ATHABASCA UNIVERSITY

A SYMBIOSIS BETWEEN AGILE METHODS AND KNOWLEDGE
MANAGEMENT FOR DEALING WITH COMPLEXITY IN SOFTWARE
ENGINEERING
BY

JOHN W. SCOTT

A thesis submitted in partial fulfilment
Of the requirements for the degree of

MASTER OF SCIENCE in INFORMATION SYSTEMS

- Athabasca. Alberta

April, 2006

@ John W. Scoft, 2006

APPROVALS
The undersigned certify that they have read and recommend for acceptance the
thesis A SYMBIOSIS BETWEEN AGILE METHODS AND KNOWLEDGE
MANAGEMENT FOR DEALING WITH COMPLEXITY IN SOFTWARE
ENGINEERING submitted by JOHN WILLIAM SCOTT in partial fulfillment of the
requirements for the degree of MASTER OF SCIENCE in INFORMATION

SYSTEMS.

Fuhua Lin, Ph.D.
Supervisor

P
g1

W

Steve Leung, M. Sc i
Reviewer

e,

i3

Mohamed Ally, Ph.D.
Chair

N
O~

DEDICATION
" Throughout the course of my studies | have had the encouragement and support of
many people. First among them my mother, Bernice, who has only asked that |

apply myself whole heartedly and done my best.

iii

ABSTRACT

This thesis proceeds from the notion that complexity in the field of software
engineering is a result of the internal and external forces that must be brought
together to engage in it, resulting in a chaotic state that breeds failure and that this
state can be ameliorated through the use of the Agile Methods and knowledge
management. After enumerating and discussing the sources of complexity, and
surveying the resuits of their interactions, it proceeds to look at the theory of
knowledge management. In elaborating the ideas of Nonaka and Takeuchi we are
introduced to the concepts of both the knowledge spiral and a model of knowledge
creation, including its enabling conditions and barriers, as well as the concept of Ba.
These theories seek to harness the interplay of explicit and tacit knowledge to
manage complexity. These theories form a framework that is then applied to the
Agile methods, specifically Extreme Programming and the Crystal Clear
methodologies, in order to evaluate their values, principles, practices and strategies
of software engineering from a knowledge management perspective. This evaluation
finds that there is a congruency between the practices of the Agile methods and the
theory of knowledge management. In particular the manner in which the Agile
methods engage in an iterative pattern of development, its support for direct
communication, the incorporation of non-technical team members in defining the
product and planning and its reflection on process and product, create a knowledge
creating process. As a result, many of the issues of complexity are either removed or

minimized through the application of this process.

ACKNOWLEDGEMENTS

.Fe.w nlweanin.gful c'o'nt.ribtljtions 5o'me frdm.thé éfforté of one pérsoﬁ acting
alone. Throughout this degree | have had the opportunity and pleasure of interacting
with many Professors and fellow students. Each of them has added something to my
understanding and vision of the field. For that | am thankful.

Dr. Fuhua Lin, my supervisor while | wrote this thesis, and several courses
which drc;ve me in the direction of it, | thank for his encouragement, comments and
willingness to allow me to find my own path, while nudging me in the right direction.

| would also like to thank Dr. Mohamed Ally who chaired the review

committee for this thesis and Steven Leung who acted as reviewer.

TABLE OF CONTENTS

- DEDICATION......cocoee.e. OO TP USSR O PR UOTORUPP il

ABSTRACT .ottt cr e e e s e e e r e san et v
ACKNOWLEDGEMENTS ...t et \
TABLE OF CONTENTS ...ttt ra et s s Vi
LIST OF TABLES ...t ce e ettt st st e sbes et e e scae Vil
LIST OF FIGURES ...t et e e st IX
CHAPTER | - INTRODUCTION ...ttt 1
IrOAUCHION. ..o 1

Statement Of PUMPOSE......c.oooiiiiiiii it 2

SIGNIfICANCE ...ttt b 3

LIMBAHONS «.oviiii e 3

Conduct Of RESEAICN.......oiiiii e 4

Organization of the £ESSaY ..ot NUTUOTIPOI 5
~-CHAPTER Il - COMPLEXITY IN THE SOFTWARE ENGINEERING CONTEXT....... 7
INTrOAUCTION ... e 7

Sources of CoMPIeXitY.......cooii s 7

Complexity and its QUICOMES ... 14

CONCIUSION. .. 16

CHAPTER HI - KNOWLEDGE MANAGEMENTccoeioiiiiircce e 18
IMtrOTUCHION . ..o 18

The Knowledge ContinUum ... 18

Types of KNOWIEAQEoeeecee e 21

Knowledge Creation ...t ce s ancae e 23

Knowledge Spiral ... e e eer e 24

vi

OO PP P R OO VRSP SPCOUPRTIO 38
Software Engineering and Knowledge Management.................cconen 40
Software Engineering and Knowledge Management Technology 44
CONCIUSION ...ttt bbb e saa e 47
CHAPTER IV - AGILE METHODS AND KNOWLEDGE MANAGEMENT 48
INrOAUCHION. ..o e e 48
The Agile MOVEMENLE.. ... e i 48
Knowledge Creation in the Agile Methods...........c.ccoiiiiinne 50
Agile Methods: Enablers, Barriersand Ba.............occ 59
Agile Lifecycles and the Knowledge Creation Process.............couuci 68
CONCIUSION . ..eeiiiirce sttt e s naa s s s eamnne e e 70
CHAPTER V - CONCLUSIONS AND RECOMMENDATIONS ... 72
INtrOdUCHION. ...t e 72
Addressing Software CompleXity........ccooiiiiiniin i 72
RecommendationsS.........coocinve i 76
REFERENCES . e s 78
AP P EN DX A ettt e e 87

vii

LIST OF TABLES
 Table 1 'Comp'iiation of Data from the Standish Chao's'R'eports

Table 2 Factors in Project Success/Failure............coo e,

viii

—

ho

W

£

(22}

~{

LIST OF FIGURES

. Spirél Mode! of the SOFWAIE PrOCESSovovereeveeereererssenreeseeseseseseesenens

. Spiral of Knowledge Creation ...

. Five-phase Model of the Organizational Knowledge-creation Process

. Conceptual Representation of Baccocoviiiiiiiiiiniccie e
. A Dynamic Model of Software Engineering Knowledge Creation
. Extreme Programming Project Modelccooooii

. Crystal Clear Project Model ...t

................

................

................

................

CHAPTER |

INTRODUCTION

Rather than seeking an unachievable stability, software

organizations should focus on creating software engineering

knowledge and mind-sets that embrace environmental change.

(Dyba, 2003)
Introduction

The venue in which software construction takes place is fraught with
complexity. This complexity derives from multiple sources, both internal to the
software engineering process and external to it in the form of the demands
placed upon it by customers, schedules and change.

Knowledge management seeks to improve the flow of data, information
and ultimately knowledge between individuals in order to create an organization
that can better deal not only with the complexity of the knowledge it currently has,
but to enable it to create new knowledge and innovation from this established
base, allowing it to take effective and timely action in line with its goals. While
knowledge management has for the most part been applied to the larger
organizational context, it seems no less applicable {o a project based team
engaged in software construction where data and information must be acquired
from diverse sources and embodied in a system that represents certain
knowledge of the businesses environment, processes and goals.

To achieve a higher degree of agility, a software engineering paradigm

must take into account the environment in which it exists and strive to improve its

ability to acquire and utilize knowledge from both its own processes and from
those who have invested in it as a solution to their needs. It is within the.
symbiosis between knowledge management and the Agile methods that we can
discover this agility. Agile methods represent an evolution of previous software
engineering practices. Stepping back from overly hierarchical and document
driven approaches, it stresses the importance of the individual, communication
and adaptability as central themes in creating software.

Statement of Purpose

This thesis will lock at the root causes of complexity within software
engineering and the methods by which practitioners and academia have
advanced to overcome them. The author proposes to evaluate the potential of
knowledge management to assist in dealing with complexity in software
engineering, which is fundamentally as a problem of the acquisition and
dissemination of project knowledge. Particular attention will be focused on the
use of Agile methods in dealing with certain aspects of complexity. In particular:

» identify those aspects of Agile methods which represent opportunities to
acquire project data, information and knowledge

+ Evaluate current principles, practices and values within the Agile methods
used to capture and make use of such collected project data, information
and knowledge

* Review these principles, practices and values with reference to the
principles of knowledge management and evaluate their completeness

and effectiveness in dealing with complexity

o Proposing and extending pr_mc;ples, practices and values within the Agile
methods to improve the capture and dissemination of project knowledge.
and finally

* Maintain the spirit of Agile methods.

Significance

A significant amount of research has been conducted in the area of
knowledge management and software engineering. Much of this work has been
carried out with a view to improving what can be termed infrastructure, ancillary
tools which promise to assist with software development. While this is important it
tends to overlook the vital contribution of individuals to what is at its core a
creative and innovative activity. Software engineering, as a knowledge intensive
process, is likely irreducible to a strictly process oriented framework and will
continue to rely on the creative efforts of people. Through the elaboration of a
symbiosis between Agile methods and knowledge management our ability to
deal with software complexity can be improved by focusing our attention on the
creation of project knowledge and insuring its dissemination throughout both the
project team and the customer community.
Limitations

Although the particular choice of platform, system architecture or language
used to construct a system can have entail own complexities, this thesis does not
address them in any detail. In a given situation skilled software engineers can
make appropriate choices in these areas. While the solution to software

engineering complexity may someday be found within these areas the author

believes that it is the surrounding processes that cause the majority of difficulties
today and therefore offer the most promising areas for breakthroughs and
improvement.

The issues surrounding the enabling of distributed Agile development and
the applicability of Agile methods in large project development settings are
beyond the scope of this enquiry, as the knowledge management aspects of it
need to addressed before trying to distribute or scale the methodologies.

Conduct of Research

The idea for this thesis originated in the readings and ideas that the author
has been exposed to over the course of his studies. Having been introduced to
the concepts of knowledge and knowledge bases, software engineering and Java
programming based on test driven development, and my own interest in XP, the
author became interested in how these areas interact. Of particular interest were
the probilems that seem to plague software engineering and its ability to achieve
success. After looking into the field of knowledge management further, parallels
became apparent between the cycle of knowledge creation and innovative
processes and the cyclical nature of many of the existing software development
paradigms, which can be seen as a method of elaboration and reduction to a
specific understanding of a particular problem into a coded system. The thesis
from this point took on three dimensions; the complexity of software engineering
and its consequences, the import of knowledge management in dealing with

complexity and the Agile methods as a potential response.

_R.esearch b_egan_with_ e_x_t_en_s_iy_e_ s_ea_rch_es Qf _Ei_t_era_tpre_ databases, inciuding
the ACM (Association for Computing Machinery), IEEE Computer Society Digital
Library, Elsevier's Science Direct, Blackwell Synergy, Springer Link and
Athabasca’s Electronic Journals database which yielded results from the Harvard
Business Review and Sloan Management Review among others. Google
searches were also conducted and resulted in the identification of sites and
materials which were of interest for all of the components of the thesis. From this
initial set of resources, leading articles and authors were identified and read to
better understand the areas they covered. Additional resources were then found
through a review of the sources they cited, and updated where necessary, to
identify the most relevant and current.

Organization of the Essay

The thesis is divided info several sections in order fo examine and then

‘bririg together the areas of knowledge managemient and Agile methods as a

possible solution to the complexity of producing software.

Chapter | — This chapter, is an introduction to the thesis describing in

general the purpose, aims and manner of conducting of it.

* Chapter Il - Complexity in the Software Engineering Context, begins this
process by reviewing the literature related to software engineering complexity. By
identifying those areas within the software engineering process which cause the
greatest concern and looking at the results of several studies into the causes of
software failure, we can identify those areas in need of a new way of dealing with

them.

Chapter Il - Knowledge Management, looks into the origins and major
tenants of knowledge management which will serve to underpin the investigation
into its applicability to software engineering.

Chapter IV -- Agile Methods and Knowledge Management, begins by
elaborating the precepts of the Agile movement. it will then apply the ideas
canvassed in the previous chapters and evaluates the degree to which Agile
methods currently embody aspects of knowledge management and the potential
for further gains through a more encompassing use of them in dealing with
complexity.

Chapter V — Conclusions and Recommendations, seeks to find the
balance between knowledge management and Agile methods as well as offering

several areas which may merit further investigation.

HAPTER Il

e E EFRR n

COMPLEXITY IN THE SOFTWARE ENGINEERING CONTEXT

Introduction

Software engineering is composed of many divergent fields all of which
must be brought together to act in concert to successfully complete a project.
Each of these disciplines has their own complexities which are compounded by
their integration into a whole. At the same time software engineering must remain
bégnizaht éf and function within the widef ééniext of the sponsoring organization,
adding yet another layer of complexity which must be managed if a project is to
be successful.

