number of preliminary agent-oriented analysis and design
methodologies have been proposed, there is comparatively little consensus
between them. In most cases, there is not even agreement on the kinds of
concepts the methodology should support. The presence of UML as the
predominant modeling language for object-oriented systems and the kinds of
concepts and hotations supported by UML are not necessarily those best-
suited to the development of agent systems.

e Engineering for open systems.

42

tn open such systems, it is essential {o be capable of reacting to
unforeseen events, exploiting opportunities where these arise, and
dynamically reaching agreements with system components whose presence
could not be predicted at design time. However, it is difficult to know how to
specify such systems, and even more so how to implement them. Therefore,
a better understanding of how to engineer open systems is needed.
Engineering for scalability.

Finally, a better understanding is needed of how to safely and
predictably engineer systems comprised of massive numbers of agents that
dynamically interact with each other in order to achieve their goals. Such
systems seem prone to problems such as unstable/chaotic behaviours,
feedback, and so on, and may easily fall prey to malicious behaviour such as

viruses.

43

CHAPTER IV

AGENT BASED WEB SERVICES

While a Web service does not have to possess all characteristics of an agent,
the Web services approach to building complex software systems bears many
similarities to the engineering process of a collection of software agents. In
particular, large systems are assembied from distributed heterogeneous software
components providing specialized services and communicating using protocols
based on previous mutual agreement. Similarly to certain multi-agent engineering
paradigms, the design process of such systems focuses on the declarative
characterization of the capabilities of agents and on a message-based paradigm of
interoperation.

The area of Web services offers real interest to the Multi Agent community,
mainly because of similarities in system architectures, powerful tools, and the focus
on issues such as security and reliability. Similarly, techniques developed in the
Multi Agent research community promise to have a strong impact on this fast
growing technology.

One of the best sources of information on the current state of research in this
field is the yearly workshop on Web services and Agent-Based Engineering
(WSABE). This year's workshop was held in New York City on July the 19th, and
there were eight accepted papers (four short papers and four long ones). Among

other papers which focused more on applied side is work submitted by Ishikawa,

a4

Yoshioka and Tahara which brings light on the process of synthesis of Web services
and mobile agents (Ishikawa et. al., 2004). This approach introduces Web services
and mobile agents and presents original approach to so called Mobile Web services
as synthesis of Web services and mobile agents.

To realize the potential of agents to manage interactions with Web services a
number of research efforts are under way to bring semantics to Web service
descriptions that wili sit at layers above what is being offered commercially. A
number of approaches have been offered to provide Web services with agent-like
behaviour through the use of agent wrappers. Some approaches use wrappers so
that web sources can be queried in a similar manner to databases (Buhler & Vidal,
2003).

The following sections will discuss the application of agents in three main
areas of interest:

e Grid Computing
+ Semantic Web

« Automatic composition of services

Agents and Grid Computing

The Grid and agent communities both develop concepts and mechanisms for
open distributed systems, although they do that from different perspectives. The Grid
community has historically focused on infrastructure, tools, and applications for
reliable and secure resource sharing within dynamic and geographically distributed

virtual organizations. In contrast, the agent community has focused on autonomous

45

problem solvers that can act flexibly in uncertain and dynamic environments. Yet as
the scale and ambition of both Grid and agent deployments increase, we see a
convergence of interests, with agent systems requiring robust infrastructure and Grid
systems requiring autonomous, flexible behaviours.

Grids provide an infrastructure for federated resource sharing across trust
domains. Much like the Internet on which they build, current Grids define protocols
and middleware that can mediate access provided by this layer to discover,
aggregate, and harness resources. These applications span a wide spectrum.
Moreover, the standardization of the protocols and interfaces used to construct
systems is an important part of the overall research and development program.

Grid technologies have evolved through at least three distinct generations:
early ad hoc solutions, de facto standards based on the Globus Toolkit (GT), and the
current emergence of more formal Web services based standards within the context
of the Open Grid Services Architecture (OGSA) (Foster et. al. 2002). The Grid
community has participated in, and in some cases led, the development of Web
services specifications that address other Grid requirements. The Web Services
Resource Framework (WSRF) defines uniform mechanisms for defining, inspecting,
and managing remote state, a crucial concern in many settings. WSRF mechanisms
underlie work on service management (WSDM, in OASIS) and negotiation (Web
Services Agreement, in GGF), efforts that are crucial to the Grid vision of large-
scale, reliable, and interoperable Grid applications and services. Other relevant
efforts are aimed at standardizing interfaces to data, computers, and other classes

of resources.

46

A core unifying concept that underlies Grids and agent systems is that of a
service: an entity that provides a capability to a client via a well-defined message
exchange (Booth et. al., 2003). Within third generation Grids, service interactions are
structured via Web service mechanisms, and thus all entities are services. However,
while every agent can be considered a service (in that it interacts with other agenis
and its environment via message exchanges), we might reasonably state that not
every Grid service is necessarily an agent (in that it may not participate in message
exchanges that exhibit flexible autonomous actions).

The Grid state model defines how state is represented and accessed, but
does not speak to the structure or semantics of the state that is exposed. Typical
practice is to define state in terms of fixed schema or attributes. In contrast, agent
systems address semantics but do not provide a consistent state model. An
integrated approach can allow for the publication of richer semantic information
within the Grid state model, thus enhancing the ability of applications to discover,
configure, and manage services in an interoperable manner (Goble, De Roure,
Shadbolt & Fernandes, 2004).

While Grid technologies provide the means for describing and grouping
services, these higher level matchmaking and discovery capabilities are not currently
part of Grid infrastructure. Fortunately, this is an area where much work has been
done in the space of agents, and incorporation of this technology would help a lot to .
improve this situation. This integration may have an impact on how state is

represented and how services are organized.

