ATHABASCA UNIVERSITY

IMPACT OF DISTANCE / DISTRIBUTED PROJECT MANAGEMENT
ON
DIFFERENT SOFTWARE DEVELOPMENT METHODOLOGIES
BY

GERALD LAURENT CAISSY

A thesis project submitted in partial fulfillment
Of the requirements for the degree of

MASTER OF SCIENCE in INFORMATION SYSTEMS

Athabasca, Alberta

March 2005

© Gerald L. Caissy, 2005

ATHABASCA UNIVERSITY

The undersigned certify that they have read and recommend for acceptance the thesis project
“IMPACT OF DISTANCE / DITRIBUTED PROJECT MANAGEMENT ON DIFFERENT
SOFTWARE DEVELOPMENT METHOLOGIES” submitted by “GERALD L. CAISSY” in
partial fulfiliment of they requirements for the degree of MASTER OF SCIENCE in

INFORMATION SYSTEMS.

_)m

Xiaokun Zhang, Ph.D. " Lewis Varga, Ph. D. Richard Huntrods, M. Eng.
Associate Professor Assistant Professor Academic Coordinator
Master Project Supervisor Review Committee Chair Review Committee Examiner

i /; A ‘ ‘[— -2 wred - i e, e e B e
Date: /} Sy AN e - Date: i oo Date: _juear 1 Zovs

DEDICATION

To Deb, you are the love of my life; I am so fortunate to have found you 20" years ago. To
our children Tyler, Danielle, and Mitchell work hard, stay commitied, and have fun

achieving your goals. Thank you for your suppert. I love you!

ii

ABSTRACT

This paper explores the question of possible impact(s) caused by Distributed Project
Managenient on Software Development Methodologies. Project Management adopters claim
benefits from the application of such practices in software development projects from the
perspective of control. Software Development Methodologies provide us with models, which
allow for efficient software construction. The methodologies and/or approaches profiled in
this paper are: Waterfall, Object-Oriented, Rapid Prototyping, and Extreme Programming.
Although some have a more extensive historical track record, they are all accepted

approaches in attempting to build a software solution to a given development problem.

Distributed Project Management is the application of standard project management over a
distributed venue. A key observation made with regards to this distributed application of
project management is that communication is the single most important influencing factor.
In the absence of good communication protocols and/or standards, projects find themselves
at greater risk of negative impact. This impact is very difficult to isolate as solely a

Distributed Project Management issue or solely a Software Development Methodology issue.

As part of this paper, an industry survey provides interesting ‘state of affairs’ information for
consideration, not intended as statistically defendable data, but to be used in an observatory
manner only. What the survey does is provide a sampling that indicates the largest portion of

the local, regional industries are applying Waterfall and/or Object-Oriented Methodologies.

i1

Of the Software Development Methodologies and/or approaches profiled, Extreme
Programming is possibly the most at risk of negative impacts, primarily due to the unique
physical characteristics of Classical XP Methodology. To say that the other three
methodologies are exempt of any impact by Distributed Project Management would be
premature, but their impacts are not as noticeable as in the case of the Extreme Programming

Methodology.

It is conceivable that the process of managing a distributed software development project
may not only incur negative impacts, but may introduce positive impacts, such as the ability

to draw from a more specialized pool of development professionals.

Regardless of negative or positive impacts, the distributed application of project management
to software development projects, as well as methodologies, is a relatively young application
domain. The youthfulness of this domain’s application suggests its evolution is not complete
and may not have progressed far enough to yield solid evidence with regards to the impacts

imposed on Software Development Methodologies,

v

ACKNOWLEDGMENTS

First, 1 would like to thank Deb who has stood by me throughout this educational
undertaking, which has challenged both recreational time and family logistics within a two
career / three teenager home. To my children Tyler, Danicle, and Mitchell, I want to thank
you for giving me the time and space to study and for always turning down the stereos when

I studied.

I'would like to take this opportunity to acknowledge my employer, Holland College, for their
support, via financial, time, and technology resources, provided to me for my educational
undertaking. A special note of thanks in recognition of their support to, Dr. Brian McMillan
(Vice-President Academic) and Dr. Sandy MacDonald (former Executive Director of
Programs), also to Sylvia Poirier (Registrar at Holland Cellege) for informing me of the
Athabasca University Master of Science in Information Systems program. Professional
development is a critical aspectlof all technology practitioners in today’s fast moving
technology cycles, to be supported by one’s employer is a tremendous professional and

personal advantage. Thank you!

I would like to thank all Athabasca University Master of Science in Information Systems
faculty and staff for their support during my educational experience with them. Special
thank you to Dr. Xiackun Zhang faculty advisor and paper supervisor. As well as a note of
thanks to Jackie Terrien, who always clarified administrative questions about the program.
Finalty, I would like to thank Gaylene Carragher, technical reader; your assistance was

mmvaluable.