Sources of Complexity

The sources of complexity in software engineering are both internal and
externaltozts ﬁfocess. What follows is a brief description of these sources of
complexity and the impacts they can have on project viability.

Internal

The Software Engineering Body of Knowledge (SWEBQK) (Abran, Moore,
Bourque, & Dupuis, 2004) makes reference to 10 primary knowledge areas and 8
related disciplines that form the body of knowledge for software engineering.
While all of the enumerated areas and disciplines are important, those that are of
specific interest to this thesis from the knowledge areas include: software
requirements, software design, software engineering process, specifically,

software life cycle models, software testing and software maintenance. From the

- SWEBOK's related disciplines the area of project management s of interest as
well. In addition to the areas just identified (Schach, 2002) also includes the
composition and organization of the team undertaking the project as an important
consideration.

Software Requirements and Change

The elicitation of customer requirements has traditionally been carried out
in the initial stages of a projects life. This makes logical sense as, in order to
design and plan a project we need to know what features and functionality the
project will be expected to deliver. What it does not take into account are the
inevitable changes to the requirements, necessitated by shifts in the customers
understanding of their needs as the system takes shape allowing them to better
understand and assess its potential and their desire to take advantage of them.
Changes in requirements after the initial stages of analysis and design can have
significant impacts on the cost and schedule of a project and can even result in
having to revisit the design of the systems architecture if they represent a radical
departure from what was originally anticipated. While various project
management practices attempt to deal with uncertainty in software development
through the épp!ication of critical patb analysis, program evaluation and review
technique (PERT) and risk management through risk/impact assessments, pose
a significant threat if they are not managed properly (Verner & Evanco, 2003).
The main method of mediating the effects of change in the projects initial

requirements comes from change control management, which while offering the

opportunity to shift amongst the triumvirate of scope, time and cost (Schwalbe,
2002) does little to address the root causes of the need to do so.

Software Architecture and Design

The architecture and detailed design phase of software development are
in and of themselves complex, but can also impact on the projects ability to
accommodate change during construction and over useful the lifespan of the
software once it has entered the maintenance stage. A systems’ architecture
must not only provide the foundation for the system under construction, but allow
enough flexibility to accommodate integration with existing systems and also for
future enhancement. Detailed design serves to further lock in the features that a
system will support, while at the same time closing the door on other avenues of
modification.

Software Life Cycle Models

Many paradigms of software engineering have been advanced. Among
the more accepted traditional ones is the waterfall approach advanced by
(Royce, 1987) which proceeds in an orderly fashion from an initial set of system
and software requirements through analysis, design, coding, testing and
improvement over what has been termed the “code and fix approach” (Boehm,
1988), describes the process as basically writing some code, while being aware
of the requirements, design, need for testing and maintenance, but paying little
heed to them. The waterfall approach at least established a rough order in which

some consideration is given to the utility and implementation of the software

before coding begins_. Qn the _o_t_h_er h_a_nd by s_egm_e_nting the develo_pn}ent
process into a series of sequential stages the waterfall model makes it v.ery
difficult and costly to revisit a prior stage should it be determined that any of its
assumptions was incorrect. Boehm’s contribution to the software process model

genus is the spiral model as shown in Figure 1 below.

Figure 1. Spiral Model of the Software Process

Cumulaiive
. cost
Prograss’
thrugh
sleps

Evaluats altermutivies,
. jdentify. resolis risics

‘Detsrmine
chieclives, .
alternitives; A
congiraims £

Commitinent
parthion

Review

Faquitemenits plan
M- Eewycle-plan

Bavalop- Heguitermants
- Frant plas g yalidation

- Design:vaiidation
Cand:verfication

.trﬁ#smrﬁaﬁnnft 7

Pian next phases i

From “A Spiral Model of Software Development and Enhancement.”, Barry
Beehm, IEEE Computer, 21(5), Copyright © 1988 IEEE. Reprinted with
permission.

The spiral model improves on the waterfall model through the continual re-

visitation of the various stages of the development process. Beginning each

10

phase Qf the spiral with careful consideration of the objectives, alternatives and
constraints for that iteration, as well as what has been learned from the previous
phase/cycle, an assessment of risk can be made so as to inform the next
phase/cycle. The cycles continue to refine the prototype until no further additions
or changes to the prototype are required (Boehm, 1988). While the spiral model
incorporates an important element of risk management, it still proceeds from a
fixed set of requirements and moves through stages not unlike the waterfall
model to completion albeit in an iterative manner. Other modeis have been
suggested, such as Rapid Application Development (J. Martin, 1991), the
Rational Unified Process (Kroll & Kruchten, 2003), but continue to behave more
or less in the same manner, trying to lock down requirements prior to the analysis
and design phases, making the accommodation of change beyond this
“requirement freeze” stage difficult.

Software Testing

Within the life cycle models just enumerated concerns can be raised with
the late point during the development cycle at which testing in undertaken.
Naturally testing cannot occur until some requirements have been elicited, design
the latier stage of development gathers the risk of difficulties to a single point of
failure rather than spreading it out and allowing more time to detect and correct

such flaws.

11

Softwere Maintenance
It has been shown that expenditures (and hence time) constitute in the
area of 67% (Schach, 2002) of the cost of software. The need therefore to make
software maintainable from its earliest stages through its design, implementation
and documentation adds another degree of complexity. This complexity arises
from the need to foresee or predict what the software might be required to do in
the future.
External

Project Sponsorship

The inclusion of key stakeholders, whose knowledge of the existing
practices and processes in the area under consideration, as well as their
understanding of the politics of the organization, can also guide in determining
what will have to be accomplished not only to produce the product but to assure
its acceptance.

t eadership Knowledge of Business Need

A project must address a particular business need. Poorly articulated
organizational goals that form the basis of a project will pose significant and most
likely fatal difficulties for it. Without clear goals the bré}ect will lack direction and
in short order will also loose the customers’ attention, support and interest. If the
project survives and is ultimately deployed in such a situation it is unlikely that it
will serve any useful purpose. Rapidly shifting business environments

necessitating change to established business processes, models and needs as

12

well as legal compliance issues, will filter down and cause changes in project
requirements.

IT and Business Need

A study conducted by (ATKearney, 2005) found that business views IT as
primarily concerned with day to day operations, less willing to be early adopters
of new technologies and less likely to propose innovative solutions that could
yield competitive advantage to the organization. Overall the sense is that IT is not
a proactive part of the organization, but rather a reactive entity, and a hesitant
one at that. This should not come as much of a surprise as the same study points
out that the majority of IT budgeting is focused on maintaining the current
systems while only 20% is spent on innovative initiatives. The remedy, according
to the study, is to determine how each aspect of IT benefits the business, reduce
complexity and standardize infrastructure. The resulting assessment will identify
those areas of IT which are essentially commodities. These commoditized areas,
in the sense that (Carr, 2003) proposes, while necessary are not likely to offer
any competitive advantage to the organization due to the ease and speed with
which they can be adopted by competitors. Such operations should be
outsourced to allow |T to focus on areas which havé the potential to add value
and innovative lpractices (ATKearney, 2005).

Customer Involvement

While it is essential to have a committed project sponsor and a clear
business need for a project to gain traction, the involvement of internal line-of-

business customers at the early stages of requirements definition and throughout

13

integrates their vision for it.

Customers are not generally software engineers and we therefore cannot
expect them to have the same level of understanding of the place énd potential
of information technology within their organization, but they do tend to know what
they need in order to fulfill their functions. IT needs to develop an informative
environment, to relate its relevance, possibilities and purpose in language that
the customer understands.

Complexity and its Ouicomes

How then does IT fair in its attempts to deliver solutions. Ultimately the
success or failure of a particular project must be measured by its ability to meet
the objectives it was initiated to address. It is within the analyses of project
success and failure that we can discern the effects of complexity and software
engineering’s ability or inability to deal with them, The Standish Group (The
Standish Group Report - CHAOS, 1995) uses the following categorizations to
classify the outcomes of the projects they studied. Projects are categorized as
successful when they are on time, on budget and deliver the functionality
origihalty specified. Projects are considered challenged, if they are delivered over
budget and beyond their expected schedule with reduced functionality. Failed
(noted as impaired in some reports) projects are those that are cancelled at
some point during their development. A compilation of the results from the bi-

annual reports is shown below in Table 1.

14

Table 1 Compilation of Data from the Standish Chaos Reports

Year Success Challenged Failed
1994 16.2 52.7 31.1
1996 27 33 40
1998 o6 46 8
2000 28 49 23
2002 34 51 15
2004 29 53 18

Note. All figures represent percentages. Adapted fram: (CHAQS: A recipe for success,
1899; Glass, 2005; iTWire, 2004; The Standish Group Report - CHAOS, 1995)

The reports go on to specify various-factors that lead to the enumerated

outcomes. The factors cited for project success and failure in (The Standish

Group Report - CHAOS, 1995) report are shown in Table 2.

Table 2 Factors in Project Success/Failure

| Rank | Successful ~ Challenged Impaired
1 User Involvement Lack of User Input | Incomplete
Reguirements
2 Executive Management | Incomplete Lack of User
Support Requirements & Involvement
Specifications
3 Clear Statement of | Change Lack of Resources
Requirements Reguirements &
Specifications
4 Proper Planning Lack of Executive Unrealistic
Support Expectations
5 Realistic Expectations | Technology Lack of Executive
Incompetence Support
6 Smaller Project Lack of Resources | Change
Milestones Requirements &
Specifications
7 Competent Staff Unrealistic Lack of Planning
Expectations
8 Ownership Unclear Objectives | Didn't Need It Any

15

Longer
9 | ClearVision & | Unrealistic Time Lack of IT
Objectives Frames Management
10 | Hard Working, Focused | New Technology Technology
Staff llliteracy

These categorizations and factors have not gone unchallenged as (Glass,
2005) points out the determination of success or failure are highly subjective and
further that studies and investigators tend to focus on projects that are in trouble
before the study began. In addressing such concerns we can look at (Boehm,
2000), where he argues that a 31% failure rate is not that surprising, and may in
fact represent a realistic attrition rate for software projects, but goes on to explain
that the results for “impaired” projects may be misleading in that they are not
entirely due to poor practices in software engineering. Among the reasons he
gives are the shifting needs and priorities of the organization and the value that a
given project will provide upon its completion which could justify its cancellation,
the pressure of scope change without corresponding changes in budget and time
allotment, customer buy-in to the aims of the project and the rapidly changing

environment.

The issue of complexity in software engineering is clearly a multifaceted
one. As stated by (J. Martin & McClure, 1988) “the basic problem of computing is
the mastery of complexity”, in fact the problem goes far beyond the limited area
of computing and in fact extends into every aspect of software engineering. What

is needed is a more holistic view and understanding of the place of software

16

Complexity in software engineering has heretofore been dealt with as a
patchwork of responses, efforts to bring the customer into the process with
requirements engineering, the use of abstraction in the design and construction
of software, and various project management practices in relation to its planning
provide examples of these efforts. While this has allowed us to manage
complexity it has not allowed us to master it as the studies noted clearly show. In
my view complexity cannot exist where knowledge informs us. In the next
sections we will look at the potential of knowledge management to provide such

insights.

17

. CHAPTERWM
KNOWLEDGE MANAGEMENT

Introduction

In this section of the thesis we will investigate the concept of knowledge
management. After defining the constituent elements of knowledge, we will move
on to look at knowledge creation as both a method of producing new and
innovative solutions and in its ability to assist us in mastering the complexity and
chaos inherent in any situation of change. Finally, the efforts that have been
made to infuse software engineering with elements of knowledge management
will be reviewed. Much work has been done in the area in order to provide what
the author terms a "knowledge infrastructure”, that is to say, technological
solutions intended to overcome the complexity outlined in the second chapter of
this thesis.

The Knowledge Continuum

The knowledge continuum exists in the interplay of data, information and
knowledge and the ability of individuals to transform one form to the next. ltis in
the application of our mental processes that data becomes information and
information becomes knowledge. One would hope that the linearity of this
continuum would exist as only an upward trend (data to information to
knowledge), but this has not proven to be true as (Davenport & Prusak, 1998)
point out that the proliferation of knowledge leads to a loss of relevance when the

individual is overwhelmed by its sheer volume reducing it to lesser forms. What

18

one form to another?
Data
Data according to (Tiwana, 2002) can be seen as the discreet
representation of some quantifiable measurement. Data, lacking further
refinement and in particular the perspective of the context in which it was
collected or produced, even when given the illusion of accuracy or meaning by its
quantity, contains no intrinsic meaning in and of itself.
Information™
(Drucker, 1998) tells us that “information is data endowed with relevance
and purpose”. Data becomes information, according to (Davenport & Prusak,
1998) when it is imbued with meaning through: contextualization, categorization,
calculation, correction or condensation. This is to say that raw data is
transformed, by an individual in light of their understanding and knowledge of its
context and its immediate relevance to the purpose for which it is being

assessed, into a message that conveys one or more of these sense-making

activities.