47

As with other aspects of agents and Grids, it is expected to see the
adaptation of agent algorithms and technologies as they incorporate policy
specification and enforcement into their basic operations and Grid algorithms making
use of some of the richness of the various agent trust and reputation models that
have been developed (Ramchurn, Huynh & Jennings, 2004). It is also expected that
the types of policy statements made, as well as how are they disseminated and
applied, will evolve as agent-based techniques become more completely integrated
into Grids. For example, reputation-based authentication mechanisms, which lend
themselves to agent-based implementations, show great promise in the Grid

environment.

Semantic Web

One general characterization of the technologies used for service discovery in
the Web services world can be made by studying the difference between
approaches which could be considered semantically poor and those which are
semantically rich. In the former case, services are often referred to by opaque
names or function signatures which give little or no indication of the nature of the
services being managed. In the latter, however, service descriptions are more
complex expressions which are based on terms from a_greed vocabularies, and
which attempt to describe the meaning of the service, rather than simply assigning a
name to it. A key component in the semantically-rich approach is the ontology, the
formal, agreed vocabulary whose terms are used in the construction of service

descriptions. An ontology is a conceptualization of an application domain in a human

48

understandable and machine readable form, and typically comprises the classes of
entities, relations between entities and the axioms which apply to the entities which
exist in that domain. Ontologies are currently a fast growing research topic, with
interest from several communities, including agent-based computing, Semantic Web
and knowledge management communities, because they offer a more formal basis
for characterizing the knowledge assets held by software agents, Semantic Web
services or organizations (Guarino & Giaretta, 1995).

Although such ontology defines the agreed meaning for the application
domain-specific terms used in the content of messages, it does not define the
meaning of the message types themselves, or their effects upon the recipient. The
current approach in the Semantic Web to Web services, such as that taken by
DAML Services, does not provide a common basis for defining the pragmatics of
different message types, as it might be expected from a speech act-like treatment of
messages (Searle, 1969). Such a basis would provide a way to ease the introduction
of new types of messages, since there would be a common understanding of what
was meant by, for example, a directive message (which instructs a system
component to perform an action) or an assertive message (which informs a system
component of some fact) which was independent of any domain specific meaning.
The technique of factoring out the common attributes of message types and
ascribing them to different classes of speech acts is commonly used in the design of
agent communication languages (ACL) for multiagent systems (FIPA, Oct. 2002),
where there is a clear separation made between the domain-specific and domain-

independent aspects of communication. A similar approach can be applied to Web

49

services, in which an ACL component is integrated into the semantically rich service
descriptions. -

In the conventional Web services approach exemplified by WSDL or even by
DAML Services, the communicative intent of a message (for example, whether it is a
request or an assertion) is not separated from the application domain. This is at
odds with the convention from the Multi-Agent Systems world, where there is a clear
separation between the intent of a message, which is expressed using an agent
communication language, and the application domain of the message, which is
expressed in the content of the message by means of domain-specific ontologies.

This separation between intent and domain is beneficial because it reduces
the brittleness of a system. If the characterization of the application domain (the
ontology) changes, then only that component which deals with the domain-specific
information needs to change, while the agent communication language component
remains unchanged.

The division of service descriptions into a profile and a process component,
as in DAML Services, provides a means to compartmentalize Web services in a
manner similar to that found in agent systems. it therefore makes sense to describe
the pragmatics of message types in the process component, giving an abstract
ontology of message types that corresponds to the agent communication language,
while the more application-specific details of the abilities of a particular agent
(expressed as constraints on the content of messages) are expressed in the profile

component, as shown in Figure 7.

50

Figure 7. Service Description with ACL Process Ontology

gervice desenption

domain-speciic FIF& ACL
profile process ontology

profile process

DAML Servces

Automatic composition of services

The automatic composition of Web services is a recent trend that focuses on
simplifying the process of composition of Web services and allowing services to
automatically acquire related services so they can perform the task together
(Berners-Lee, 2001). This section presents a short overview of Semantic Web
centered approach for the automatic composition of Web services (Medjahed,
Bouguettaya & Elmagarmid, 2003). One of the proposed approaches builds on the
semantic description framework and composability model (Medjahed, 2004). it
consists of three conceptually separate phases: speciﬁcafion, matchmaking, and
generation (see Figure 8).

The specification phase (phase 1) enables high-level descriptions of
composition requests. For that purpose, a Composition Specification Language
(CSL) is defined. CSL extends UML activity diagrams with an ontological description
of the composition request (Object Management Group, 1999). Using CSL,
composers specify the what part of the desired composition but will not concemn

themselves with the how part.

51

Figure 8. Overview of one the Proposed Approaches for Automatic Service Composition

Composition
Pl

High leve!
gdescription of

; the desired
omposition i
compositi e

Web Service | |>

/

|

Registries |

ﬁ) Grtologicat Organization
ang Description of Web
Services

Also, composers are not required to be aware of the full technical details such
as the list of participant services and the way they are executed and plugged
together. The maichmaking phase (phase 2) uses the composability model to
generate composition plans that conforms to composer’s specifications. One or
several composition plans are generated for each composer's sub-request. By
composition plan, we refer to the list of imported operations to be outsourced, their
orchestration order, and the way they interact with each other (plugging operations,
mapping messages, etc.) in brder to implement the corresponding sub-request. In
the generation phase (phase 3), detailed descriptions of the composite service are
generated. Quality of Composition (QoC) model is specified to assess the quality of
the generated descriptions.

The following list presents research prototypes that support Web service

composition focusing on a representative set of such prototypes.

52

CMI (Collaboration Management Infrastructure) - CMI provides an
architecture for inter-enterprise workflows. The main components of CMi
engine include the CORE, coordination and the awareness engines
(Schuster, Baker, Cichocki, Georgakopoulos & Rusinkiewicz, 2000).

eFlow - eFlow is a platform that supports the specification, enactment, and
management of composite services (Casati, lInicki, Jin, Krishnamdorthy &
Shan, 2000).

WISE (Workflow based Internet SErvices) - WISE aims at providing an
infrastructure for the support of cross-organizational business processes in
virtual enterprises (Lazcano, Schuldt, Alonso & Schek, 2001).