TABLE OF CONTENTS

ATHABASCA UNIVERSITY irsinirionsssiniinismsmsisssesssssssssssssssssssssssssssssesss 1

ABSTRACT ...ttt sss s s s bt e s sesaessassarsessassastre m
ACKNOWLEDGMENTS ... esssesssssssnsssse st sssssssssssssssssssossssssssenssessens v
LIST OF TABLES....cveeereeneressenns rerresssssesassassne ettt VIH
LIST OF FIGURES ... osisrsscsssesressesiessemsemsensmsssssssasssessssassassesssssssessssssssessssssssses 1X
CHAPTER L eevhsmerashesSLI S SRR bR A e e sa b s s an g as s sasaanas 1
INTRODUCTION ..ottt as s e ss e bbb eae e 1
SHALEMENT OF PUFPOSEcoovieieeieiees ettt in s 1
Research Problem or QUESHIONccocecoeiooieeeoeee e eee e e e e 2
Assumptions of the Paper..............cccooooviiiviconineeeeeeee ettt eeees et 3
STGRIICANCE. ...ttt ee et 3
LIMEIQEIONS (..ot r b 4
Delimitations ...t et 4
DEfINition Of TEFMIS «.....c.coouiiiiiiiiciiice ettt are e 4
Organization Of PAPETcccccooiioeeeeeeeoeecei ettt n s, 5
CHAPTER Il.....rerrecrirarnereens reesbesbessssasenestinses e researe e eneaasanrereeseeres 6
PROJECT MANGEMENT / SOFTWARE DEVELOPMENT METHODOLOGY
ENVIRONMENT OVERVIEW ..ottt sess e v e ens 6
Project Management Body of Knowledge Summarizationc.ccccoouvvveevriereceneennn, 6
Project Life Cycle Models ReVIEW ... 9
Software Development Methodology Summarization................ccccococeevceeceieceineeccraenn, 13

Vi

CHAPTERIII... bbb b s s RS R SO RSSO RS bttt e nans 23

DISTRIBUTED PROJECT MANAGEMENT (DPM) STATE OF THE ART................. 23
Current Distributed Project Management State of the Art Overview...........c.cc.co...... 23
Review of Supporting Literature in Distributed Project Management........................... 25
Exploration of Distributed Project Management ToOlS...............c.ccccoveereoooeeeeren. 28

CHAPTER LV e stnncenissssssenssresss s s st s sassessssassessssssssssssssssstaseasnans 33

INDUSTRY SURVEY Lottt a st sttt 33
Scanned ENvIroRment REVIEWc.cccocoeoiooiiiiiiiieeeooeeoo et 33
Data Collection TeCRRIGUES.............c.ccooovviviieeeeeeeeeeeeaes e 33
Dater ANGIYSIS ..ottt 34
Survey Findings SUmmarizationc.oocooveeeieee et 44

CHAPTER Y e sssnsssssssssssssssessssans 47

DISTRIBUTED PROJECT MANAGEMENT IMPACT ON SOFTWARE

DEVELOPMENT METHODOLOGIES ..o en e 47
Impact on Software Development Methodology by Distributed Project Management .. 47
Review of Specific Softiware Development Methodologies Impact from DPM............... 51
Distributed Project Management Benefits / Impediments in Software Development..... 57
Distributed Project Management Impediment Elimination Strategies 60
Best Practices of Distributed Project Management on Sofiware Development 62
Distributed Project Management Evaluation Criteria..................ccccoocoevoeveeeeeevnn. o4

CHAPTER VI eetbeueb bR AR ER RSP RS E S S SES A4 4 S E S et e e nann 66

CONLUSIONS AND RECOMMENDATIONS ..o 66
CORMCIUSION (...t 66
Further Research SUZZeSHONSccciiiviieriieeeceeieeeeeeteeeeeeeeee e, 68

REFERENCES ... streesestseeessessesssssssssmsssssmssssssissssstsssasssssssssssssssebessessasssses 69
APPENDIX A ~ SURVEY TOOL....uiiiiininccsnmsmsiseescsecsssesssssssssessrssssassessssssssssasnsess 71
APPENDIX B ~ ASSESSMENT MATRIX ...orcoiriirvrmemirescersssssssssssssssissssssssssessssssssssnsasens 74

vii

LIST OF TABLES

1. Geographical / Affiliation Influence on Project Model

2. Benefits / Drawbacks of Distributed Projects on Software Development
Methodologies

viil

10.

11

12.

13.

14.

I5.

16.

17.

18.

19.

20.

21

LIST OF FIGURES

. Project Management Knowledge Management Areas Content

Traditional Software Development Phases

. WaterFall Development Methodology Diagram

Object-Oriented Development Methodology Diagram
Rapid Prototyping Development Methodology Diagram
Extreme Programming Development Methodology Diagram
Economic Forces Pushing Distributed Project Management
Distributed Project Management Framework 8 Steps
Distributed Project Management Impacts over SD Methodology
Employment Sector Distribution Chart

Job Classification Breakdown Chart

Years Experience in IT/IS/ CS Chart

Credential Distribution Chart

Team Project Exposure Chart

Experience in Distributed Projects Chart

Current Project Management Status Chart

Software Development Methodology Distribution Chart
Collaborative Tools Usage Chart

Collaborative Tool Technologies Distribution Chart
Software Development Methodology Application

Communication Plan Documentation Existence Chart

ix

13

16

18

19

21

23

26

32

35

35

36

36

36

37

37

38

38

39

39

40

22,

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

Privacy Policy Documentation Existence Chart

Security Policy Plan Documentation Existence Chart

Virtual Trust Documentation Existence Chart

Project Management Leadership Existence Chart

Occasional Team Collocation Chart

Technical Infrastructure Existence Chart

Conflict Resolution Process Plan Documentation Existence Chart
Cultural Diversity Awareness Documentation Existence Chart
Clear Software Development Methodology Identified Chart
Ability to Change Software Development Methodology Chart