Knowledge

Data and information are precursors to knowledge. Information becomes
knowledge in much the same way as information derives from data. In order for
this to occur according to (Davenport & Prusak, 1998) individuals must assess
the information on the basis of; comparisons, consequences, connections and

conversations. Knowledge exhibits a specific set of attributes which delineate it

19

Prusak, 1998).

from data and information. These attributes exist and interact in an extremely
fluid manner within both the individual who applies them to the information they
encounter and in the knowledge that they produce. The following five attributes
play a key role in defining knowledge.
Actionable
Knowledge is actionable in that both its means and ends find their origin in
the resolution of some problem or the making of a decision. Being informed by
knowledge of the situation and the various factors at play in a given context, the
actions we decide to take are more likely to result in the desired outcome
(Davenport & Prusak, 1998; Takeuchi & Nonaka, 2004).
Experience
Knowledge derives from the experiences that an individual has had in both
the subjects they have studied and those situations they have been exposed to.
The value of our past experiences is in the ability it gives us to extract from ita
sense of what outcomes can be expected in current situations. As such
experience acts as a means to deal with a new situation by granting us a

perspective from which we are able to perform this evaluation (Davenport &

Judgment

Knowledge of a problem space or field provides an individual with a
referential basis with which they can evaluate and judge not only the problem to

be solved, but also the range of solutions to be considered.

20

Values / Beliefs

Knowledge contains elements of both belief and values. These measures
are intrinsic to the individual who holds them and guide their evaluation of not
only the content of the information they receive to but their valuation of its
meaning and relevance to them in the context in which they find themselves.
Knowledge once obtained becomes a “justified true belief” according to
{Takeuchi & Nonaka, 2004) in the mind of the individual and to a large degree
the group and organization of which they are a part.

Complexity

Knowledge which forms the basis of our decision making ability, according -
to (Davenport & Prusak, 1998) exhibits the ability to deal with complexity and
uncertainty precisely because of its constituent attributes, the fluidity of their
interaction and the difficulty of reconciling them with one and other in a given
situation.

Tvpes of Knowledge

Explicit

Explicit knowledge is knowledge that is easily reducible to some readily

transmissible form such as words, documents, specifications and formulas.
Tacit
Tacit knowledge is much more difficult to express outside of the
individuals own experience and understanding of it. This is true because the
effective transmission of tacit knowledge requires not only the transfer of specific

knowledge, but also the transmission of the distinctly individuated attributes that

21

as being deeply rooted in action and context, akin to the particular skills of a
crafts-person, fusing a set of technical skills and a cognitive dimension found in
the mental models, beliefs and perspectives that have become part of not only
their knowledge, but their being. It is the sort of knowledge that requires both a
formal training to transmit the technical skills, and some form of apprenticeship to
begin the transfer and development of the cognitive dimension.

Tacit knowledge can be broken down into four further divisions, as (Quinn,
Anderson, & Finkelstein, 1998) describe them: (1) "Know What” describes
knowledge that forms a foundational level of understanding that an individual
requires in order to be able to function within a particular field. For instance a
programmer would have little success in their chosen field if they had no
knowledge of some programming language and the algorithms that can be
" created with it to effect programimatic solutions. (2) “Know How” improves over
know-what by demonstrating the practical application of knowledge to problems.
Carrying forward our programmer analogy this could be evidenced in the
selection of one algorithm over another, where either would achieve the desired
result, on the bésis of one being more efficient in actual use in the given
situation. (3) “Know Why" again moves us up the knowledge value ladder in that
one who possesses this level of knowledge are involved in more than the
solution of immediate problems, but exhibit an understanding of the system and
discipline as a whole, allowing them to anticipate the effects of their actions

beyond the immediate concern. In the programmer this can be seen in their

22

consideration of the consequences of implementing a particular solution that
would cause a disruption of processes outside the module they are working on or
even down the road once the program entered the maintenance phase of its life-
cycle. (4) “Care Why" is described as a cultural value which transcends the
previous three categories of knowledge. Within it the professional is a self-
motivated and creative individual who is concerned not only with their
performance at the previous three levels but with keeping on top of industry
trends in their field and renewing/adapting their own knowledge of the field in
light of developments within it. The programmer like other professionals needs to
not only keep up with the fast changing technologies and methodologies, but
seek out opportunities to develop their creative potential as well.

Knowledge Creaticn

The boundary between explicit and tacit knowledge is not as impermeable
as it seems. In fact (Takeuchi & Nonaka, 2004) state that they are in fact
interdependent and interpenetrating in that the existence of one is dependent on
the other. This symbiotic relationship is in fact critical to the knowledge creation

process. Of particular note with respect to knowledge creation is the dichotomy

between eastern and western systems of scientific phitbsophy that some of tﬁe
authors (Takeuchi & Nonaka, 2004) point out. The West they offer has adopted
the Cartesian or scientific model of knowledge, relying on hard facts,

mathematical and statistical proofs to the exclusion of the more Eastern model
which admits of a more holistic set of evidences encompassing the individuals’

feelings and intuitions regarding the subject of enquiry. As such the Western

23

tradition is seen to exclude that which is not reducible to articulate or explicit form
in its attempt to remove paradox from the equation. Such thinking is exemplified
in the scientific management of Charles Taylor and the ideas of Herbert Simon,
who in likening the workplace to an information processing machine, opined that
tasks within the organization need to be reduced to simple manageable parts that
individuals could handle without reference to others or the work of the
organization as a whole. Diverging from this way of thinking, according to the
authors, is the concept of dialectical thinking which embraces paradox and
change through a process of thesis and anti-thesis leading to a new synthesis
which forms the new thesis and begins the cycle anew.

Not all western thought has excluded this other aspect of enquiry.
Researchers such as (Polanyi, 1962) who brought to light the role of tacit
knowledge which informs the individual in their inquiries and actions even when
we are not actually aware of their influences or able to articulate them. His
statement “we know more than we can tell” (Polanyi, 1967) exhibits a keen
awareness of the inexpressible knowledge that forms part and parcel of the
context of any form of enquiry.

Knowledge Spiral

The concepts of dialectical thinking and the explicit/tacit nature of
knowledge when taken in concert result in an interesting formulation in terms of
how knowledge is created and lays down a model of how it evolves within the

individual and through the group and organization. Nonaka & Konno (1998)

24

stages socialization, externalization, combination and internalization (SECI).
The initial stage, socialization occurs between individuals, as tacit
knowledge is shared between them in a direct manner. Training periods, like
those seen in crafts, trades and professions, where some form of apprenticeship
is required to facilitate the transfer of tacit knowledge as know-how, from master
to apprentice, along with the formation of an understanding of the context and
mental models which form the basis of the area of expertise provide the most

accessible examples of this process.

Figure 2. Spiral of Knowledge Creation

Titividusls shire

tacit knowledge with, [
qdch othet
/
\——//x
: .) N
/o et Externalization
' E’-‘ﬁiﬁi‘éﬁ%ﬂ?@m \‘ idtividuiats articatate |
i Individuals tacit | _ta@nkn;:;;:gdgsw }
A knowledge bise \\ Grovp, .
kY J _ y
\\‘\.*//\ e .
7 Compinition
[Explicit knowledge
Suthered and 3
disseminated to
9 organization
\\\\'/

More generally, socialization can be seen in the development of
relationships between co-workers as they come together as members of teams
and projects, where they initially begin sharing experiences based on mutual

interests and tasks. Another dimension is added where team members are drawn

25

from different disciplines. In these cases it becomes necessary for them to
develop a common understanding of each others skills and perspectives arriving
at a common basis upon which to interact. In these interactions tacit knowledge
is shared between the individuals influencing the perspective of each of them
with respect to their own knowledge, beliefs and understanding.

Externalization is the process of articulating tacit knowledge, that is held
by an individual to a group of other individuals in a "self-transcending process”
according to (Nonaka & Konno, 1998) and creating new knowledge in the form of
concepts through the use of metaphor, analogy and models. Through the use of
metaphor, (Nonaka & Takeuchi, 1995), the individual is able to articulate their
tacit knowledge by elaborating a concept that captures and conveys the essential
meaning of it by likening it to other things in the form of “figurative language and
symbolism” (Nonaka, 1998). These conceptions are likely to contain

“contradictory meanings, which in fact act as a spur in furthering the
conceptualization process and collective refiection upon it. Analogy on the other
hand serves to identify the similarities and reconcile discrepancies within the
elaborated metaphor. Modeling, takes the process a step further by translating

theresanam Concepi ,ngoa|og,ca| framework e

Combination represents a stage in the knowledge creation process where
explicit knowledge is collected (from sources both internal and external to the
organization), arranged and codified into a formal system and disseminated

throughout the organization.

26

Internalization represents a reversal of the forgoing articulation of tacit
knowledge, moving that articulated knowledge back down to the individual level.
Through their exposure to and involvement with articulated knowledge the
individual is able to make this knowledge their own. Knowledge within the
organization evolves in this spiral manner being transformed from tacit to explicit
and moving from the individual, through the group and into the very fabric of the
organization where it spawns the next iteration.

Knowledge Creation Model

A more accessible articulation of how these ideas interact to create
knowledge may be found in the “five-phase model of the organizational
knowledge creation process” (Takeuchi & Nonaka, 2004; Ichijo, 2004) as it
relates the somewhat unfamiliar concepts to a process that should be more
familiar to the reader. Within this model as shown in Figure 3, five phases are
identified in order to make the process more transparent to those who will be

engaged in it.

27

Figure 3. Five-phase Model of the Organizational Knowledge-creation Process

Enakling conditions
e e e tesfion |
' Autonomy ' :
: F%ucwatéeﬂ {Crestive chaos | :
I Tasil knowiedge sdundancy] Explicit knowledge
! in organization - Requisite variety inorganization
i Socigheation Fxiernelization Combination E

Crasting
concepts

Justifying
concemts

inermatzation

Market
Fom Tacit From asers inernalization by users Explicit knowiedgeas
coliaborating knowdedge afvertisements, patents,
drganizations product antor service

From “Hitotsubashi on Knowledge Management; Hirotaka Takeuchi and lkujiro
Nonaka; Copyright ® 2003." This material is reproduced with permission of John
Wiley & Sons (Asia) Pte Ltd.

The phases can be briefly described as follows:

1. Sharing tacit knowledge, akin to the socializing process, starts when
individuals within the organization spurred by some recognized internal or
external need begin to discuss the problem from a variety of perspectives
resulting in a more fully canvassed understanding of it and the potential for

successful a response.

2. Creating concepts, representing the externalization phase, takes hold
as the individuals collaborate to develop concepts which embody the tacit
knowledge they have shared and evolved through the use of metaphor and
analogy into some practical artifact of their conception.

3. The concept is then justified in such terms as are necessary for the

organization to approve or deny continuation of the project.

28

4, The approved concept is then developed into a prototype stage which
delivers a practical mode! of the proposed product.

5. Knowledge of the product is then propagated throughout the
organization and potentially to interested external parties to make them aware of
the new product and solicit their input.

This process is much closer to the software engineering paradigm where a
solution would move from (1) identification of a need and initial investigation of
solutions, (2) the development of a request for proposal or specification, (3)
developing a financial cage for the project and gaining management support, (4)
building the solution, though thearetically a prototype system could be developed
at this point to use in the solicitation of further input, and (5) deploying the system
to the organization. Presumably the activity in phases 1, 2 and 4 would include
input from the prospective customer population and the final phase would
present them with a system shaped by their perspectives.

Knowledge Enablers and Barriers

Knowledge creation is a complex process which does not lend itself well to

traditional methods of management. As has been shown in the previous

paragraphs it is an organic process that grows out of the Endivi.duai and thelr
involvement with other individuals and groups and ultimately with their respective
organizations. Rather than trying to manage the creative and innovative process,
more success can be achieved through the fostering of an organizational
environment or culture in which knowledge creation can take hold. An identified

set of enablers and barriers within most organizations exist which can be

29

represent some of the ways in which the knowledge creation process can be
fostered. In reviewing them one should keep in mind that they should be taken in
concert rather than in isolation as they have are closely interrelated and produce
a cumulative effect.

Enablers

Fluctuation / Creative Chaos

Fluctuation within the organization, controlled and driven by management,
allows the individual on their own and within a group to reflect upon and begin to
question our perspectives and assumptions in relation to the normal way of doing
things. While being initiated from within, the motivation for such introspection
may come from within or outside the organization. Creative chaos on the other
hand is used to spur the organization to engage in introspective activity in
reaction to some crisis. In describing the alternative (Takeuchi & Nonaka, 2004)
state:

This approach is in sharp contrast to the information-processing

paradigm, in which a problem is simply given and a solution found

through a process of combining relevant information based upon a

-preset algorithm. Such a process ignores the importance of defining

the problem to be solved. To attain such definition, problems must

be constructed from the knowledge available at a certain point of

time and context.