CrossFlow - The main contribution of CrossFlow is in using the concept of
contracts as a basic tool for cooperation (Ludwig & Hoffner, February 1999).
Mentor-Lite - Mentor-Lite addresses the problem of distributing the execution
of workflows (Weissenfels, Gillmann, Roth, Shegalov & Wonner, 2000).

XL (XML Language) - XL defines an XML language for the specification of
Web services. An XL service specification contains local declarations,
declarative clauses, and operation specifications (Florescu, Grunhagen &
Kossmann, 2002).

SELF-SERV (compoSing wkb accessiblLe inFormation and buSiness
sERvices) - SELF-SERV proposes a process-based language for composing

Web services based on state charts (Shen, Benatallah, Dumas & Mak, 2002).

53

In Table 2 (see Appendix), the aforementioned prototypes are compared
using interaction layers (Medjahed, 2004). For example, eFlow uses RMI at the
communication layer. At the content iayer, eFlow provides adapters to support
different interaction protocols such as OBl and RosettaNet. Interoperability at the
business layer is enabled through a process description model based on state
machines.

The same prototypes are compared in Table 3 (see Appendix) using key
interaction dimensions such as Coupling, Autonomy, Heterogeneity, etc. (Medjahed,
2004).

For example, WISE allows only tight coupling among B2B participants. in
terms of autonomy, partners must advertise services in encapsulated objects.
Heterogeneous interaction protocois are supported through object-based
middleware. External manageability and adaptability are possible via process
monitoring/analysis module and execution guarantee. Security however is not

addressed. Scalability is accommodated using distributed architecture.

54

CHAPTER YV

DISCUSSION AND FINDINGS

The following sections of this chapter will focus on the benefits of using
intelligent agents to implement Web services. They cover issues that can be solved
only using agents or can be enhanced if implemented using agents. A short
overview of the data gathering process used and how the various sources of
information were analyzed follows. The last section focuses on my personal findings

and also presents a proposed architecture for agent based Web services.

Agents to the rescue

The issues related to Web services where agents can provide a solution or
better performance are:
s Cooperation
» Autonomy
e Context awareness

+ Personalized services/Dynamic adaptation

Cooperation. Web services as we know them today cannot cooperate among
each other without a manual (human) intervention or request. Cooperation among
Web services would not be needed if all the services offered could do the job on

their own without any help from other services. In reality this is rarely the case. Let

55

us examine a simple situation where a Web service books an airline ticket. Without
cooperation the Web service will only do what it is programmed to do which in this
case is booking a ticket. If we implement this service by using agents and their
cooperative nature we can provide a much more robust service to clients. In this
example an agent based service could automatically request information from other
agent based services about different flights available, prices, nearby hotels and
rates, car rental availability and cost, attractions, currency exchange, weather
forecast for the time the client will be away aﬁd many other services. This smart
service can act as a multi-purpose broker for clients.

In order for Web services o cooperate among each other they need to use a
language of some sort. That is where agents come in place. Agent Communication
Language (ACL) provides agents with a means. of exchanging information and
knowledge. Knowledge Query and Manipulation Language (KQML) and the
Foundation for Intelligent and Physical Agents (FIPA) ACL are two most widely used
ACLs. A relatively new approach to agent communication is DARPA Agent Mark-Up
Language (DAML) which can be used to encode ACL in DAML language (Zou, Finin,
Peng, Joshi and Cost, 2003). Web services gain a lot more power and robustness

with this added capability of cooperation among each other.

Autonomy. A Web service, as currently defined and used, is not autonomous.
Autonomy is a characteristic of agents, and it is also a characteristic of many
envisioned Internet based applications. One of the major drawbacks of the Web

services infrastructure is its lack of semantic information. As presented in Chapter 2,

56

Web services rely exclusively on XML for interoperation. Unfortunately, XML
guarantees only syntactic interoperability. Expressing message content in XML -
allows Web services parse each other's messages, but it does not provide any
means on semantically “understanding” the message contents.

All current industry proposals for the Web services infrastructure are based
on Web services reaching explicit agreement on both the way they interact and the
format of the messages they exchange. Developers must hard code these
interactions, as well as the how Web services should interpret the messages.
Developers also need to modify their Web services when something changes in the
interaction agreement or when something breaks. The fact that current Web services
infrastructures do not support automatic Web service reconfiguration creates an
infrastructure that is inflexible, brittle and expensive to maintain.

To overcome this brittleness, Web services need more autonomy which will
let them reconfigure their interaction patterns as needed. Any increase in autonomy
will let Web services react to potential changes in the environment while minimizing
developer’s direct intervention. The lack of explicit semantics prevents current Web
services from acting autonomously. Autonomy will allow services to understand each
other's messages as well as what tasks each service performs.

Autonomy can be achieved by using DAML-S which is both a language and
ontology for describing Web services (Martin, 2003). DAML-S attempts to close the
gap between the Semantic Web and current Web services.

Back to the booking flight example, an autonomous Web service would seek

help from other services (cooperation) by itself without human request. If

57

implemented properly, an autonomous Web service can provide personalized
information to the client and constantly pursue the best flight ticket deal until the

flight is booked.

Context awareness. We humans are context-aware. We are able {0 use

implicit situational information, or context, to increase our conversational bandwidth
(Brown, Davies, Smith and Steggles, 1999). This ability allows us to act in advance
and anticipate other's needs.

Let us consider an example with two people located in the same room:
Person A and Person B. Person A asks Person B, “close the door please.” As
expected, Person B would instantly reason that Person A is referring to the door in
the same room to be closed, and not the door in any other room.

This simple example illustrates context-awareness in human beings. The fact
that Person B is able to respond and takes the right action is due to the following
three valuable capabilities of humans:

1. Ontology sharing - humans are able to share communication languages

and vocabularies.

2. Sensing - humans are able to perceive their environment through sensory

organs.

3. Reasoning - humans are able to make sense out of what they have

perceived based on the knowledge that they posses.