Ability to Modify Software Development Methodology Chart

40

41

41

41

42

42

42

43

43

43

44

CHAPTER1

INTRODUCTION

Statement of Purpose

Sofmgre Development Methodologies are respectively interesting realms unto
themselves. Over the past 50 years, there have been significant paradigm shifts in software
development, such as structured programming, object-oriented, and now agent-oriented
development approaches. Each evolutionary shift introduced new ways to view similar
problems, as well as introducing strengths and weaknesses respectively to software
development. In the pioneer days of software development the idea or presence of project
management would not have been as documented or structured as it currently is in today’s
environment. In current times, the presence of software development projects Without some
sort of applied project management presents a higher probability of project failure, which is
supported by the 1999 Standish Group Chaos Report, where it is reported that only 16.2% of
software projects are completed on-time and on-budget, an unbelievably low percentage. [1]
Although project management is applied to most development projects today, versus the
pioneer days, we are still plagued with these high failure rates. The reader will find that this
paper has examined particular software development methodologies (approaches) and how
distance/distributed project management may impact on the software development process
itself, as opposed to the overall project. Although one may be able to argue that a
methodology impacted by distance/distributed project management automatically should

result in the project deliverable(s) being impacted as well.

The outcomes of this paper were primarily to document current practices in software
development methodologies and project management. The influence(s) that
distance/distributed project management may impose on a given software development
methodology has also been explored. An evaluation matrix was developed to assist software
developers in determining whether distance/distributed project management impacted the
respective software development methodology. At the conclusion of this paper, a summary

of research findings and survey results have been provided.

Research Problem or Question

Study of the impacts on software development methodologies resulting from
distance/distributed project management is a new arca for academic research. As the
distance/distributed project management approach is a young domain, and the software
development methodology domain is in a continuous state of evolution, it is not surprising
that the globalization of software development projects is impacting heavily on these two
domains. The research conducted for this paper was based on the following two questions:

0 What issues / opportunities present themselves in a particular software development
methodology when managed via distance/distributed project management
approaches?

@ What best practices should be observed to minimize negative project impact, as it

pertains to distance/distributed project management during software development?

Assumptions of the Paper

It is assumed that a software development project will be created using only one
methodology and/or approach, since it would be almost impossible to determine in a blended
software development methodology project what methodology aspects, if any, were impacted
by distance/distributed project management. This paper also assumes that all projects are
distributed geographically beyond a city or local community, making face-to-face situations
an extreme exception. As well, for the purposes of this paper, the terms distance and
distributed will be synonymous, although assuming the meaning of distributed. It is also
assumed that Object-Oriented software development, although technically referred to as a
development approach and not a methodology, will be viewed as a methodology for the

purpose of this paper.

Significance

As we move towards a global economy, so are more of our development efforts.
Therefore, understanding the impacts on software development methodology by
distance/distributed software development is a step towards mastering the application of

distance/distributed projects.

Limitations

This paper references a local survey administered to a small ‘information system’
industry group. The intent of the survey was only to ascertain a local ‘state of affairs’; it was

not intended to be statistically defendable data, but to be used only as an observation tool.

Delimitations

This paper is restricted to four software development methodologies, which are:
Waterfall (structured), Object-Oriented, Rapid Prototyping, and Extreme Programming. The
Project Management Body of Knowledge, as put forward by the Project Management

Institute, is the basis for the project management review.

Defimtion of Terms

This section defines terms used in the paper and provides context for their usage:
Distant Project Management: The management of a *project’ as defined below, where
the team members are geographically separated but
contained within the same organizational unit.
Distributed Project Management: The management of a ‘project’ as defined below, where
the team members are not only geographically separated
but they are composed of members from multiple

organizations,

Project: Schwalbe, K. states that a project “is a temporary
endeavor undertaken to accomplish a unique purpose.”
[12] And continues, “constrained in different ways by

its scope, time goals, and cost goals.” [12]

Organization of Paper

This paper commences with the introduction to the topic of software development,
followed by a section reviewing the current project management body of knowledge and
project management life cycles. The current practices in distributed project management, as
well as tools used by software development practitioners are examined in “Distributed
Project Management (DPM) State of the Art” section three. While the results of an industry
survey for information purposes only, and not intended as validated statistical déia, are
reviewed in section four, “Industry Survey”. Under the “Distributed Project Management
Impact on Software Development Methodologies™ section, a review of the impact(s)
distance/distributed project management has had on given software development
methodologies will be discussed based on a review of current literature. A conclusion
summarizing research findings and presenting future questions, which could form the basis

of further research, are offered up to the reader for consideration.

CHAPTER 11

PROJECT MANGEMENT / SOFTWARE DEVELOPMENT

METHODOLOGY ENVIRONMENT OVERVIEW

Project Management Body of Knowledge Summarization

Project Management adopters claim they benefit from: better control of financial,
physical, and human resources, improved customer relations, shortened development time,
Iower costs, higher quality, higher profit margins, improved productivity, better internal
coordination, and higher moral. Logically, more structured monitoring of a software
development process should result in better software development outcomes. Many
information system practitioners today reference the Project Management Institutes ~
Project Management Body of Knowledge (PMBOK), as a sound approach to project

management.