By overcoming preset responses to the situations that are encountered the ability

to achieve more creative and adaptive reactions will be achieved.

30

Teams / Projects

Teams provide a central focus and context for individuals to come
together and engage in knowledge creation for a specific purpose set out in their
project mandate. The creation of cross-functional teams, according to (Newell &
Huang, 2005), produce teams composed of individuals with different skills,
backgrounds and knowledge. When composed carefully and allowed time to
establish a base of common knowledge and understanding of each other these
teams can produce very creative and innovative solutions arising out of the
interplay of their diverse knowledge, as well as new knowledge that arises from
their interaction. The efficiency of these teams may be impeded depending on
the degree of separation between their fields and the difficulty in spanning such
differences. In fact the success or failure of such teams often depends on their
ability and willingness to learn from each other through, as (Cicmil, 2005) offers,
the use of reflection to understand evenis and use this as a guide for their future
actions.

Creative Abrasion / Requisite Variety

Creative abrasion, according to (Leonard & Straus, 1998), involves the

 bringing together of individuals with different perspectives. These differences

manifest themselves in the cognitive differences (e.g., experiential versus
abstract thinkers) and ways in which people approach a problem. In bringing
these diverse perspectives and personalities to the table we are also likely to
encounter interpersonal conflicts requiring time to not only take care in the

selection of team members, but in managing the interactions of its members.

31

Reflection

Much knowledge creation occurs through reflection described by
(Nonaka, 1998) as a place in time and space devoted to the understanding and
evaluation of what actions have been undertaken in the past, their results, and
their potential and consequences when used in the future. Without such
examination, past and future actions are taken in a vacuum, with as it were a
complete loss of knowledge. Perhaps a more important value of reflection is its
ability to provide direction to the organization in times of chaos by permitting it to
find new knowledge in the midst of change by challenging its orthodox views and
responses. Reflection may also be a more effective way to manage projects
where a high degree of uncertainty exists. According to (Gustafasson &
Wikstrom, 2005), by allowing a more intuitive approach, as opposed {o a rational
one, we are better able to fine tune our responses to change through the
unrestricted selection of informational sources upon which to base our decisions
as to how we can reach our goal. The rational approach is seen here as being
too encumbered with mechanistic rule following and isolation from reality to

function effectively when change is the rule.

Redundancy

Redundancy does not imply a surplus of resources, but rather the
adoption of an approach where individuals are in constant contact across
departmental or functional boundaries. This sort of redundancy allows for the

constant transfer of tacit knowledge between the individuals through the creation

32

of common frames of reference. It may also include strategic rotation through
departments and inter-team competitions on the same project (Nonaka, 1998).

Knowledqge Integrators, Activists and Collaborators

Knowledge integrators play an important role in the knowledge creation
process. These individuals cross organizational boundaries to gather knowledge
from various areas and disciplines, combining them to achieve a new level of
understanding or application within the organizational context. In his tenure as
general manager of IDEA (Kelly, 2005} has identified a collaborator as a person
who is able to transcend themselves to become a principle creator and motivator
of teams. Collaborators believe that by working together towards some purpose
will result in better ocutcome than could be had otherwise. Collaborators also have
the effect of gelling team members into a cohesive unit which can mitigate the
effect of individual resistance to change that would hinder the outcome of their
~activity, while at the ‘saimie time coaxing the bést out of them.

n The Tipping Point, (Gladwell, 2002), the author investigates various
social phenomena through the lens of epidemiology. We are then introduced to
three key players. Connectors are people who have an unusual capacity and
interest in forming relationships with others and maintaining them, passingon
bits of information they may think are of interest. Mavens are people who develop
a deep understanding of a particular subject and alsc are driven to spread their
knowledge to others. Salesmen are described as individuals who are particularly

able to utilize both verbal and non-verbal cues to convince others of their points

33

of view. Each of these people exemplifies the knowledge activist in their ability to
collect and disseminate knowledge.

Promoie Conversations

The promotion of conversations within the organization is crucial for the
creation of knowledge. Conversation is the foundation of relationships that
naturally occur amongst co-workers. Such relationships lead to further
enhancement of the organization as knowledge is shared amongst individuals
and groups. The promotion of conversation and thus relationships beyond the
" immediate group is also importarit for the purpose of fostering the breakdown of
organizational barriers. The concept of water cooler conversations, as a medium
where individuals can congregate and discuss their projects and exchange ideas
can be taken even further with the idea of talk rooms (Davenport & Prusak, 1998)
which are specially configured to enable and enhance the growth of
conversations related to one’s own project, the projects of others and the
organization in general. Similarly the use of knowledge fairs to allow different
groups within the organization to showcase the projects that they are involved in
to other groups, which might never have been informed of them, is one way to
(Davenport & Prusak, 1998). In promoting conversations we must also strive to
create a welcoming environment for new and novel ideas. Kelly (2005) describes
the “devils advocate” as one of the most destructive persona’s that can inhabit
the creative process. By looking for the flaws and potential downsides of every

new idea they have the effect of chilling or killing the entire process. This is one

34

individual to be kept at bay. One effective method of quieting the inner devils is
the adoption of a rule when engaging in idea generation that any objection to an
idea must be accompanied with a reason for the objection.

- Organizational Barriers

The sense of organizational culture, (Ichijo, 2004) tells us, that each
individual possesses is acquired through their involvement in the language,
stories, perceptions, proceedings and paradigms of the organization. As with any
complex social structure the individual takes their cues as to what constitutes
proper behavior in the context of the organization. Such cues filter down from the
top of the organization from the leaders of the enterprise and more immediately
the managers of its various components. Where not explicitly laid out in
procedure manuals or training sessions, messages are sent through the medium
of the language used to describe the organization its goals or mission statement
and the everyday tenor of conversation. Organizational stories also inform the
individual as they relate the history of the organization and those who have been
revered or shunned for their actions. More subtle messages are received,
whether they are intended to be or not, through the perception or sense of how

the organization wants its members to function. All of these aspects of an

organization form a reftection of its overall paradigm and to the extent that they
do not evince a desire to foster an open and sharing knowledge culture they will

create and reinforce a barrier against it.

35

Individual Barriers

Threat to Self Image / Limited Accommodation

Individuals and in particular professionals define themselves, rightly or not,
by their skills, knowledge and repute within their chosen profession.. Knowledge
sharing in this context represents one threat to their self image by not only by
asking them to reduce their knowledge to expressible form but in that their
established beliefs may come into question as their knowledge enters the public

forum. Without the ability to accommodate and change in response to these new

“ideas (Ichijo, 2004) states that many individuals will erect barriers to fend off the

perceived attack on their knowledge and limit their involvement in knowledge
sharing activities. A further response can be seen in the use of defensive
reasoning (Argyris, 1998) as a response that is likely when ones beliefs come

into question. In this scenario the individual or group will erect arguments which

“deflect and avoid the admission that their own actions are the cause of a problem

or that changing them would result in a more beneficial outcome.

Knowledge Hoarding / Knowledge Walkout

Knowledge hoarding (Tiwana, 2002) is an unfortunate if natural resuilt of

the real or perceived threat to an individuals’ self ;mageWhereantndavnduais .

value to an organization is measured by the knowledge they possess, as related
to them in terms of evaluation and promotion, the benefit to them of sharing their
knowledge will be far from apparent. In fact they may see it as giving away what
value they do represent to the organization. As a result they will resist attempts {o

extract their knowledge impeding knowledge creation. Another serious

36

consequence of knowledge hoarding is the potential for a “knowledge walk out”.
When knowledge of a particular system or process is concentrated in the mind of
a single individual that individual's departure from the organization will pose a
significant problem. These difficulties arise when the organization has not taken
the appropriate steps to ensure that the departing individuals’ knowledge has
been transferred, to some degree, either to another or sufficiently articulated and
captured to enable its transmission.

Not Invenied Here

The idea that knowledge created outside of the immediate organization,
even to the level of inter-departmental barriers, is of no utility can prevent the
application of previous knowledge creation. This sense of “not invented here”
should be well understood by information technology professionals who
exemplify this sort of behavior when they invest valuable time in creating their
own versions of algorithms, classes and even programs that could be more
readily obtained and adapted through code reuse simply because they don’t trust
code repositories or even the programmer across the hail.

Not Enough Time

Where sufficient time is not allocated within the processes of the
organization for the promotion and practicé of knowledge creation the demands
of routine or normal functions will preclude, to a large degree, its adoption.
Enabling the basic requirements for knowledge creation in terms of the creation
of relationships between individuals at both the local and inter-departmental level

as well as many of the enablers, such as reflection, conversations, and

37

knowledge fairs require a commitment of time from both the individual and the
.orgahiiétion, over énd above the dé?ly .rc.Jutine. |
BA

......0One of the chief components of knowledge creation is the Ba. Ba, as
(Nonaka & Toyama, 2004) explain, meaning a “place” in both the literal and
figurative senses culminating in the creation of a space in which an individual’s
context can interact with the contexts of others resulting in “a phenomenological
time and space where knowledge as a stream of meaning emerges”. The
‘emergence of the Ba within individuals, working groups, project teams and other
organizational units begins to occur as a self organizing phenomena (Nonaka &
Konno, 1998) which allows for the transcendence of one’s own perspective
through exposure to and reflection upon the experiences, values, meanings and
mental models of others. In doing so the Ba, as shown in Figure 4, has the effect
“~of energizing and advancing both individual and collective knowledge. The
leaders’ role within the Ba, according to (Nonaka & Toyama, 2004), is to enable
and foster the formation of these groups by providing them with relevant enabling
forces like autonomy, creative chaos, redundancy, requisite variety as were
canvassed above and the exchange of explicit and tacit knowledge that emerges

from them.

38

Figure 4. Conceptual Representation of Ba

Individual }

.....

...................

. B ~ bustentisl ba =
AT lemetion, recognition, value, action) TG,

Physical ba

‘‘‘‘‘‘

From "Hitotsubashi on Knowledge Management; Hirotaka Takeuchi and kujiro
Nonaka; Copyright € 2003.” This material is reproduced with permission of John
Wiley & Sons {(Asia) Pte Lid.

The Ba exhibits 4 characteristics, as described by (Nonaka & Konno,
1998), each of these characteristics parallels the knowledge spiral which was
explained above and the import of the enabling factors which have just been

reviewed. Originating Ba occurs where an individual shares their meaning,

__feelings, emotions and mental models with others and begin to establisha =~

relationship of mutual trust and respect. The interacting Ba is a more artificial
creation being a group of people, speciﬁcaﬁy selected for their knowledge or
skills, brought together to work on a particular issue or project. Critical at this

stage it that “[through dialogue, individual's mental models and skills are

converted into common terms and concepts. Two processes operate in concert:

individuals share the mental model of others, but also reflect and analyze their

39

own” (Nonaka & Konno, 1998). Through conversation and the use of “metaphor”
the interacting Ba becomes the place within which an exchange of tacit
knowledge and knowledge creation can begin to occur. The cyber Ba represents
the transformation of the tacit knowledge made explicit through the interacting Ba
to an explicit form which can then be disseminated beyond the immediate group.
The exercising Ba provides for the conversion of new explicit knowledge into tacit
knowledge in the individual.

Software Engineering and Knowledge Management

Software engineering in both'its practice and purpose deals with a wide
range of data and information which must be transferred and transformed into
knowledge for this to be accomplished. Software engineering is, as (Edwards,
2003) tells us, is a knowledge intensive activity requiring that an approach to the
solution of knowledge management issues within it proceed from both the

“perspective of codification to ensure the capture and retention of project
knowledge and personalization focusing on the individual and their role in the
process. One difficulty that all project based endeavors present is the lack of an
ongoing organizational memory, as by their very nature projects are time limited
and generally focused at accomplishing a singular task as (Love, Fong, & Irani,
2005; Bresnen, Edelman, Newell, Scarbrough, & Swan, 2005) point out, and
therefore require directed efforts to capture and retain the knowledge they create.