Let us assume that for some reason Person B is unable to share ontology

with Person A or unable to sense from Ferson A or unable o make sense out of

58

what he/she has perceived, then Person B would not be able to close the door as
requested by Person A. This means that Person B becomes context-aware only
when he/she possesses all of the three capabilities described above.,

Ontology sharing, sensing and reasoning are not only crucial to human
context-awareness, but also significant to the realization of context-aware
applications. Because current Web services do not posses all three capabilities they
cannot offer context-awareness.

CoolAgent RS is a multi-agent system that can automatically recommend
different types of tailored information to users by reasoning from their context without
any explicit manual input (Chen, Tolia, Sayers, Finin and Joshi, 2001).

If our flight booking Web service would have been context-aware it would
automatically behave differently and offer different information based on the fact if
the flight was booked or not. It will also be able to notify the client if for any reason

the flight is postponed or cancelled and offer different choices.

Personalized services/dynamic adaptation. Personalization describes the

process of using customer information in order to optimize business relationship with
them. Traditionally, personalization technology has focused on a service's
interactions with the customer. The main goal of this technology has been to use
information about a customer so as to better serve the customer by anticipating their
needs, make the interaction efficient and satisfying for both parties, and build a

relationship that encourages the customer to return for subsequent purchases.

59

Web services promise a lot of potential in providing personalization which is
tightly linked with dynamic adaptation and context-awareness. The problem is that
current standards on which Web services are based on do not support any type of
personalization. This means that there is no way that a Web service can be aware of
who is invoking it or keep track about client who invoked it in the past.

Research community has proposed several personalized service
architectures that involve agent technology. For example, Kuno and Sahai came up
with an architecture that uses personalization component to provide interaction

between user devices and web services as shown in Figure 9 (Kuno & Sahai, 2002).

Figure 9. User devices interact with Web services via the personalization component

Personalization component

The personalization component can be either integrated with hosted
environmenis like .Net based services or with existing portals/integrators so as to

provide user personalization. In this proposed architecture agents are used to

60

implement delegates. These agents proxy for the users, achieve goals of the user
through goal directed behaviour (user presence is optional} and also interact with
other constituents of the personalization component.

For example, context managers track the user as its temporal and spatial
location changes. Similarly, user profiles maintain static and dynamic information
about the user. Static information is pre-registered while dynamic information is
learnt by studying user behavioural patterns. As the delegates interact with Web
services over time their experiences are recorded in the rating services. These rating
services can be used by delegates of other users or can also be passed to third

party rating services.

Overview of the research process

The organization and research process for this essay went through four main
phases:

» Creating an outline

e Searching for relevant publications

« Categorizing and classifying resources

» Filtering resources

The following sections will describe these phases briefly.

Creating an outline. The outline creation went through three major changes.

The suggested structure from the Style Guide was followed and modified as

necessary. Considerable time was spent on planning the layout of the essay, the

61

order in which the content should be presented and what depth should be used for
certain areas. Suggestions from supervisor were also very helpful. After finalizing the
outline of the essay it was much easier to search for, filter, and select research

publications.

Searching for relevant publications. Depending on the chapter, the effort for

finding relevant publications varied. ACM digital library, IEEE, CiteSeer, Google, and
published books were used as sources of information. Some of the articles were not
available for free in IEEE but they were published on CiteSeer or available online by
authors themselves. Over one hundred different keywords and combinations of
keywords were used to perform a fine search on relevant publications. More then
thirty books were considered as sources but very few used because not much is
published in this area.

The outcome of this searching process was a long list of references which
later needed to be categorized, classified and filtered. At this stage, in order to
compile a list of potential references, only a brief overview of articles was performed

because of a relatively large amount of references.

Categorizing and classifying resources. After searching for relevant
publications in the area of interest, all the publications were carefully categorized
first by chapter that they might be used and then by the relevance to the topic. After
that ali the publications were classified into two large groups: short and long

publications. During this phase most of the publications were carefully read in order

62

to create an understanding of the state of the art in this field. This phase was the
most consuming of the whole research process mainly because of the large number
of articles and amount of reading that had to be done in order to properly address
the issues.

During this process there were articles that were somewhat conflicting with
each other because they were proposing solutions that use totally different
technologies and implementations. In these cases more resources had to be found
and proper conclusions were drawn based on architectures and technologies that

are “mainstream” in this area of research.

Filtering rescurces by relevance. The final stage of the research process was
the filtering of resources based on content and relevance of material. Some of the
publications were custom tailored to solve a localized industrial problem but
nevertheless they were taken into consideration because they showed the applied
side of current technologies. While filtering resources there was sometimes a need
to go back to phase one in order to verify the source of the article or even to search
for more accurate articles.

The four phase approach shown here was very heipful in gathering,
organizing and filtering all the articles because it helped building the reference table

from the beginning and using it as needed.

63

Findings

This section provides a more detailed summary of my personal findings during the
period of working on this essay. | see Web services being the future of distributed
computing which will allow integration of different platforms and architectures so they
can connect seamiessly to each other. A lot of work has been done by leading
software companies to standardize the protocols and languages on which Web
services are based on. This is an ongoing process and yet a lot has to be done. On
the other hand, agent technology, although a .much more mature subject, is still
struggling on the standardization aspect. Main reason for this is the lack of buy-in
from maijor software companies to incorporate the technology into their products.
There are only few stable commercial tools that offer agent-oriented development.
Incorporating agent technology in Web services will open doors to a new era in
distributed computing. Figure 10 presents a general view of my proposed
architecture which is based on agent wrappers and will provide all the extra
functionality that agents are known for. This means that agents will act as an extra
layer of abstraction on top of Web services.

As Figure 10 illustrates, an interested party requests a service through an
agent which in turn browses directory listings provided by an agent broker. Agent
broker can communicate with other similar brokers to obtain other services not
available in its directory. Services themselves can cooperate with other agents in
autonomous mode depending on the level of autonomy either through an agent

broker or directly (direct communication between agents is not shown). Al the

64

communication is done using ACL which simplifies the programming side of the
implementation.