The PMBOK frames processes and knowledge elements, which software developers
can adopt during their respective development life cycle methodology. In reviewing the
PMBOK process, first we find the following project management areas: Initiation, Planning,
Executing, Controlling, and Closing. Each is supported by one or many of the nine
knowledge elements. identified in the PMBOK, which may or may not all be contained in
each management area, but are blended throughout the entire process at different levels and

stages.

Knowledge elements found in the PMBOK are contained within the first knowledge
element, which is Project Integration Management. The Integration Management knowledge
element focuses on the coordination between all other eight knowledge elements. Greater
coordination of clements should translate to a higher probability of project success. Of the
remaining eight knowledge elements, we find they are clustered in two functional groups,
which are, Core Functions, and Facilitating Functions. Refer to Figure 1 for a detailed

breakdown of each knowledge element and the components contained within each element.

[2]

Core Functions address ‘project objectives’ directly, which includes the following
four project key objectives: [12]

I. Scope Management ~ Focuses on project parameters and their control.

2. Time Management ~ Focuses on the time required to complete each task.

3. Cost Management ~ Focuses on the project budget and associated resources.

4. Quality Management ~ Focuses on the project satisfying the stated / implied

needs.

Facilitation Functions address ‘project means’, i.e. how the clients project objectives
are resourced. These four project objectives to support the Core Functions are:

1. Human Resource Management ~ Focuses on the allocation of people to tasks.

2. Communication Management ~ Focuses on documenting the project’s life and

communicating to all project information to the appropriate group or individual.

3. Risk Management ~ Focuses on the identification, analysis, and response to

project risk factors.

4. Procurement Management ~ Focuses on obtaining goods and services for the

project from outside the organization.

Integration Management Time Manogement Procirement Management
Prcject Han Development Acthity Defintion g:g Hﬁ;‘nrmng + Commurication Parring + Proouremed Flanring
Project Plan Execution Activity Sequencing Qeity & + Information Distribution + Solctaion Plarving
Integration Change Control o Activity Duration Egtirmeting * Pa'fmrm Reporting « Sdictation

+ Scherue Development + Administrative Closure - Source Seledion

- Schedue Conird + Cortract Adninistration

' Corract Coseout
Scope Managerment Cost Management Human Resource Fisk |
* Infition + Resouce FRann o] . Risk i
+ Scope Fanring + Cost Estimeting ik . {}ga‘uzahm Plarning R ?"‘3’“3;‘;‘* g
e et ; Ot Budgeting D S Aoaiton - Qulietve Rk Anclysis
+ Soope Verfication v Gost Comird eam opment . fative Risk Ariysss
- Sompe Crange Connd + Risk Response Planning
* Risk Moniiordng and Control

Figure 1 ~ Project Management Knowledge Management Area Content Sections

In addition to the project management knowledge management areas, we find that
there are project management models, i.e. underlying approaches or philosophical
frameworks, which globally govern how we apply the process of project management onto a
project. The project management models are the following: [13]

1. Adhoc ~ Characteristically department initiatives managed on an informal basis.
2. Bureaucratic ~ Typically a project found in the public sector whefe bureaucratic

process has greater importance over project process outcomes.

3. Normative ~ Commonly a project that exist within an environment of stability
capable of providing defined goals and a stable framework which allows for an
organized project execution.

4. Creative-Reflective. ~ Typically projects created and executed within a complex

environment that are managed by practitioners who promote life-long learning.

Project Life Cycle Models Review

Projects being of a defined duration, composed of many interrelating pieces organized
commonly into phases. These phases, when grouped together, form a project life cycle. A
number of project life cycles have evolved over the past 50 years, as it pertains to software
development. It is possible that they existed within other contexts or domains. As well,
project life cycles may be metamorphic, which suggests they adapt to the specific domain in
which they are applied. As an example, a project life cycle for a software development
project will vary when compared to the same project life cycle applied to a new
pharmaceutical drug development project. Foundational elements, nonetheless, would be
present but the phases and sequences of phases would differ from one domain to the other.
Project life cycles reviewed in this paper are: PMBOK Project Life Cycle, Straightforward,
Control-Oriented, Quality-Oriented, Risk-Oriented, and the Fractal project life cycle
approaches. The following text will review each of the previously mentioned project life

cycles.

The Project Management Body of Knowledge Project Life Cycle may be interpreted
as a generic model. A model that counld apply to any project in principle, but may not be as
effective given a particular project domain. This model, according to Schach, R. S., is
composed of four phases, which are organized into two-phase groupings. First, the “project
feasibility phase grouping’ oversees the planning and building of the software product.
Second, we find the “project acquisition phase grouping’ overseeing the roll out and closure
of the developed software product. Hence, within the two-phase groupings we find the
following four phases: Concept, Development, Implementation, and Closeout. [31 In the
concept phase, our efforts are concerned with management plans, preliminary cost estimates,
and initial work breakdown structures (i.e. main tasks and key subtasks). The development
phase then focuses on detailed budgetary controls and a detailed work breakdown structure.
While the implementation (roll out) phase looks for definitive cost estimates and system
performance reports. The closeout phase reviews the completed work, lessons learned, and
customer acceptance in an attempt to capture and document the experiences for the next

project. [3]

Bonnal et al. put forward five project life-cycle models with regards to managing a
project, which appeared to be more suited towards technical project. The models are
Straightforward, Control-oriented, Quality-oriented, Risk-oriented and Fractal, which are

reviewed in the following text.