Lindvall & Rus (2003) make a case for knowledge management as a
means to capture two distinct sets of domain knowledge that are critical for the

successful execution of software development initiatives. The first domain is that

40

| of technology and the projects ability to not only implement solutions with the

best and sometimes latest technology available, but also to plan the
implementation. The second domain is the problem domain, and its policies and
customs, which needs to be understood to formulate a correct solution as well.
The authors point out that knowledge within software projects is to a degree
unique as much of it is already captured in various work products like, project
plans, requirements, design, and other documents which cari form the basis of a
knowledge management initiative to disseminate this knowledge to other
software engineers. The ability to locate tacit knowledge in the mind of the
knower, they argue, must also be enabled through competency management and
the development of not only a means to identify and access them, but also to
know when a deficiency in knowledge exists. The need to capture the reasons for
the selection of a particular design, among many considered, is one area that is
not well covered leading to a loss of “product memory”. At the same time it is
necessary to be able to trace the systems requirements and defects into the
coded system. The authors stress the need to avoid the mistake of focusing on

technological solutions advocating the careful cultivation of a cuiture of sharing

through the use of lightweight processes which allow knowledge capture to
evolve naturally. Challenges to the adoption of knowledge management are
similar to those enumerated in the previous chapter and include the concerns of
not enough time, not invented here and knowledge hoarding, which can only be

overcome through a cultural shift.

41

A model advanced by (Dyba, 2003), shown in Figure 5, applies the
concepts of knowledge creation to the software engineering field, stressing the
need fo integrate knowledge within the software development process. This idea
is.echoed in (Rao, 2003) who believes that many of the knowledge management
behaviors can be directly embedded into the development process itself. The
facilitating factors, Dyba describes, are very similar to those espoused by
previous authors with respect to knowledge creation and they will not be

repeated.

Figure 5. A Dynamic Model of Software Engineering Knowledge Creation

Organizational
memory

Orgenizational Context

From "Managing Software Engineering Knowledge”, Copyright © 2003, p. 97,

Tore Dyba, “A Dynamic Model of Software Engineering Knowledge Creation™
Figure 5.1. With kind permission of Springer Science and Business Media.

Local knowing describes the interactive nature of developers as they
collaboratively work towards an understanding of the problem domain and
arriving at practical solutions within it. In doing so the software organization will

also be engaged in the creation of new knowledge of how they do so, adding to

42

improvisational activity drawing on previous experience and current contex.t..
Generating knowledge is carried out in much the same way as was described by
(Nonaka & Toyama, 2004) through dialog, collective reflection and the use of
divergent and convergent thinking methodologies (roughly equivalent to the
dialectical thinking through metaphor and analogy) resulting in concepts and
models that can be packaged to share with others. Organizational memory
serves as a means to justify and transmit the new knowledge and past
knowledge into thé awarenéss and context of those who will have need of it.
Justification must also serve as a basis on which the knowledge can be re-
contextualized into new situations. Interpreting knowledge completes the
knowledge creation circle and represents the point at which organizational
memory is interpreted back into the local knowing context. Within this context it is
“"both the individual and the larger téamthat must engage in collective
interpretation to make sense of the knowledge in the context that they find
themselves and the problem they are trying to solve. Dyba sees this as

knowledge that is jointly constructed rather than merely an application of

previously captured know'iedge'. In this sense he equates it with a re-experiencing
of the knowledge discovery or exploratory experience.

Dutoit & Paech (2003) identify two domains in the software engineering
context, which they term, the application domain which is the preserve of the
customer who understands why they are asking for a particular feature or

function and the solution domain in which the software engineers have specific

43

~ knowledge of the structure of the system. They maintain that these two domains
are exclusive and that a complete solution can be achieved only through
requirements engineering over the life-cycle of the product and the close
collaboration of diverse individuals. In order for this collaboration to be successful
in the long run they describe 5 essential knowledge needs: Sensitivity
Characterization: which evaluates the potential for future change in a given
requirement; Rationale: the reasons for decisions made, which can help when
changes are considered later by eliminating the need to revisit options that had
previously been canvassed; Pre~traceab§iity: the ability to locate the person who
requested a feature in the first place; Post-traceability: provides the ability to
trace a requirement throughout the software development life-cycle and Change
Impacts: the scope of impact that a change to a particular part of the system
could have to other components of it. While having each of these knowledge
sources available would give us a much fuller picture of how the system was
conceived and created, it would also seem to create a huge overhead in terms of
the knowledge capture effort required to achieve it.

Software Engineering and Knowledge Management Technology

Many efforts have directed their attention to the creation of systems to
manage knowledge meeting with varying degrees of success. Davenport &
Prusak (1998) allude to the subtlety of expert knowledge being to complex a
thing to be captured in a system, though they are referring to earlier attempts to

create “expert systems” their words are no less applicable to many of the efforts

44

~ since. In fact they go on to say that technology can neither make an expert, a
learning organization or a knowledge creating company, nor make people use it.

A study by (Dingseyr & Conradi, 2003) presents us with a knowledge
‘management process that tries to combine the codified and personalized view of
knowledge just described. To accomplish this a system, Knowledge Flow, was
created and made accessible over the internet comprised of a knowledge
repository (Well of Experience), used to capture documented knowledge,
communities of knowledge workers, workspaces based on discussion boards
and work assignment tools, and a skills manager which linked workers to their
various areas of expertise and inventories of their skills. After conductiﬁg
interviews and reviewing the usage logs of the system they found that the
knowledge repository was used primarily by the developers to answer to deal
with some specific technical problem or get an overview of an area they were
“unfamiliar with. Experts used it to try and avoid having to answer the same
queries multiple times, but at the same time many would simply locate the expert
and go to them directly rather than access the information contained in the
repository. Difficulties in searching the repository and a lack of captured
knowledge were also documented. The Skills Manéger was also use to locate
experts, but was primarily used for resource allocation.

In (Kochikar & Suresh, 2003) the application of knowledge management at
Infosys is detailed. The projects purpose was to enable the organization to raise
their level of customer service by achieving greater faclility in terms of learning

and decision making under the pressure of the rapid changes in technology.

45

support the system by contributing to it and using it. The concemn for
contributions centered on the ideas canvassed previously such as knowledge
hoarding, while usage concerns were addressed by the architecture which will be
addressed shortly. As an added incentive to use the system, contributors are
awarded points (KCU's) for their submission of articles and can gather further
points from users of their articles if they see fit to award them. The points can
then be turned into a certificate and redeemed for goods through a rewards
scheme. The use of subject matter experts to review submissions also adds
credibility to the articles. In order {o facilitate use of the system its content
architecture was broken down into a hierarchical taxonomy using a variety of
keywords to allow the user to find the topic they are looking for. Within each topic
several content types are available such as, case studies, frequently asked
questions, bodies of knowledge and the like. Additional services such as a
people locator and people-knowledge map add further resources and relevance
to the system. The system is delivered through a portal, given the global nature

of Infosys’s business and allows the user to customize it to their particular set of

knoWIedge requirements. In assessing the success of the project the authors
found that 99% of respondents thought that knowledge management was
essential, with 71% believing that Infosys encouraged participation in it and that
71% believed it had saved them a day of research, while 14% believed they had

saved at least 8 days.

46

Conclusion
Throughout the knowledge creation process we can see the flow of tacit
and explicit knowledge as it moves through the contexts of the individual, group
and organization. The idea of “conversation” is a key facilitator of this movement,
laying a foundation of understanding and trust which are fundamental to the
relationships between individuals that are required for knowledge transfer to
begin. Through the use of metaphor and analogy individuals with widely
divergent knowledge, experience and skill are able to bring their unique
~ perspectives to bear on the problem that they are attempting to solve by evolving
a transcendent dialog centered on a common set of concepts and models.
Through these concepts and models they are able to understand each others
perspectives and exchange, at least to the degree necessary, elaborations of
their tacit knowledge allowing them to affect each others perspectives through a
“process of reflection. ltis in this exchange that new knowledge emerges. As
each individual reflects on their own knowledge in light of that of others, new
combinations and permutations are uncovered.

The degree to which a process within a group or organization promotes a
the barriers to it, is the measure by which it can be evaluated as to the efficacy of
it knowledge management practice. This can also be seen in the ability of an
individual, group or organization to adapt to and accommodate change which
requires a revaluation of their knowledge, as “fundamental true belief’, and allow

them to not only deal with complexity and chaos, but thrive on it.

47

CHAPTER IV

AGILE METHODS AND KNOWLEDGE MANAGEMENT

Introduction

The author contends that traditional methodologies of software
engineering suffer from a knowledge deficit due to the manner in which they
approach software development. In its attempts to perform upfront requirements
analysis, design and planning it ignores the reality of change, feedback and
learning about both the product it seeks to deliver and its own processes. Thisis .
| .r.lot to say that it can’t téke these issues into Iaccount, .b.ut that it does so only at
great and sometimes insurmountable costs. The Agile methods have a tendency
to ameliorate this knowledge deficit through their practices which are more
closely aligned with theories of knowledge creation espoused by the work of
Nonaka and Takeuchi. Rather than proceeding through a review of several of
the Agile methoéologiéé tﬁis chapter, the knowledge creation concepts and
models that were elaborated will be applied to them. By looking at the Agile

methods in this manner the author seeks to evaluate whether they already

~ embody the use of knowledge management through their processes, how project

knowledge is collected, disseminated and reflected upon and how this project
knowledge influences their ability to deal with complexity.

The Adgile Movement

While many of the methodologies that would form the foundation of the
Agile Movement were all ready developing, Crystal Clear (Crystal) (Cockburn,

2005), Extreme Programming (XP) (Beck, 2002; Beck & Andres, 2004; Jeffries,

48

Anderson, & Hendrickson, 2000; Marchesi, Succi, Wells, & Williams, 2002;
Wake, 2001), Scrum (Schwaber & Beedle, 2001) among others, the creation of
the Agile Manifesto marked the coming together of the founding members of the
Agile Alliance and the following expression of their common views.,
Manifesto for Agile Software Development
We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
~Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Melior
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland

~ Ward Cunningharm Jon Kern Dave Thomas
Martin Fowler Brian Marick

® 2001, the above authors this declaration may be freely copied in any
form, but only in its entirety through this notice. (Beck et al., 2001a)

Each of the four statements in the manifesto describes a high level view of

: me prmc;ples (Wthh willbe slaborated in the pestofth;s chapter,and are

attached as Appendix A) that form a common thread running through the
methodologies. The principles can be seen as a reaction to the increasing
degree of formalization and systematization of software engineering taking place
at the end of the 1990’s. The signatories in light of their experience and practice

of software development advance a set of practices based on the importance of

49

communication between people, the essential products of the software
development process and the inevitability of change during that process.

Knowledge Creation in the Agile Methods

Knowledge creation occurs at many levels during software development
process, and the author would argue that the act of creating software is itself a
knowledge creation activity. The creation of knowledge in the Agile methods
should follow much the same path as the one described by in the previous
chapter as it moves through the four stages of socialization, externalization,
combination and internalization.

Socialization

Socialization seeks to provide the individual the opportunity to build
relationships with others. Within the Agile methods this is supported by many of
the practices that are followed. The establishment of a foundation of trust is
essential in beginning the socialization process. The XP concept of “whole team”
(Beck & Andres, 2004) provides focus on the purpose and needs of the team
rather than the individual while Crystal's “personal safety” (Cockburn, 2005)
allows the individual to express their true feelings about the process and their
role in it without fear of reprisal.

A common feature of the Agile methods is the idea that the team should
be co-located. This not only aids in the development of a teams identity but
facilitates communication and collaboration between team members. Co-location
also leads to the notion of osmotic communication (Cockburn, 2005) which

asserts that the flow of communication between individuals within hearing of the

50

group will not only be absorbed by the parties to the conversation but also by the
other members of the team adding to their information and knowledge of the
projects design, direction and difficulties.

Pair programming, while being one of the most contentious XP practices,
is also one of its most beneficial in terms of socialization. In this sense we are not
looking at the actual code produced, which the author considers part of the
combination phase, but as a practice which fosters and creates the relationship
of the pair. Pairing has also been found to decrease the time it takes, and hence
the cost, of adding new members to the team at its later stages (Williams,
Shukia, & Anton, 200&). This activity allows for the direct transfer of knowledge
both tacit and explicit at both the professional and project level as well. Canfora,
Cimitile, & Visaggio (2004) have also found that “pair design” can have a similar
impact on individuals working in pairs in terms of building their design knowledge.

Externalization

Externalization being the process of articulating tacit knowledge to explicit
knowledge and involves itself heavily with the elicitation of the customers’
knowledge of their requirements. The author also includes under this category
the developmeni of feature and release planning as it should be seen as part and
parcel of the expression of the customers’ rational and need for the product.