Figure 10. Proposed architecture for agent based Web services

ACL ACL

ACL

ACE \CL ACL ACL

The following sections will describe in more detail how the proposed agent
architecture will support the aspects of cooperation, autonomy, context awareness

and personalized services/dynamic adaptation.

Support for cooperation. As explained in previous sections existing Web

services cannot cooperate among each other without a manual intervention of
humans mainly because the existing communication protocols are not semantically
rich. Using DAML-S as a communication language between agent-based Web
services allows for smart communication between agents which in other words

means agents “can understand” each other and automatically invoke services of

65

other agents as needed. Based on the architecture presented in Figure 10 when the

agent requestor searches for the needed service three scenarios can occur:

1. The found service is exactly what the client wanted (this is determined
using a semantically rich communication language like DAML-S) and the
agent requestor fulfills the client's request.

2. The service cannot be found but the agent (requestor of service)
automatically is requests composition of services which involves
cooperation of two or more services in order to meet the client's request.

3. The service cannot be completed in any way possible at the time
requested. The client is notified of this condition and the service
requestor continues to proactively search for service providers that can

fulfill the clients request.

it is possible to modify the execution of the second scenario if the architecture
presented in Figure 10 is modified to allow for a higher degree of autonomy of agent
based Web services. This means is that the agent wrapper can have a higher level
of autonomy which allows it to freely cooperate and communicate with other agents
in order to fulfill the request from service requestor agent. This level of |
communication between agents is not presented in Figure 10 but it is worth

mentioning because it directly affects the cooperation mode between agents.

66

Support for autonomy. Because of the fact that my proposed architecture

uses only one language (protocol) to communicate between the requestor of the
service and the corresponding provider, all involved parties are implemented using
agent technologies so they can all communicate using the same language. DAML-S
seems as an excellent candidate to use as a communication language between
agents since DAML-S is both a communication language and ontology for describing
Web services. Requestor of service is an agent capable of acting independently on
behalf of its client. DAML-S allows agents to be autonomous because of its support
for Semantic Web. This means that agents can make sense of the information
because the information can be as semantically rich as needed. This allows agents
to interpret the information on their own and make a decision on what to do next
based on what is best for their clients. Therefore my proposed architecture

inherently supports autonomy.

Support for context awareness. In previous sections of this chapter | have

talked about CoolAgent RS which is a multi-agent system capable to automatically
recommend different types of tailored information to users by reasoning from their
context without any explicit manual input from users. This means that it is possible to
adapt this system and add context awareness to the proposed architecture. The
implementation and adaptation of the proposed architecture for context awareness is
an undertaking that is beyond the scope of this essay but it makes a good candidate

for future research in this field.

67

Personalized services/dynamic adaptation. As mentioned in previous sections

of this chapter, research community has already proposed several personalized
service architectures that involve agent technology. Figure 9 shows one of the
implementations that uses personalization component to provide interaction between
user devices and web services. Because agents are already part of my proposed
architecture it is easy to integrate them with any of personalized service architecture
proposed by research community. On the other hand there is also a possibility of
further research on implementing personalization and dynamic adaptation on the
proposed architecture. One more reason for this is the fact that context awareness is
very tightly coupled with personalization and dynamic adaptation so all the features

can be implemented together.

68

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Current Web services, without any support from agents, still do provide the
capability to seamlessly integrate different platforms. They provide an excellent
choice for implementing distributed applications because they are architecturally
neutral. Web services operate using open, téxt-based standards, such as WSDL,
UDDI, and SOAP, which enable components written in different languages and for
different platforms {o communicate.

Agent technology provides several advantages which can be easily
incorporated in existing Web services. The capability of agents to be autonomous,
cooperate with other agents, be aware of the context in which they are invoked, and
dynamically adapt to changes in the environment are some of the main advantages
that agents have compared to current Web services. Agent based Web services
would provide clients with a fast, personalized, and intelligent service. This in turn
will increase the percentage of returned customers because of higher satisfaction
from services provided.

Instead of focusing on Web services separately from the agent technology,
both technologies should be considered together. This approach makes it simpler o
implement standards that organizations will have to follow which will lead to services

that can be provided and consumed seamlessly,

69

There are several proposed architectures related to agent based Web
services but none of them addresses all the possible advantages that agents have
compared to existing Web services. Also, a lot more work needs to be done to get
the industry buy-in because that is the only way we could finally see practical use of
agent based Web services. For example, existing Web services are maturing as a
technology mainly because major software companies are supporting them based
on predefined standards. Many organizations have already published their services
online to be consumed by customers, but these services are stateless, non-
autonomous, lacking pro-activeness, in other words they are static services waiting
to be consumed and that is it.

Further research is recommended on practical implementation and testing of
the architecture provided in this essay. A proper agent communication language like
DAML-S should be chosen and standardized as a communication language between
agent-based services. | would also propose that a new name should be adopted for
agent-based Web services to denote their new capabilities and make them visible as
a new technology. For example, Intelligent Web Services (IWS) or Agent Based
Web Services (ABWS) would be a much more appropriate name.

The proposed architecture comes as a result of a research of numerous
related publications in this area. It is certainly a simple architecture which allows
flexibility on implementation and deployment. Although not shown in Figure 10 this is
a distributed architecture with three tiers involved. The first tier is the client tier which
is represented with a “requestor of service” agent. The second tier is the agent

broker which lists all the available services registered with that broker. The third tier

70

is the service tier which represents the agent based services themselves. The
distributed nature of the proposed architecture as well as single communication
language (XML based) used between tiers inherently provides transparency, fault-
tolerance (a must have feature of all distributed systems), extensibility and
portability.

| strongly believe that the work presented in this essay contributes
considerably towards the industry acceptance of Web services and more importantly
agent based Web services. The essay also proposes a simple architecture that can
be implemented using a programming language like Java, which is work that can be
done in the future.