The Straightforward Project Life Cycle as described by Bonnal et al, 1s composed of

three phases that frame the model used to manage a project. These phases are initiation,

10

feasibility, and implementation explained as follows. The initiation phase focuses on the
concepts, economics, customers, trends, etc, in an attempt to assist in determining if the
project should receive a go-ahead. Afterwards, the feasibility phase looks at organizational
needs, environmental realities, and resources available to the project. It is during the
feasibility phase that a project receives the go-ahead from being a proposed project request to
being an assigned (resourced) project. Finally, the implementation phase will occur once the
project receives official go-ahead, initiating a number of sub-phases. These sub-phases
would then focus on the design, development, integration, and acceptance of the project

-deliverables. [2]

The Control-Oriented Project Life Cycle as described by Bonnal et al. is composed of
three phases, which are planning, execution, and operation. In the planning phase the main
outcomes are the project concept (i.e. need, economics, technology), project feasibility, and
project definition. During the execution phase outcomes such as procurement of supplies and
services, project implementation, project controlling, as well as project redefinition are the
main tasks worked on. The operation phase is the official software product turnover or the
point-in-time where the system leaves the test environment to be relocated on-line in the

production environment with users, and clients accessing the system, to meet business needs.

[2]
The Quality-Oriented Project Life Cycle as described by Bonnal et al. is composed of

three phases, conceptualization, materialization, and the turnover phase. The idea behind

these three phases is that while time passes during the project, we move seamlessly from one

11

phase to another. Beginning with the highest level of conceptualization (specifications), and
as we move throughout the project timeline the level of conceptualization will decrease as we
move towards the materialization phase. In materialization, we create (build) the product,
hence the conceptualization level stabilizes during materialization to once again rise once
materialization ends, and we the turnover phases begins. The turnover phase moves concerns

*

from construction to reflection pertaining to the software product created. {2]

The Risk-Oriented Project Life Cycle as described by Bonnal et al. is composed of
only two phases, which are pre-project and project. In pre-project we identify requirements,
evaluate feasibility, evaluate environmental factors, and determine the impact of a go or
no-go decision. Followed by the project phase composed of three sub components, which

are: planning, execution, and closeout. [2]

The Fractal Project Life Cycle as described by Bonnal et al. is also composed of only
two phases, similar to the risk-oriented project life-cycle, which are called: Pre-project and
Project. In the pre-project (feasibility) phase activities center around the determination of
project feasibility allowing a go/no-go decision to occur, followed by the realization of a
project prototype. In the project (execution) phase the completion or refinement of the
prototype, writing of the specifications, building the application, and delivering the

application are the main activities. [2]

12

Software Development Methodology Summarization

Development methodologies are models by which developers build solutions to a
given software problem. Developers, normally academically trained, are proficient on at
least two development methodologies, and have acquired industry experience in each.
Ideally, developers have worked in industry developing with one of the methodologies. A
traditional software development methodology, whose phases are recognized within all other

methodologies, is illustrated in Figure 2 below,

This foundational approach (methodology) to a software development project begins
with the definition of requirements, such as what the customer needs and/or wants coupled
with what should be recommended by the information system professional determining the
requirements. The next phases of the methodology guide the software developer through a
system design, followed by the actual coding of the application. Afterwards, a developer’s
focus turns towards integrating the new system, first release or upgrade release, within the
existing business systems. As the integration maps out within a test environment, the new
application undergoes system and unit tests at a minimum. Upon passing the testing phase,
the application is mmstalled to the production environment, to be employed by users accessing
live data. In this traditional model, ecach phase ends before the subsequent phase commences.

Emphasis placed on large start-and-stop points in time, versus iteratively approaching all the

phases of the application. A visual representation of this methodology is found in Figure 2.

igure 2 ~ Traditional (generic) Development Life-Cycle Phases

13

The Traditional Methodology having been explained, the discussion can now move
towards the Waterfall, Object-Oriented, Rapid Prototyping, and Extreme Programming

Methodologics.

Waterfall Methodology. This methodology has similarities to the Traditional

Methodology previously reviewed, but does have very important distinctions. Tlhe Waterfall
Methodology was first presented by Royce in 1970 [3], indicating by the date how adolescent
the domain of software development truly is. Royce documented a process (methodology)
that incorporated new elements such as: documentation standards, quality assurance reviews,

and progressive evolution of the system development process within the given project.

Requirements were determined as with the foundational methodology, but in contrast,
this model verifies with the client that the requirements are correct. Moving to the next
phase is not possible until client approval (sign-off) is obtained for the particular phase in
question. Once approval is obtained, and only then, the specification phase will begin where
the “what” is determined, which is what the application is actually expected to do. Once
again prior to the completion of this phase, client sign-off approval is required; this process
continues throughout all phases. Another important distinction between the Waterfall
Methodology and the Traditional Methodology which exist is that it is permissible to revisit a
previous phase in the Waterfall Methodology. The ability to revisit a phase could possibly
result from: requirements initially missed, elements contradicting one another, items simply
being unclear, or upon normal phase completion quality control phase outcome review.