Crystal uses a process called Chartering, as described by (Cockburn,
2005), as its initiation process to bring together the team, which at this point is
limited to the project sponsor, lead designer and perhaps an expert user to

complete what it terms an Exploratory 360° which includes:

51

» Adapting the methodology (methodology shaping) to fit the projects
circumstances and creating a high level project plan
» Determining what the project offers in terms of business value
-« Defining a preliminary set of requirements that will be needed to
provide the desired functionality
¢ Conducting a survey the domain model and the prospective
technologies to be used is conducted to ensure that they can in fact
succeed
* The creation of an initial project plan is then carried out from the
determined requirements or stories and pianned using the blitz-
planning technique (described below)
« At this point the project sponsor will be able to decide if the project
should go any further
~ If the decision is made to proceed the team will then start the planning
phase. Blitz Planning (Cockburn, 2005) incorporates the priorities of the
customer, the estimates of the developers and a joint responsibility to arrange
the work in the most efficient and valuable configuration possible. It begins b
having the customer and team create index cards with the tasks that need to be
completed. The task cards are then laid out in dependency order, tasks which
can proceed in parallel are laid out beside each other, while duplicates are
removed. Tasks are then reviewed to make sure that no tasks have been missed

and new tasks may be added in response to the ones already created. Task

52

estimates and assignments are then made and further refinements to the
dependencies. Of particular interest are the ideas of:

1. The walking skeleton which represents a prototypical system capable of
performing some rudimentary processing from end to end of the intended
system, a proof of concept.

2. The earliest useable release is the barest set of features which could be of
use to a customer and also marks the point at which the wider customer
community will be able to see the product and comment on it.

3. The earliest revenue producing release which is when sufficient
functionality has been implemented to justify a wider rollout.

These cards should be prioritized so as to facilitate reaching these
important objectives. Other potential releases can then be identified by looking
for logical groupings of functions and features. Finally the plan is captured.

- XP begins with the customer and prospective system users, assisted by
the development teams’ project manager and interaction designer arriving at a
suitable metaphor which will serve as the overall vision for the system. Once this
has been accomplished they can begin to develop stories, narrative descriptions
articulated by the customér, with the assistance of the team, of tﬁe essential
functions that the system will carry out. Developers are then asked to work up
estimates based on time to implement for each of the stories, breaking them into
tasks where they exceed the length of a single iteration. This has the effect of

giving the team a sense of what the customer’s expectations are, but also allows

53

prospective stories.

Planning then proceeds for the release (which sets of features will be
developed before releasing the system) based on quarterly and iteration time
spans. The customer selects from the stories those which they would like to have
implemented in the next iteration and over the longer term, applying primarily a
metric of what represents the best value to their organization to prioritize the
implementation of functionality. Where a set of stories amounts to more work
than the team can reasonably handle in the current iteration the customer and
the team must negotiate o reduce the number of stories by re-prioritizing or
shifting them to later iterations.

Key to this stage of the knowledge creation process is the interaction of
the customer and the team. The articulation of requirements/stories and planning
requires the collaboration of the customer and the team in bridging their
individual contexts to create a common context where each understands their
needs, capabilities and limitations. In doing so the customer informs the team not
only of the products technical aspects but also which aspects are of greatest
value to the organization. The team in turn is able to produce a more realistic
plan for the implementation of the project, having been informed of both the
content and context of it.

Combination
Combination involves the embodiment of the tacit knowledge made

explicit in the externalization stage and the individual knowledge of the team and

54

its members in some form of intelligible form. In the software engineering context
this can take no higher form than the delivery of functioning software that meets
the customers’ requirements. To achieve this XP follows an incremental and
iterative approach. Crystal follows a similar trajectory differing for the most part
only in terminology (it may in fact adopt XP as its implementation strategy) and
the length of time an iteration lasts. Differences will therefore only be noted
where they introduces a significantly different method or a more informative
explanation. The discussion that follows can be seen as the activity that would
take place during a single iteration culminating in a delivery or release of the
software product.

The use of informative workspaces, serves to remind the team of their
goal and the progress they are making (or not making) towards it. Crystal calls
these “information radiators” (Cockburn, 2005) which are visible to people both
inside and outside of the development team, biit really are of more use to the
latter, as the team should be well aware of where they stand.

XP proceeds from a test driven development philosophy. As programmers
begin the iteration they will design tests based on the functionality that the stories
describe. This has a three fold benefit. Firstly, it ensures that the developers
have thought through what the story actually requires and will design their tests
to meet the minimally necessary functionality of the story. Secondly, having
created the tests they will be able to easily determine when they have met those

requirements. Finally, they are contributing to a body of tests that will assist them

55

when they integrate their code into the code base as well as providing a baseline
against the effects of future refactoring can be verified against.

Design in XP is carried out in incremental stages in order to avoid creating
designs for features that may or may not be implemented in the future (Larman,
2003), with just enough design undertaken to implement the immediate story or
task into the system as a whole. The efficacy of pairs conducting design work
lead to mixed results in a study conducted by (Al-Kilidar, Parkin, Aurum, &
Jeffery, 2005) where final year students were given six weeks of training and
then asked to design a web based project management tool. While the design of
simple modules was better, more complex ones were not.

Pair programming (Beck & Andres, 2004) is conducted by two
programmers, and includes the foregoing test and design development, working
at a single computer screen one programmer enters the code (the driver), while a
second programmer (the partner) watches to ensure that they are adhering to the
story, coding guidelines and the tests they have developed. At the same time the
partner may offer suggestions as to how the code might be implemented offering

feedback or the opportunity to discuss what the driver is trying to do. Rotation

between the driver and partner is also encouraged. Crystal makes use of side by

side programming {Cockburn, 2005) which provides some of the benefits of
pairing (code review, testing, discussion and coaching) while the programmers
can work on separate tasks at the same time

XP aims at continuous integration. By combining the code that various

sets of pairs are creating, the system codebase is kept up to date and problems

56

between conflicting modules are identified and can be corrected early (Beck &
Andres, 2004). To assist the team in this stage of development some tools are
considered essential. Crystal and XP recommend the use of automated build and
testing, while Crystal adds configuration management as well.

The point at which deployment or delivery of the system occurs would
generally be determined by the release plan that has been agreed to prior to the
commencement of the iteration. It is more likely that a series of iterations would
take place, depending on their length and frequency, before any deployment to
the customer base. (Beck & Andres, 2004) offer that an incremental deployment
offers a means of avoiding the risk of deploying the entirety of the system all at
once. Through this strategy of incremental deployments not only can the
customer begin to obtain value from the system, but the team can gather
feedback from the user population as to how the system serves their needs.
Cockburn (2005) argues that frequent delivery (less than 4 months in between) to
a real user is important for a number of reasons: it provides the customer with a
measure of progress, developers have a target to focus on and users have the

opportunity to review what has been produced at their behest and comment upon

it. Itis this last part that is most important for the combination stage, the ability of

the team to disseminate the results of their codification of explicit and tacit
knowledge collected during the iteration and made manifest in the system

delivered.

57

Internalization

Internalization represents the reversal of the externalization stage. Within
the software development process this takes place after the product has been
delivered and before the next iteration.

in XP post lteration reflection (Beck & Andres, 2004) takes place at the
end of the iteration and is a good time to reflect on not only the work that has
been accomplished, but more importantly how it was accomplished. Were there
things that could have gone smoother? Does our development model need any
“tuning to make it better? Such questions can provide a basis for the team to

reflect on what they have just done and make any needed adjustments for the
next iteration. It also considers feedback about the product and what knowledge
can be gained from any failures it may have encountered along the way.

Crystal makes use of two specific devices to incorporate internalization

“into its methodology. The first is the keep/try reflection workshop (Cockburn,

2005), which can be used during or after an iteration, is used to reflect on the
way the team is functioning and whether there are any persistent problems that
need to be addressed and whether there are practices that shouid be kept or
of the Crystal methodology or others that the team believes would improve their
environment. The second device is that of reflection on the delivery. In this
activity the team not only reflects on how the delivery proceeded, but actively
seeks input from the users of the system to ensure that they are delivering what

the users needed and expected.

58

Agile Methods: Enablers, Barriers and Ba
The Agile methods provide a host of guidance with respect to enabling
software development, removing barriers to it and creating a context where this
~activity takes place. In the previous chapter a set.of enablers, barriers and the
concept of Ba were introduced at this point they will be revisited in the context of
the Agile methods.
 Enablers

Fluctuation / Creative Chaos

Fluctuation is described as being a lever activated by management to
cause a revaluation of the normal routine of the organization motivated from
within or outside of it while creative chaos is motivated by a far more serious
crisis due to the latter. During the lifespan of an Agile project changes can occur
where the planned pa‘th of development is forced to deviate due to a change in
"~ the features required for the product as aresult of a change in the customers’
business environment. The ability to add, remove and change the order of
stories, the use of short iterations and incremental design allows the customer to

make needed changes without resuitmg in major dssruptlons In fact both XP and

Crystal make the ability to accommodate change part of the:r core pnnc;ptes

Teams / Proiects

While this category is implicit in the Agile methods it should be
remembered that the team is not composed solely of programmers. The
customer (sponsor, expert or both) plays an important role in the process as it is

they who define the product’s specifications and the importance of them to the

59

r_e_st of the team. It is they who tell the story, the rest merely act it out. The
importance and therefore difficulty of this role cannot be underestimated. Looking
at the customer role in three XP developments {(A. Martin, Biddle, & Noble, 2004)
found that the customer role by its nature results in a high degree of stress, as
the customer is responsibie not only to the team (stories, financing and reporting)
but the business as well which may make the role unsustainable over the long
term. Through its attention to socialization and externalization the Agile methods
ensure that the team will develop' into a well functioning group, learning from
each other and engaging in creative development. According to (Highsmith &
Cockburn, 2001) Agile scftware development ;jractices are generative rules
rather than a strict prescription as to how to do software development. In this
sense they provide an adaptive environment in which self-organizing teams can
create their own process. As (Boehm & Turner, 2003) remark, plan-driven
methodologies tend to be all encompassing, intended to be tailored down to suit
the situation, while Agile methodologies move in the opposite direction offering a

minimalist approach and growing only when justification to do so can be found.

Requisite Variety (Creative Abrasion)
technical people. Within Crystal (Cockburn, 2005) identifies an executive
sponsor, expert user, lead designer, designer-programmer and four subsidiary
roles, a coordinator (filling the role of project manager), business expert (for

questions about the business outside the users expertise), tester and writer. In

60

XP (Beck & Andres, 2004) identifies ten personages as the “whole team” (human

resources has been omitted). Here we find:

1.

testers: who assist customers define acceptable functioning and
developers design the tests to achieve it, as well as system tests
interaction designers: assist in the development of stories and
metaphors that embody the system

architects: shape the overall design of the system, wrestle it back into
shape through large scale refactoring and find its weak points through
stress testing

project managers: act as facilitators, passing information to the team
and back out to the customer in the appropriate manner. They also
engage in continuous planning as the project evolves

product managers: manages the writing of and acting upon stories in a
sequence that makes both business sense and the teams progress
manageable

executives: provide leadership and context to the team

technical writers: provide users with an idea of what is being developed

and relate their concerns back to the team. They also produce user

documentation and conduct training
users: are part of the story development and selection process
programmers: estimate stories, break them down, design tests, code

and improve the system

61

This would seem to provide a reasonable degree of variety, though many
of the participants are technical, they are sure to come from and hold different
perspectives as to how to accomplish a given task.

Reflection

As was examined above both XP and Crystal incorporate reflective
practices into their lifecycles in order to not only improve their internal functioning
but also to incorporate what they learn from the delivery of their product to
improve both its delivery and its content.

Redundancy

The mandatory inclusion of a customer representative under XP's
methodology and access to an expert user in Crystal allows for the cross-
functional nature of redundancy envisioned by Nonaka by achieving a team
based level of boundary crossing.

e Knowledge Integrators, Activists and Collaborators

Redundancy and many of the roles just described which form part of the
Agile methods incorporate to a large degree what is meant by the role of
knowledge integrator / activist. Customer coilaboration as designated in the Agile
Manifesto plays a crucial role in determining the shape and outcome of the
project.

Promote Conversations

Conversations are one of the critical elements of the Agile methods as can
be seen in many of the activities that were described above, including, sitting

together, pair programming, the standup meeting, story development, and

62

reflection. This informal sharing of knowledge while avoiding knowledge loss
according to (Chau & Maurer, 2004) creates problems for those who are not a
party to the conversation but many still have an interest in the content of it (see
the discussion of documentation below).

Barriers

Qrganizational

The structure of organizational barriers, defined in the previous chapter,
must be recast depending on the situation that an Agile project finds itself. The
wholesale adoption of an Agile methodology within an organization has met with
many forms of resistance from process issues, business perspectives and people
(Boehm & Turner, 2005). Hodgetts (2004) describes adoption of Agile methods in
some organizations as a disruptive change, requiring a more focused and slow

introduction to be successful. Even where the project is a separate initiative there

relationships with other entities in the organization be they technical or not if the
organization has not adopted a knowledge management philosophy.

At another level, that of the team itself, resistance should not be a problem

procedures that are in line with a culture of knowledge creation.

Not Invented Here

As was identified as a particular disease among programmers this

syndrome may or may not be overcome by the Agile methods. One would hope

63

that the use of pair programming would make programmers more open o new
ideas, other then their own.