Further research is also suggested on justifying the use of a specific agent
communication language (ACL) for agent based Web services. Somehow this ACL
needs to be standardized as an official communication language between agent
based Web services. Further research is recommended in integrating context
awareness and personalization in the proposed architecture. As mentioned earlier it
would be better if both these features were tackled at the same time because of their
similarities.

Finally, more work has {o be done to educate business owners on
advantages of having services that their company offers exposed and easily
accessible online. Many businesses are still in the process of implementing a web
presence and they are unaware of Web services and what they can do for their
business. Of course it would be useless to start and push for agent based Web

services if most companies out there have no idea of what Web services are. | am

71

referring here to business owners and not software vendors. It is useless to produce
an item when there is a relatively small customer base interested in that item, mainly
because the customer base does not know what to do with that item or how it can
assist them in day to day life. To make things even more complicated, Web services
are very young technology which just recently has been adopted and supported by
major software vendors. Standards related to Web services are still under
development which alerts many companies on rather waiting and doing nothing than

adopting the new technology.

72

REFERENCES

Benfield, S. (2001). Web Services: The Power to Change the World? Web Services
Joumnal, June, pp. 22.
Berners-Lee, T. (April 2001). Services and Semantics: Web Architecture. Retrieved

December 27, 2004, from hitp:/iwww.w3.0ra/2001/04/30-thl,

Booch, G. (1994). Object-Oriented Analysis and Design (2" ed.). Addison-Wesley:
Reading, MA, pp.91.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C. &
Orchard, D. Web Services Architecture. W3C, Working Draft

http://www. w3.0rg/TR/2003/WD-wsarch-20030808/, 2003.

Borck, J. (2002). InfoWorld Technology of the Year: Web Services. infoWorld,
February, pp. 48.

Brazier, F. M. T., Dunin-Keplicz, B. M., Jennings, N. R., & Treur, J. (1996). DESIRE:
Modelling multi-agent systems in a compositional formal framework.
International Journal of Cooperative Information Systems, 6, 1, pp.67-94.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, & J., Perini, A. (2002).
Tropos: An agent-oriented software development methodology. Technical
Report DIT-02-0015, University of Trento, Department of information and
Communication Technology.

Brown, P., J., Davies, N., Smith, M., Steggles, P. (September 1999). Towards a
better understanding of context and context-awareness. Handheld and

ubiquitous computing, number 1707 in Lecture Notes in Computer Science,

73

pp. 304-7.

Buhler, P. A. & Vidal, J. M. (2003). Semantic Web Setvices as Agent Behaviors. In
B. Burg, J. Dale, T. Finin, H. Nakashima, L. Padgham, C. Sierra, and S.
Willmott, Agentcities: Challenges in Open Agent Environment, Springer-
Verlag, pp.25-31.

Burrafato, P. & Cossentino, M. (27-28 May 2002). Designing a multi-agent solution
for a bookstore with the PASSI methodology. In Fourth International Bi-
Conference Workshop on Agent-Oriented Information Systems (AQIS-2002):
Toronto, ON., Canada, at CAISE'02.

Bush, G., Cranefield, S., & Purvis, M. (January 2001). The Styx agent methodology.
The Information Science Discussion Paper Series 2001/02, Department of
information Science, University of Otago, New Zealand. Retrieved July 24,

2004, from hitp://divcom.otago.ac.nz/infosci,

Caire, G. & Leal, F. (July 2001). Recommendations on supporting fools. Technical
Information Final version, European Institute for Research and Strategic
Studies in Telecommunications (EURESCOM), Project pp.907, deliverable 4.

Casati, F., lnicki S., Jin, L. J., Krishnamoorthy, V. and Shan M. C. (2000). eFlow: a
Platform for Developing and Managing Composite e-Services. Technical
Report HPL-2000-36, HP Laboratories, Palo Alto, California, USA.

Cauldwell, P., Chawla R., Chopra, V., Damschen, G., Dix, D. and Hong, T. (2001).

Professional XML Web Services. Birmingham, UK: Wrox Press, pp. 21.

74

Chen, H., Tolia, S., Sayers, C., Finin, T. and Joshi, A. (September, 2001). Creating
context-Aware Software Agents. Retrieved January 12, 2005, from

http://ebiguity.umbc.edu/v2.1/ file direciory /papers/80.pdf.

Collinot, A., Drogoul, A., & Benhamou, P. (December 1996). Agent oriented design
of a soccer robot team. In Proceedings of the Second International
Conference on Multi-Agent Systems, Kyoto, Japan.

Debenham, J. & Henderson-Sellers, B. (May 2002). Full lifecycle methodologies for
agent-oriented systems - the extended OPEN process framework. in
Proceedings of Agent-Oriented Information Systems (AOIS-2002) at
CAISE'02, Toronto.

Deloach, S. A., (May 1998). Multiagent systems engineering: A methodology and
language for designing agent systems. in Agent-Oriented Information
Systems ‘99 (AOIS'99), Seattle WA.

FIPA, (Oct. 2002). FIPA Communicative Act Library Specification. Technical Report
XCO000371, Foundation for Intelligent Physical Agents.

Florescu, D., Grunhagen, A. & Kossmann, D. (May 2002). XL: An XML Programming
Language for Web Service Specification and Composition. In Proceedings of
the International World Wide Web Conference, pages 65-76, Honolulu,
Hawaii, USA.

Foster, 1., Kesselman, C., Nick, J.M. & Tuecke, S. (2002). Grid Services for
Distributed Systems Integration. I[EEE Computer, 35 (6). 37-46. 2002.

Glaser, N. (1996). Contribution to knowledge modelling in a multi-agent framework

{the CoMoMAS approach). PhD Thesis, L'Universite Henri Poincare.

75

Goble, C.A., De Roure, D., Shadbolt, N.R. & Fernandes, A. (2004). Enhancing
Services and Applications with Knowledge and Semantics. The Grid:
Blueprint for a New Computing Infrastructure (2nd Edition), Morgan-
Kaufmann.

Guarino, N. & Giaretta, P. (1995). Ontologies and knowledge bases: Towards a
terminological clarification. In N. Mars, editor, Towards Very Large Knowledge
Bases. I0S Press.