Therefore, given the above reasons for revisiting a previous phase, as illustrated in Figure 3,

14

one should review and update the documentation pertaining to that phase. After which a
re-pass of the current phase should occur to document quality assurance of the evolving
software product. | Emphasizing that this methodology’s distinction of not progressing onto
the next phase, unti] all documentation of the current phase has been finalized and approved,
allows for stronger controls during the software development process. Hence, a sequentially
unfolding methodology, which does promote phase iteration to rework previous phases when
reguired.

In this methodology upon moving the software from the integration/testing
environment, to the systems production environment, all system changes from this point are
viewed as a software maintenance effort. The software maintenance effort, as Figure 3
demonstrates, could loop the maintenance programmer back to various phases within the
methodology. Where all the original documentation and software quality assurance protocols

are expected as the system undergoes a maintenance revision and/or upgrade.

I3

P Requiremients : 3 B N L
' phass i g e] regrsmaris E A i
Yt k1 Y s e .
arity o LoLYey 4 i
*. i §
o 4 i B
Bpeciicalion t
phese e e e e e e — i
: ok
1 E b
‘Design L
phase e e e "3l
vary R
* - § i i
rmplany sntation b §
phase b § B
Taas 3 § S | §

......... PR
2 E ¥
mtagraion i ; -y i
phinde . A
" LA O
Test i ;5 i
% 1 s B |
X Lk Bk
_ - Eadriteteutos

S I = - e Eo T _ Cptrase

T Ehaaits. U T d e g Ee s ‘ %r

Fetirervent

Object-Oriented Methodeology. In 2001 Dr. Takuya Katayama, former professor at

Tokyo Institute of Technology, defined Object-Oriented Methodology as a “Software
developing methodology based on Object-Oriented Paradigm™ [17]. Professor Katayama
further expanded his explanation by stating that “Our world is a collection of collaborating
agents/objects” and “Software has to be organized according to the structure of our world™.
[17] There are a number of models supporting the object-oriented approach to software
development. This paper will focus on the Fountain Model, as illustrated in Figure 4. Once

agam, we see the utilization of phases referred to in previously reviewed software

16

development methodologies, such phases are, requirements, analysis, design,
implementation, integration, operation, maintenance. It is understandable that the same
terminology resurfaces given that it makes sense, for example, to call the design phase

‘design’ in all methodologies.

Important distinctions of object-oriented versus other methodologies are that object-
oriented promotes a spiral approach from one phase to another versus a linear approach. This
means, for example, that within the development phase, one can theoretically restart the
phase numerous times, given information that would present itself while you were in the
phase. Object-oriented promotes parallelism between phases, allowing multiple phases to
occur simultaneously, which means that an interface can be under design as the specifications
are being defined. To take this further, one could receive user acceptance input in parallel
with system construction, because today’s development environments allow for a more rapid
cycle from design to functional sample. Caution is required so that one does not jump, or be
perceived in such a manner as jumping, from one phase to another in an un-disciplined
manner. This approach is different when compared to the Waterfall approach, but still
requires sound documentation and justification for actions undertaken during the iterative
and parallel activities. Figure 4 below, illustrates the idea of iteration, as well as, phase
parallelism approach in the execution of the Object-Oriented approach to software

development.

17

development
O perations
AT ORERER

Smplementation ardl
integration phase

implementation
Phavsea

LG lect coriaentac
design phase

OBlect-oriented
Amaltysis phase

Reguiremenis
phase.

Figure 4 ~ Object-Oriented Development Methodology [3]

Rapid Prototyping. The name of the methodology defines its role clearly; build the

program rapidly. Developers first assemble a functional sample of the system for the client.
The reasoning here is that the client has an actual model to use and experience in order to
provide feedback. The feedback from the client, someone who actually used the prototype, is
invaluable to the developers. It is for this reason that the rapid prototyping methodology
does not require the level of recursive steps as compared to the Waterfall methodology. The
undisclosed requirements found stepping through the Waterfall methodology are for the most
part identified during the single prototype review. In Figure 5, one can notice how the
prototype phase has replaced the requirement phase of the Waterfall methodology and that
the “verify’ loop backs are not required as client feedback has been received at the prototype

phase.

18

It is important nonetheless to view this approach as valid and orgamized for sofiware
development. The creation of a prototype is not the creation of the final software product.
Ideally, a prototype should not be the baseline development activity used for the actual
software 5uild. Therefore, the actual software product should be built from the initial phase,
and be developed outside of the prototype code. The prototype is only utilized to obtain
client feedback. As illustrated in Figure 5, once prototyping is completed, developers start

moving through the specification, design, implementation, and integration phases.

Figure 5 ~ Rapid Prototyping Development Methodology 3]

Classical Extreme Programming (XP). The Extreme Programming is referred to as a

lightweight methodology by some, as it has few rules, simple practices, and is easy to
implement. Considering for a moment Kanbay’s explanation of software methodology as:
“the set of rules and practices used to create computer programs. A heavyweight
methodology has many rules, practices, and documents requiring discipline and time to
follow correctly. A lightweight methodology has only a few rules and practices or ones
which are easy to follow.” [18] Hence, the first step taken by XP adopters is to determine the
requirements that the software must accomplish. After which, the XP team selects the
function(s) to be developed during the first build iteration and proceeds to do so. Four
phases, illustrated below in figure 6, are used during the XP build iteration. These four

phases are specification, design, implementation, and integration.