Knowledge Walkout / Knowledge Hoarding

Each of these barriers is a concern where a single individual has in some
way gained control over a particular area of knowledge important to the
functioning of the organization. XP's use of pair programming ensures that at
least two people have knowledge of any particular implementation of a single
story; in this situation even if one programmer decides to leave there is at least
one more that understands it. The same reasoning holds true for the concern that
knowledge of the system will be hoarded. In fact it would be difficult for a single
developer to hoard information about any part of the system for two reasons; first
is XP's use of shared code and a single codebase (Beck & Andres, 2004), while
the former is used to allow any pair to refactor the system when they identify a
part of it that needs improvement, the later is used to avoid multiple code
streams and their attendant maintenance requirements. As an added benefit this
makes the system transparent to the whole team. Similar problems may arise
with the customer representative(s) on the team, but are not addressable here.

Not Enough Time

The processes, enablers and barriers to knowledge creation up to this
point represent aspects of the Agile methods which are incorporated into their

practice thereby alleviating the concern of having enough time.

64

Documentation

Another aspect of the Agile methods is that of documentation. Due to the
nature of the discussion surrounding this topic and the difficulty in classifying it as
either an enabler or barrier the author has decided to treat it separately.

Cast as a barrier we find the arguments that were canvassed in the last
chapter surrounding the need to capture the knowledge a project creates due to |
their temporal nature and attendant memory loss (Love, Fong, & Irani, 2005).
The ideas of {(Lindvall & Rus, 2003) with respect to the fact that project
knowledge are at least captured in the work products of the software engineering
process but are turned upside down in their veiled reference to the Agile
methodologies which do not ascribe to such a full set of outputs. Raskin (2005)
refutes the XP notion that documentation is an impediment to the real work of
programming, stating that the “why” of a particular implementation, its rationale, -
is lostif a programmers code is not commentated.

As an enabler, (Beck & Andres, 2004) addressing the issue of permanent
artifacts, insists that only code and tests should be maintained and that the
organizational memory should maintain the projects history. Eisewhere he
excuse for a lack of documentation, but goes on to argue that anything that does
not add value to the functionality of the system is waste. Taken to the extreme
some XP practitioners even eschew the use of code comments as they too
require updating as the code changes, preferring to rely on “self-documenting

code” (Schach, 2002). Ambler (2005) argues that documentation should not be

65

seen as a primary vehicle for communication, rather it should be lean, light and
just good enough to facilitate the ongoing development effort without allowing the
cost {time) to produce it outweigh its benefits. A major concem is the fact that if
documentation is not constantly updated once produced, the information they
convey will lose it currency almost immediately. Ambler goes on to list some
forms of documentation that are worth while. Among them are design decisions
which explain why a particular architectural or design was implemented and what
other approaches were considered to facilitate a better understanding of the
system and refactoring which could go back over discarded decisions if they are
not made explicit. Melnik & Maurer (2004) explain that non-Agile software
engineering practices treat knowledge as an object capable of being documented
even though some 70% of such documentation has been found to be seriously
compromised. They go on to explain that "highly abstract knowledge” needs to
be transmitted over richér commiunication channels than documents offer in order
to be effective. A study conducted by (de Souza, Anquetil, & de Olivera, 2005)
provides us with insights into the use of documentation in the maintenance phase
of the systems lifecycle. In their study of 76 software maintenance professionais
(consisting of managers, analysts, programmers and consultants) they
conducted a survey in order to ascertain their usage patterns of various software
development artifacts. Their findings for object-oriented artifacts ranked as very
important, source code and comments at 94.3% and 75.9% respectively, with the
logical data model, class diagram, physical data model, use case diagrams and

use case specification rounding out those artifacts that garnered more than a

66

to write it down and pass it along.

50% mark. Crystal's (Cockburn, 2005) answer to documentation is that the team

and sponsor decide, but then goes on to restate some of the arguments made by
others that time spent on documentation will not be spent advancing the system,
that documentation is never really up to date. Cockburn than allows that some
record of the teams endeavor should be created, integrating the requested
documentation as a distinct part of the planning process to account for the effort
required to produce it. The actual artifacts, he argues, need not follow traditional
methods but may include photographs of whiteboards, scans of hand drawn
diagrams or even videotapes of people discussing the design of important parts
of the system at the whiteboard (Cockburn, 2004).

It is difficult to determine whether the Agile methods approach to
documentation is inadequate or not. XP is correct that the ultimate product of
software development is working software, but without the ability to review the
manner of its construction, the decisions taken and plans made, whatever
learning that may have taken place along the way will live on only it the minds of
those who originated it. in that case we are left to hope that a few of them decide

“Bé e

The Agile methods outlined in the previous two sections fit well within the
description of Ba advanced by (Nonaka & Konno, 1998; Nonaka & Toyama,
2004). The shared context created by establishing a project based team
including not only software specialists, but representatives of the customer

organization as well, achieves the condition of originating Ba by bringing them

67

into close contact with a shared purpose. Charged with the creation of a product,
the communicative and collaborative aspects both within the Agile team and
across traditional boundaries into the sponsoring organization create an
environment in which the flow of knowledge between the whole team, as Beck
styles it, operates with quality, energy and efficiency in creating an interacting Ba
that allows them to not only bring to bear their respective skills and knowledge
but to also to impart that knowledge to each other. The idea of the planning game
and blitz planning epitomize this exchange of expertise as business knowledge of
user or market priorities is balanced against developer knowledge of what it will
take to implement various aspects of the proposed features, resulting in new
knowledge and understanding between the parties and the opportunity to
achieve greater success through creative solutions and negotiation. The cyber
Ba is represented in the completed iteration and its delivery to the organization,
which has the effect of informing it and creating the exercising Ba where this new
knowledge transfers back to the individual.

Agile Lifecycles and the Knowledage Creation Process

To give further context to the knowledge creation process within the Agile

Crystal represented in (Figure 7). It should not come as a surprise that

68

Figure 6. Extreme Programming Project Model
R

Cugtaner devetops
stories

Deyelogiers create
estinales for yteties

i ————

Quarteriy Pianning
Pianning Game ‘Themes and Stgries
st

‘Customor cheoses

{ Y.
storigs

-iﬁraupa Ph_miiir_tg

Daily

Hiniins bo tasks \Jeoting L”

P

Lastintier develnps
v SloTiag. oy
‘eHsnges by existing
Gris, devilopers
‘Gredtp estimales

. Refiogt o Weok:

Figure 7. Crystal Clear Project Model

- _ Zorbore
12w s Months Duration

Chartering

Daily Standup |
Episode T Build and Test

the two models are more similar than different.

69

The quel of Agiie]ife_cyc_:le _iu_st presented can be reiated_ to the _“f_Eve-
phase model of the organizational knowledge creation process” presented by
(Takeuchi & Nonaka, 2004) in the last chapter, taking into account only minor
changes to accommodate the specific nature of software development.

The first three phases sharing tacit knowledge, creating concepts and
concept justification tend to occur in unison at the beginning of the lifecycles, with
the team being assembled, the creation of system metaphors, stories, and
preliminary planning taking place. While Crystal makes specific provision for a
" technical justification of the proposed solution, the planning stages of both XP
and Crystal provide an opportunity for the customer to explore their own
motivations and priorities related to the proposed system to ensure that they
coincide with their needs.

The fourth phase, building an archetype is clearly the concern of software
" “engineering and it is here that both XP and Crystal elaborate most fully their

respective approaches to how that is to be carried out.
In the fifth phase, cross leveling of knowledge, the product is delivered to
the users who then have the opportunity to review and understand how it suits
"théi} purposes B .
Conclusion

In this chapter the Agile methods have been related and evaluated in light

of the principles of knowledge management. In applying the theories of Nonaka

and Takeuchi and applying them to software development it becomes apparent

that there exists a high degree of fluidity in the distinctions that the theory draws

70

between the SECI process, enablers, barriers and the Ba which can pose.
significant difficulty in the partitioning of various practices among them. This is to
be expected as software engineering is a complex field in and of itself, while
knowledge as (Davenport & Prusak, 1998) remind us, enables us to deal with
such complexity because of its fluidity and the attendant difficuity of reconciling
its constituent elements. The Agile methods exhibit a high degree of knowledge
creation activity as expressed by their principles, practices and sfrategies as they
relate not only to the way in which software development is carried out, but also
in the manner they seek to reflectively revise themselves in light of the context
they find themselves. It seems clear that knowledge management and the
knowledge creation process play an important role in fostering and grounding the
Agile methods, while they provide an informative and practical implementation of

knowledge management.

71

CHAPTERV
CONCLUSIONS AND RECOMMENDATIONS

Introduction

Tying together the various threads which form the body of this thesis has
been no easy matter. We began by looking at the complexity that surrounds and
infuses the various disciplines of software engineering and the outcomes that
result from this sometimes chaotic interaction. Knowledge management was then

introduced as having the ability to help us make sense of the complexity, or at

least providing us with a way of working through it to better rend success from

failure. The Agile methods a relatively new way of creating software exhibit a
high degree of knowledge management in their use of communication, reflection,
and knowledge creation activities were elaborated. in this part we will return
again to the question of complexity in software engineering and assess the
potential exhibited by the Agile methods to manage it.

Addressing Software Complexity

Many of the problems that were described in the second chapter of this
thesis arise due to the way in which software engineering has traditionally
approached software development. The Agile methods offer a new approach to
software development founded on the idea that people and communication form
the core of this activity. In this section the author revisits these problems from the

perspective of the Agile methods.

72

Requirement Chanage

Changes to requirements pose a significant threat o the successful
implementation of a system, whether these changes arise from deficiencies in
the original specification of requirements or due to changes external to the
project. Traditional software engineering resists this sort of change as the
requirements form the basis of its design and planning activities which will be
impacted if change is accommodated. The Agile methods on the other hand both
accept change as inevitable and welcome it. The ability to do so is found in the
way that software construction is carried out under the Agile methodologies. By
adopting a lifecycle model that encourages a short and iterative approach these
methods are able to shift direction quickly in response to the shifting needs of the
organization in which it operates. By limiting iterations and deliveries to weeks
and months instead of years and proceeding from a test driven approach to
coding, they are able to incorporate new functionality and revise already
implemented features with both speed and confidence.

Architecture and Design

The problem of design lock-in in traditional software development arises
*from a need to establish a firm foundation of requirements. Architecture and
design share many of the problems described in the requirements change
section which precedes this one. The author would further argue that this
difficulty runs even deeper in that once the architecture and design have been
defined it becomes very difficult to revisit it without the impact being felt

throughout the systems structure. The Agile methods deal with this difficulty by

73

maoving decisions as to architecture and design to the point where they are
needed to support the implementation of a particular feature and even then limit
the creation of any permanent edifice to just what is needed. This approach
provides a degree of fluidity to the system that can accommodate changing
requirements while evolving the architecture and design of it. The additional -
benefit of the test driven approach can also be seen here as developers are able
to refactor at both the feature and architectural level while ensuring that the
system will still operate correctly.

Life Cycle Models

As mentioned above the iterative nature of the Agile methods is one of the
keys to its ability to adapt to change. No less so is the inclusion of constant
planning within it. Rather than seeing software development and project
management as distinct disciplines the Agile methods bring them together so that
they each inform the other of the tradeoffs that are necessary o succeed. The
inclusion of reflective practices within the lifecycle of the project as both a way to
improve the process and the product is also a benefit as it informs and makes
change possible.

Customer Knowledge of Business Need

The customer at the beginning of a project comes to it with a certain view
of what it is they want to gain from it. As the project proceeds these initial
assumptions will change. Alongside this each iteration of the project resulits in
new knowledge not only of the product itself but also of what it can do, this

necessitates the revisiting of the assumptions at the beginning of the iteration. As

74

the customer is exposed to the process and receives feedback from the
development team and the users new needs will come to light while others will
fade. These changes can be accommodated by reprioritizing the feature sets
already established, adding to them and removing them where necessary.

Customer involvement and Sponsorship

The degree of customer involvement in the Agile methods is a serious but
necessary commitment. Defining and interpreting the requirements as stories,
prioritizing and reprioritizing the order in which they will be implemented and
acting as a facilitator between the development team and various stakeholders in
the project is a difficult role. In the end, however, who else could do it?

IT and Business Need

The Agile methods provide a means of responding to the needs of
business and the changing environment in which it operates. It also exposes
those who function within the IT area to the thinking and needs of the business,
rather than simply passing along requests. With a better understanding of the
business one would expect IT to become more proactive in its approach to
delivering the projects it is charges with and hopefully advancing new ones.

impact on Complexity

The impact of the Agile methods derives from many of its practices. Chief
among them is its focus on communication. Communication between the
customer and the development team acts to begin the cycle of knowledge
creation that flows throughout the process. Communication between members of

the development team not only serves to inform them of the content of the

75

system, but also of its context as well. It further informs them of the way they are
performing their activities allowing them to tune their habits to become better at it.
Through reflection the teams learns about itself, its process and its product.
Complexity in its many forms is dealt with in these conversations and reflections

allowing those involved to make sense of it and react accordingly.