Howerton, B. (2002). Keeping Promises. Intelligent Enterprise, January, pp.46.

Huhns, M. N. (2002). Agents as Web Services. IEEE Internet Computing, July-
August, pp.93-94.

iglesias, C. A., Garijo, M., Gonzlez, J. C., & Velasco, J.R. (1996). A methodological
proposal for multiagent systems development extending CommonKADS. /n
Proceedings of the Tenth Knowledge Acquisition for Knowledge-Based
Systems Workshop.

Ishikawa, F., Yoshioka, N., & Tahara, Y. (2004). Toward Synthesis of Web Services
and Mobile Agents. Presented in Web Services and Agent-Based
Engineering (WSABE) workshop. Retrieved August 15, 2004, from

hitp://www . agentus.com/WSABE 2004/program/.

Jennings, N. R,, Faratin, P., Norman, T. J., O'Brien, P., Odgers, B., & Alty, J. L.
(2000). Implementing a business process management system using
ADEPT: A real-world case study. Infernational Journal of Applied Artificial
Intelligence.

Kendall, E. A, Malkoun, M. T., Jiang, C. H. (1995). A methodology for developing

76

agent based systems. In Chengqgi Zhang and Dickson Lukose, editors, First
Australian Workshop on Distributed Artificial Intelligence.

Kinny, D. & Georgeff, M. (1996). Modelling and design of multi-agent systems. In
intelligent Agents lll: Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages (ATAL-96). LNAI 1183,
Springer-Verlag.

Korzeniowski, P. (2002). A Little Slice of the UDD1 Pie. eWeek, 4 February, pp.50-
51.

Kuno, H., Sahai, A., (2002). My Agent Wants to Talk to Your Service: Personalizing
Web Services through Agents. Hewlett-Packard Laboratories, April 2002.

Lazcano, A., Schuldt, H., Alonso G. & Schek, H. J. (March 2001). WISE: Process
based E-Commerce. IEEE Data Engineering Bulletin, 24(1):46-51.

Lind, J. (1999). ASSIVE: Software Engineering for Multiagent Systems. PhD thesis,
University of Saarbrcken, Germany.

Ludwig, H. & Hoffner, Y. (February 1999). Contract-based Cross-Organisational
Workflows - The CrossFlow Project. In Proceedings of the International Joint
Conference on Work Activities Coordination and Collaboration, pages 1-6,
San Francisco, California, USA.

Martin, D. (2003). DAML-S: Semantic Markup for Web Services. Retrieved January

10, 2005, from http://iwww.dami-s.ora/dami-s/0.9/dami-s.himl.

Mayfield, J., Labrou, Y., & Finin, T. (1996). Evaluation of KQML as an Agent
Communication Language. Retrieved July 26, 2004, from

hitp://www.cs.umbc.edu/~iklabrou/publications/Inai95.pdf.

77

Medjahed, B. (January 2004). Semantic Web Enabled Composition of Web
Services. Dissertation submitted to the Faculty of the Virginia Polytechnic
Institute and State University in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Computer Science and Applications,

Medjahed, B., Bouguettaya, A. & Elmagarmid, A. (November 2003). Composing
Web Services on the Semantic Web. The VLDB Journal, 12(4):333-351.

McGarr, M. (2002). Transforming Business Processes with EDI. Electronic
Commerce World, May, pp.23.

Newcomer, E., (2002). Understanding Web Services. XML, WSDL, SOAP, and
UDDI. Boston, MA. Pearson Education.

Object Management Group. (1999). Unified Modeling L.anguage Specification
(Version 1.3). Retrieved December 28, 2004, from

hitp:.//www.omg.org/technology/documents/formal/umi.htm.

Odell J., Parunak, H. V. D., & Bauer B. (2000). Representing Agent Interaction
Protocols in UML. The First International Workshop on Agent-Oriented
Software Engineering (AOSE-2000).

Padgham, L. & Winikoff, M. (July 2002). Prometheus: A methodology for developing
intelligent agents. In Third International Workshop on Agent-Oriented
Software Engineering.

Ponnekanti, S.H. & Fox, A. (2002). SWORD: A Developer Toolkit for Web Service
Composition. In Proceedings of 11th WWW Conference, Honolulu, Hawaii.

Ramchurn, §.D., Huynh, D. & Jennings, N.R. (2004). Trust in Multiagent Systems.

The Knowledge Engineering Review.

78

Schuster, H., Baker, D., Cichocki, A., Georgakopoulos, D. & Rusinkiewicz, M.
(March 2000). The Collaboration Management Infrastructure. in Proceddings
of the IEEE International Conference on Data Engineering, pages 485-487,
San Jose, California, USA.

Searle, J. (1969). Speech Acts: An Essay in the Philosophy of Language.
Cambridge University Press.

Shen, M., Benatallah, B., Dumas, M. & Mak, E., O., Y. (August 2002). SELF-SERV:
A Platform for Rapid Composition of Web Services in a Peer-to-Peer
Environment. In Proceedings of the International Conference on Very Large
Databases, pages 1051-1054, Hong Kong, China.

Sun Microsystems, (2005). Java Web Services. Java Web Services Developer Pack
(Java WSDP). Retrieved January 15, 2005, from

hitp:/fiava.sun.com/webservices/jwsdp/index.jsp.

Wagner, G. (July 15 2002). A uml profile for external aor models. In Springer-Verlag
LNAI, editor, In Proceedings of Third International Workshop on Agent-
Oriented Software Engineering (AOSE-2002), held at Autonomous Agents
and Multi-Agent Systems (AAMAS 2002), Bologna, Italy.

Weiss, G. (January 2002). Agent Orientation in Software Engineering. Revised
Version for Knowledge Engineering Review. Retrieved July 27, 2004, from

hitp://wwwhrauer.in.tum.de/~weissa/Docs/weissg-ker(2.pdf.