One notes that the phases are occurring as the software is under construction via
multiple build iteration as illustrated in Figure 6. A comparison to this process could be a
gardener who creates beautiful landscaped flowerbeds, but never designs prior to actually
getting out there in the dirt creating and designing as a dynamically integrated process.
Schach expresses that XP 1s composed of the following unique features:

“A number of features of extreme programming (XP) are somewhat unusual:

1. The computers of the XP team are set up in the center of a large room lined with

small cubicles.

2. A client representative works with the XP team at all times.

3. No Individual can work overtime for two successive weeks.

20

4. There is no specialization. Instead, all members of the XP team work on
specifications, design, code, and testing,
5. As in the more risky incremental model --- there is no overall design phase

before the various builds are constructed. This process is termed refactoring.” [3]

As indicated above, the methodology 1s very different in its phase approach, i.e.
multiple builds with design & code seemingly viewed as one activity. Physical logistics
requirements make this methodology unique, i.e. collocation of developer in one area.
Another unique aspect of this methodology is pair programming. Two programmers work on
one screen as a pair, which allows for immediate human backup should one team member or

programmer become unavailable.

fputd 1 o
L . mplemeniation | Dulver
Spochopions ““‘% U agaan T o cie
%‘%N% %‘K’*% . : i
SETTNN IPAUIRNS I B O | Eplamenigon, Delfver
B2 | Soedosons i Dy e TERECT e KL

L mgdemettation; | Delvey

integration fa chent
.. T, \\
ey
N *\"‘.’ Sy
"‘nm \”*\‘ \
i i ;
e e - Spiciication e bsptamentation, Delive
- Digtin e Buldy | Specodions pe DRl pew Do L L
usoscty” Wit N e cration leam ' ’ ' wz - e B W W

?igure 6 ~ Extreme Programrﬁihg Dé‘&éiopfnént Meiho&aidgy {3}

21

In the January 2002 edition of Serverworld Magazine Kanbay presented a white paper

titled ‘Extreme Programming (XP)’ that presented XP as being composed of 12 core best

practices. Listed below are the 12 practices and a brief explanation of each: [18]

1.

2.

10.

I1.

12.

Planning: Lists the requested features, estimates the effort required, and prioritizes
Small Releases: Continually supply the user with working models to obtain feedback
System Metaphor: Use project metaphors to create naming conventions I

Simple Design: Keep it simiple, because it could all change tomorrow

Continuous Testing: Similar to Test-Driven Programming, 1.e. create the test case
first then write the code that meets the test case specification

Refactoring: Allows you to capitalize on moveable components

Pair Programming: One machine, two programmers together, coding and reviewing
Collective Code Ownership: No developer owns a code section, all team members
can work on all sections of the software build

Continuous Integrations: Changes integrate as immediately possible, 1.e. at least daily
Forty-Hour Work Week: Developers work a normal forty-hour workweek. Only in
isolated exception is up to 1 week of overtime allowed

On-Site Client: The client is on-site and available for consultation

Coding Standards: One project, one XP team, and one code standard

XP is unique and relatively new to the software development forum. Its pair

programming and client on-site requirements define the methodology as one that requires

a collocated team. The challenge will be to determine strategies to evolve the Classical

XP model into a Distributed XP model.

22

CHAPTER I11

DISTRIBUTED PROJECT MANAGEMENT (DPM) STATE OF THE ART

Current Distributed Project Management State of the Art Overview

As the Internet has increased its presence significantly over the past 20 vears, a
spin-off has been the evolution of software development project management from a fixed /
single geographical location towards a globally distributed process. Numerous economic
forces have pressured organizations to move toward a distributed project management forum,
as it pertains to software development. A sampling of these forces, illustrated in Figure 1,
are identified as the increase in market complexity for which software is developed. The
human resource base becoming more specialized, therefore organizations cannot realistically
have all the specialists in-house as they once may have. Compounding this situation is the
global shortage of IS/IT practitioners accelerating the need to collaboratively work together

in large virtual groups.

Forces Pushing Distributed Project Management

Market Complexity (i.e. Giobalization}

Distributed Project
Management
of
Software Development
Initiatives

IS /1T Practitioper Shaorlage

Figure 7 ~ Economic Forces Pushing Distributed Project Management

23

The U.S. Bureau of Labor Statistics reports that the average practitioner will change
their job approximately every five years. The day of receiving ‘THE GOLD WATCH' after
30 years of service with one organization, is rapidly becoming the exception. This
employment shift is occurring while organizations face an increase in project complexity and
scope, demanding the required skill set to manage the complex software development project
becoming more specialized. Hence, McMahon et al. found organizations are chéllenged in
recruiting and retaining experienced staff to accomplish the numerous tasks at-hand. [4]
Distributed Project Management addresses this concern by allowing organizations to globally
seek out the employee with the required skill set to best meet the requirements of the task on

a project-by-project basis.