Recommendations

Many of the topic areas within the Agile methods have been studied, the issue of
documentation has however not received the same degree of attention as others.
The need for artifacts other than source code and tests seems clear both from
the perspective of practitioners of software development and those who study
both the methods themselves and project based organizations as well. As we
have seen tacit knowledge that is not elaborated and captured is lost. Once
captured however they become knowledge precursors. In this respect the
elaboration of some minimally intrusive way to capture the knowledge that leads
to decisions should be further investigated. The author is particularly interested
in:

¢ the deveiopment of a stra’tegy to tie together stories, pianmng decisions,

design decisions, comments code and tests, as weE as any other artlfacts |
that could reasonably inform both the process and those with an interest in
it

+ the application of team blogs to capture the teams thought process in the

design decisions it makes

76

» the use of subscription based RSS feeds for the delivery of information to
team members
While researching this thesis it became apparent that the practices of
. product design could also hold value when dealing with the manner and conduct
of software development, further research in this area could also add to our
knowledge.

The Agile methods extol the practice of pair programming as a way to
enhance programmer knowledge of both their tools (programming language) and
the system under construction. Establishing a means to ensure that the rotation
of programmers maximizes their exposure to all areas of the system would also

be of assistance in this area.

77

REFERENCES

Abran, A., Moore, J. W., Bourque, P., & Dupuis, R. (Eds.). (2004). Guide to the. software

engineering body of knowledge. L.os Alamitos, CA: IEEE Computer Society.

Al-Kilidar, H., Parkin, P., Aurum, A., & Jeffery, R. (2005). Evaluation of effects of pair
work on quality of designs. Paper presented at the Proceedings of the 2005

Australian Software Engineering Conference (ASWEC'05), Brisbane, Australia.

Ambler, S. (2005). Agile documentation. Retrieved February 8, 2005, from

http://www_agilemodelina.com/essays/agile Documentation.him

Argyris, C. (1998). Teaching smart people how to learn. In P. F. Drucker (Ed.), Harvard
Business Review on knowledge management. Boston, MA: Harvard Business

School Press.

ATKearney. (2005). Why today's IT organization won't work tomorrow. Retrieved
October 4, 2005, from--

http/iwww.atkearney.com/shared res/pdf/IT Tomorrow S.pdf

Beck, K. (2002). Test-Driven development by example. Boston, MA: Addison-Wesley.

ed.). Boston, MA: Addison-Wesley Professional.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., et
al. (2001a). Manifesto for agile software development. Retrieved March 19, 2008,

from hitp://AgileManifesto.org

78

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., et
al. (2001b). Principles behind the Agile Manifesto. Retrieved March 19, 2006,

from hitp://AgileManifesto.org

Boehm, B. (1988). A spiral model of software development and enhancement. IEEE

Computer, 21(5), 61-72.

Boehm, B. (2000). Project termination doesn't equal project failure. IEEE Computer,

33(9), 94-96.

Boehm, B., & Turner, R. (2003). Balancing agility and discipline: A guide for the

perpfexed. Upper Saddle River, NJ: Addison-Wesley Professional.

Boehm, B., & Turner, R. (2005). Management challenges to implementing Agile

processes in traditional development organizations. /EEE Software, 22(5), 30-39.

Bresnen, M., Edelman, L., Newell, S., Scarbrough, H., & Swan, J. (2005). A community
perspective on managing knowledge in project environments. In P. Love, P. Fong
& Z. Irani (Eds.), Management of knowledge in project environments. Oxford, UK:

Butterworth-Heinemann College.

Canfora, G., Cimitile, A., & Visaggio, C. A. (2004). Working in pairs as a means for
design knowledge building: an empirical study. Papér presehted at the
Proceedings of the 12th IEEE International Workshop on Program

Comprehension (IWPC’'04), Bari, ltaly.
Carr, N. G. (2003). IT doesn't matter. Harvard Business Review, 81(5), 41-48.

Ceschi, M., Sillitti, A., Succi, G., & De Panfilis, S. (2005). Project management in plan-

based and agile companies. IEEE Software, 22(3), 21-27.

79

CHAQS: A recipe for success. (1999). West Yarmouth, MA: The Standish Group

International, Inc.

Chau, T., & Maurer, F. (2004). Knowledge sharing in agile software teams. Paper

presented at the Proceedings Symposium Logic versus Approximation.

Cicmil, S. (2005). Reflection, participation and learning in project environments: A
multiple perspective agenda. In P. Love, P. Fong & Z. Irani (Eds.), Management
of knowledge in project environments. Oxford, UK: Butterworth-Heinemann

College.

Cockburn, A. (2004). Agile software development (MP3 Recording). Kentfield, CA:
ITConversations. Retrieved December 28, 2005, from

hitp://iwww.itconversations.com/shows/detail175 . him|

Cockburn, A. (2008). Crystal clear: A human-powered methodology for small teams.

Upper-Saddie River, NJ: Pearson Education Inc.

Davenport, T. H., & Prusak, L. (1998). Working knowledge: How organizations manage

what they know. Boston, MA: Harvard Business School Press.

de Souza, S. C. B., Anquetil, N., & de Olivera, K. M. (2005). A study of the
Proceedings of the 23rd annual international conference on Design of

communication: documenting & designing for pervasive information, Coventry,

UK.

80

Dingseyr, T., & Conradi, R. (2003). Usage of intranet tools for knowledge management
in a medium-sized software consulting company. In A. Aurum (Ed.), Managing

software engineering knowledge. New York, NY: Springer-Verlag.

Drucker, P. F. (1998). Harvard Business Review on knowledge management. Boston,

MA.; Harvard Business School Press,

Dutoit, A. H., & Paech, B. (2003). Eliciting and maintaining knowledge for requirements
evolution. In A. Aurum (Ed.), Managing software engineering knowledge. New

York, NY: Springer-Verlag.

Dyba, T. (2003). A dynamic model of software engineering knowledge creation. In A.
Aurum (Ed.), Managing software engineering knowledge. New York, NY:

Springer-Verlag.

Edwards, J. S. (2003). Managing software engineers and their knowledge. In A. Aurum

(Ed.), Managing software engineering knowledge. New York, NY: Springer-

Verlag.

Gladwell, M. (2002). The tipping point. New York, NY: Back Bay Books.

Love, P. Fong & Z. Irani (Eds.), Management of knowledge in project

environments. Oxford, UK: Butterworth-Heinemann College.

Highsmith, J., & Cockburn, A. (2001). Agile software development: The business of

innovation. IEEE Computer, 34(11), 120-122.

81

Hodgetts, P. (2004). Refactoring the development process: Experiences with the
incremental adoption of Agile practices. Paper presented at the Proceedings of

the Agile Development Conference (ADC'04), Salt Lake City, Utah.

fchijo, K. (2004). From managing to enabling knowledge. in H. Takeuchi & |. Nonaka
(Eds.), Hitotsubashi on knowledge management. Singapore: John Wiley & Sons

(Asia).

iTWire. (2004). IT project failures up sharply according to US report. Retrieved October

4, 2005, 2005, from http://www beerfiles.com.au/content/view/367/37/

Jeffries, R., Anderson, A., & Hendrickson, C. (2000). Extreme programming installed.

Boston, MA: Addison-Wesley Professional.
Kelly, T. (2005). The ten faces of innovation. New York, NY: Doubleday.

Kochikar, V. P., & Suresh, J. K. (2003). The Infosys km experience. In M. Rao (Ed.},
Leading with knowledge: Knowledge management practices in global infotech

companies. New Delhi: Tata McGraw-Hill.

Kroll, P., & Kruchten, P. (2003). The rational unified process made easy: A practitioners
guide to the RUP. Boston, MA: Addison Wesley.

Larman, C. (2003). Agie and iterative development: A manager's guide. Boston, MA:
Addison-Wesley Professional.

Leonard, D., & Straus, S. (1998). Putting your whole company's brain to work. In P. F.

Drucker (Ed.), Harvard Business Review on knowledge management. Boston,

MA: Harvard Business School Press.

82

Lindvall, M., & Rus, 1. (2003). Knowledge management for software organizations. In A,
" Aurum (Ed.), Managing software engineering knowledge. New York, NY:

Springer-Verlag.

Love, P., Fong, P., & Irani, Z. (2005). Management of knowledge in project

environments, Oxford, UK: Butterworth-Heinemann College.

Marchesi, M., Succi, G., Wells, D., & Williams, L. (2002). Extreme programming

perspectives. Boston, MA: Addison-Wesley Professional.

Martin, A., Biddle, R., & Noble, J. (2004). The XP customer rofe in practice: Three
studies. Paper presented at the Proceedings of the Agile Development

Conference (ADC’04), Salt Lake City, Utah.
Martin, J. (1991). Rapid application development. New York, NY: MacMillan Publishing.

Martin, J., & McClure, C. (1988). Structured techniques for computing. Upper Saddle

River, NJ: Prentice Hall.

Melnik, G., & Maurer, F. (2004). Direct verbal communication as a catalyst of Agile

knowledge sharing. Paper presented at the Proceedings of the Agile

Newell, S., & Huang, J. (2005). Knowledge integration processes and dynamics within
the context of cross-functional projects. In P. Love, P. Fong & Z. lrani (Eds.),
Management of knowledge in project environments. Oxford, UK: Butterworth-

Heinemann College.

83

Nonaka, {. (1998). The knowledge creating company. In P. F. Drucker (Ed.), Harvard
Business Review on know!edge management. Boston, MA: Harvard Business

School Press.

Nonaka, 1., & Konno, N. (1998). The concept of "ba". California Management Review,

40(3), 40 - 53.

Nonaka, 1., & Takeuchi, H. (1995). The knowledge-creating company: How Japanese
companies create the dynamics of innovation. New York, NY: Oxford University

Press.

Nonaka, |., & Toyama, R. (2004). Knowledge creation as a synthesizing process. In H.
Takeuchi & 1. Nonaka (Eds.), Hitotsubashi on knowledge management.

Singapore: John Wiley & Sons (Asia).
Polanyi, M. (1962). Personal knowledge. Chicago, IL: The University of Chicago Press.
Polanyi, M. (1967). The tacit dimension. New York, NY: Anchor Books.

Quinn, J. B., Anderson, P., & Finkelstein, S. (1998). Managing professional intellect. In
P. F. Drucker (Ed.), Harvard Business Review on knowledge management.

Boston, MA: Harvard Business School Press.

Rao, M. (2003). Leading with knowledge: Knowledge management practices in global

infotech companies. New Delhi: Tata McGraw-Hill.

Raskin, J. (2005). Comments are more important than code. Retrieved April 27, 2005,

from htip:/facmgueue.com/modules.php?name=Content&pa=showpaoe&pid=290

84

Royce, W. W. (1987). Managing the development of large software systems: Concepts
and techniques. Paper presented at the Proceedings of the 9th International

Conference on Software Engineering, Sevastapole, CA.

Schach, S. R. (2002). Object-oriented and classical software engineering (5th ed.). New

York, NY: Mcgraw-Hill.

Schwaber, K., & Beedle, M. (2001). Agile project management with scrum. Redmond,

WA: Microsoft Press.

Schwalbe, K. (2002). Information technology project management. Boston, MA: Course

Technology.

The Standish Group Report - CHAQOS. (1995). West Yarmouth, MA: The Standish

Group International, Inc,

Takeuchi, H., & Nonaka, 1. (2004). Hitotsubashi on knowledge management. Singapore:

_ John Wiley & Sons (Asia).

Tiwana, A. (2002). The knowledge management toolkit. Upper Saddle River, NJ:
Prentice Hall PTR.

Verner, J. M., & Evanco, W. M. (2003). An investigation into software development
process knowledge. In A. Aurum (Ed.), Managing software engineering

knowledge. New York, NY: Springer-Verlag.

Wake, W. C. (2001). Extreme programming explored. Boston, MA: Addison-Wesley

Professional.

85

Williams, L., Shukla, A., & Antén, A. |. (2004). An initial exploration of the relationship

between pair programming and Brooks’ iaw. Paper presented at the FProceedings

of the Agile Development Conference (ADC'04), Salt Lake City, Utah,

86

| APPENDIX A
PRINCIPLES BEHIND THE AGILE MANIFESTO
We follow these principles:

Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

Welcome changing requirements, even late in development. Agile processes harness
change for the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with
a preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation. -

Working software is the primary measure of progress. Agile processes promote
sustainable development.

The sponsors, developers, and users should be able to maintain a constant pace
indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity--the art of maximizing the amount of work not done--is essential.

- The-bestarchitectures; requirements; and designs emerge from self-organizing teams. e

At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.

(Beck et al., 2001b)

87