Weissenfels, J., Gillmann, M., Roth, O., Shegalov, G. & Wonner, W. (February

2000). The Mentor-Lite Prototype: A Light-Weight Workflow Management

79

System. In Proceedings of the |IEEE International Conference on Data
Engineering, pages 685-686, San Diego, California, USA, February 2000.
Wilson, T., (2001). UDDI Promises Link to Web Services. Internet Week, 26
November, pp.26.
Wooldridge, M. & Ciancarini, P. (2000). Agent-Oriented Software Engineering: The
State of the Art. Retrieved July 22, 2004, from

http:/iwww.csc.liv.ac. uk/~miw/pubs/aose2000a.pdf.

Wooldridge, M., Jennings, N.R., & Kinny, D. (1999). A methodology for agent-
oriented analysis and design. In Proceedings of the third international
conference on Autonomous Agents (Agents-99).

World Wide Web Consortium. (2004). Extensible Markup Language (XML).

Retrieved June 2004, from http://iwww.w3.ora/XML/.

World Wide Web Consortium. (2004). Web Services Description Working Group.

Retrieved July 2004, from http://www.w3.0rg/2002/ws/desc/.

Yang, J. & Papazoglou, M. (2002). Web Component: A Substrate for Web Service
Reuse and Compositio. In Proceedings of the 14th International Conference
on Advanced Information Systems Engineering (CAISE02), May, Toronto,
LNCS, Vol. 2348, p21-36.

Zou, Y., Finin, T., Peng, Y., Joshi, A., Cost, S. (2003). Agent Communication In
DAML World. University of Maryland. Retrieved January 10, 2005, from

hitp://www.cs.umbc.edu/~yzou 1/publications/wracbook.pdfffsearch="Agent%?2

0Communicalion%20in%20DAML%20World'

80

APPENDIX

Table 1 Agent-Criented Software Engineering methodologies.

Methodology Authors Category References
AAl Kinney, Georgeff & Rao KE Kinney et. al., (1996)
ADEPT Jennings et. al. KE Jennings et. al., (2000)
AOC methodology for Kendall ef. al. GO Kendall et. al., (1995)
enterprise modeling
AOR Wagner Q0 Wagner, (2002}
Agent UML Odell et. al. 0o Odell et. al., {2000)
Cassiopela Collinot et. al. Q0 Collinot et. al., (1996)
CoMoMAS Glaser KE Glaser, (1996)
DESIRE Brazier et. al. o0 Brazier et. al., (1997)
Gaia Wooldridge, Jennings & 00 Wooldridge et. al., (1999)
Kinny
OPEN agents Debenham & Henderson | QO Debenham ef. al., (2002)
MaSE DeLoach 00 Del.oach, (1998)
MAS-CommonKADS iglesias et. al. KE Iglesias et. al., (1996)
MASSIVE Lind 00 Lind, (1999)
MESSAGE Caire et. al. 00 Caire et. al., (2001)
PASSI Burrafato et. al. 00 Burrafato et. al., {2002)
Prometheus Padgham & Winikoff 00 Padgham et. al., {2002}
Styx Bushet. al. 00 Bush et. al., (2001)
Tropos Bresciani et. al. KE Bresciani et. al.,, (2002)

Naotation: “0Q" is short for Object-Oriented and "KE" is short for Knowledge Engineering

81

Table 2 Web Service compaosition prototypes vs. Interaction Layers

Prototype Communication Layer Content Layer Business | Process Layer
CMi Transport protocols (e.g., Message format {(e.g., State machine
HTTP, CORBA) must a priori XML, EDI} must a priori based model for
be agreed upon be agreed upon process description
WISE Coordination and Not Addressed Virtual business
commuunication module processes
CrossFlow Java RMI Contract in XML Contracts
Mentor-Lite Transaction Processing Not Addressed Business processes
{TP) monitor (Tuxedo) expressed as
state and activity
charts
eFlow Java RMI Provides adapters to State machine
support different based model for
protocols such as OBl process description
and
RosetiaNet
XL SOAP | XML Schema Littie or no
statements for
inter-service
business processes
SELF-SERV | SOAP Not Addressed State charts

Table 3 Prototypes vs. Interaction Dimensions

Prototype | Coupling | Autonomy Heterogeneity | Ext. Manag. | Adaptability Security . | Scalability
CMil Tight External Lise of object- | State Primitives Role Bistributed
andleng | systems only orlented dependent sizch as and parallel
term need to reveat the | proxies control optional and engines for
stale flow and inhibitor can execution
they are in use of be used for
after they awareness coping with
accomplish events some
a task, not unforeseen
how they events
accomplish
the task
WISE Tight Partners Object-based Process Execution Not Distributed
and long must advertise middieware monitoring guarantee Ad- architecturs
term services and dressed
in encapsulated analysis
objects moeduie
Cross Loose Partners Parners must | Quality Primitives Not Cost of
Flow and must agree instail service of Service for flexible Addressed | entry:
transient | on service contract run (QoS) exegution are participanis
coniract time module restricied to must locally
definition environment provides those provided install
manitoring by traditional contract
facilities workflows run fime
environment
Mentor- Tight Participants Application Not Ad- Not Addressed ; Not Warkfiows
Lite and long | do not need programs are dressed Ad- are parlitioned
term 1o reveal how connected o dressed into
services are the workflow several sub-
implemented engine by workflows
speciic and
wrappers distributed

83

eFlow Loose External Provides Event Provides Not Distributed
and long | systems need adapters fracking process Addressed | service
term to describe for different templates, enaciment
their services protocols and service engines
not their platferms such nodes, and
implementation as OBI, service data
RosetiaNet, repositories
and for reuse
e-speak
XL L.oose | Participanis Web services History Change Securily Not
and do not need can be written | clauses clauses features of | Addressed
fransient | to reveal how in XL, Java, or J2EE
services are other
implemented languages
SELF- Loose Participants Service Not Not Addressed | Not Peer-
SERV and do not need wrappers Addressed Addressed | to-peer
transient | io reveal how execution
services are maodel
implemented

84