An issue of the 2004 International Journal of e-Collaboration contained the
following statement, “These so-called “virtual projects” involve people cooperating from
internationally distributed sites and even different organizations. Professionals working
geographically distributed participate in multi-cultural and functional projects with a global
focus. These virtual projects pose new challenges to project management practitioners and
researchers.” [5] Bernhard et al. put forward for consideration the following project

topology found in Table 1. [16]

Affiliation

Dispersion of Traditional Distributed
Team Inter- .
Members Organizational Virtual

Table | ~ Geographical / Affiliation Influence on Project Model

Table I above suggests that the lower the geographical disiribution and team member

affiliation distribution the more traditional the project management organization or model

24

will be. In contrast, the higher the geographical distribution and team member affiliation
distribution, the more virtual a project management organization or model will be. Hence, in
the blended approéch we find distributed and inter-organizational project organization. It is
plausible that there would be examples of projects that would fit within each of these four
quadrants, and that a greater number of projects would move from quadrant to quadrant

during a project’s life cyéie.

Review of Supporting Literature in Distributed Project Manasement

The November 2001 issue of the Journal of Defense Software Engineering presented

an eight-step framework plan, as illustrated in Figure 2, to be used in assembling a
distributed project, or in verifying if an existing project was assembled correctly. These steps
are as follows:

1. Select a team leader with good conflict management skills and who is open minded.

2. Determme your architecture, work splits, and assign tasks.

3. Plan the individual builds and site-specific infrastructure.

4, Define / document / distribute the virtual communication rules.

5. Manage the lower level of the virtual project organization.

6. Develop a detailed plan.

7. Validate (test) the virtual operation concept of the Virtual Organization.

8. Execute the virtual project.

It is apparent that the ideas of organization and collaboration are promoted in the above list.

[4]

25

Team Technical
Dynamics Architecture

Individual
Site
Planning

Document
Virtual
Communication
Rules

Distributed
Project Management
Framework

Manage
Virtual
Organization

Develop
Detail
Plan

Test Virtual

Framework

Figure 8 ~ Distributed Project Management Framework 8 Steps

Within any documented frameWork, opportunities and/or challenges are often
experienced. In virtual project management, the following advantages exist: 1. A global
software development resource pool, 2. An effective matching of resources with the required
tasks, and 3. A reduction in project cost directly connected to travel. The challenges which
exist in a virtual project management forum include: 1. Cultural incompatibility of project

team members and/or clients, 2. Leadership struggles, 3. Lack of trust, and 4. Inherent notion

26

of competition. [6] Damian, D. and Zowghi, D. expanded on the Distributed Project
Management Framework challenges, with the following challenges:
1. Inadequate Communication ~ Dependent on good asynchronous or synchronous
tools.
2. Knowledge Management ~ Often the lack of a2 management system to support the
project.
3. Cultural Diversity ~ Teams develop their own identity based on numerous factors,
as well as working with team members frﬁm different cuﬁturai backgrounds.
4. Time Difference ~ Working in different time-zones may mean that one persons

daytime is another’s nighttime. [7]

Salisbury Umiversity Professor, Dr. Catherine M. Beise, articulates that
Distance/Distributed Project Management is a dynamic undertaking when she states “the
globalization of project teams has increased demographic and cultural diversity, which can
create obstacles to the smooth functioning of team processes, but also can provide benefits in
creativity, innovation, and problem-solving.” {8] This globalization of projects has created

the need for virtual teams who evolve their own cultures.

Virtual projects introduce virtual team cultures, which are product oriented. A virtual
team culture is a grouping of multiple teammates, from varying socio-cconomic and/or
cultural backgrounds, developing relationships and sharing experiences and beliefs, thus
establishing a team culture. With this virtual team culture, the following components could

conceivably be identified:

27

1. An Organization Operation Concept.
2. A Build Plan.

3. Architecture Definitions.

4. Process Definitions.

5. Virtual Communication Rules.

6. Site-Specific Infrastructure Information.

It is important that virtual cultures not disregard the positive aspects of local community
cultures, but embrace the strengths and benefits of local cultures, while operating within a
virtual structure. McMahon, P. states that, “Experience indicates that an effective virtual
culture cannot be informal.” [4] This statement expresses clearly that communication must
be documented in a formal manner, and that team members must respect communication

protocols,

Exploration of Distributed Proicct Management Tools

Organizatiéns such as The Program Management Group state that “It’s true there are
many software tools out there that enable web-based team working by providing an
environment that supports the access and sharing of information and limited communication
facilities.” [9] The challenge is to match the appropriate tools to the appropriate
individuals, processes, tasks, environments, etc., for if not appropriately matched, the project
will face increased challenges. There are a myriad of tools available today, which support a
distributed, virtual, project undertaking. Both management systems and communication

systems provide key support to project managers attempting to manage a virtual project.

28

Badir ¢t al. summarized from Weiss & Thamhain 2001 that: “Managing GLSPs
effectively differs from traditional large-scale projects because time, distance, and
dependence on communication technologies in decision-making adds complexity to

mteractions between project members”. [10]

They also proceeded to suggest that a Global Large Scale Project (GLSP) is best
managed via certain types of management systems. The first of these systems to be
examined is the web-based project management system, which is capable of planning,
monitoring, scheduling, and budgeting a project. A tool such as this would allow for the
collection, storage, manipulation, and communication of information to the entire project
team. The second element of this model is a data base management system (DBMS). This
DBMS could be either a relational or an object-oriented data base environment, regardless, it
would store information pertaining to the project, in addition to being programmed to reply
to various queries. The third element of the model is a Work Flow Management System.
“The workflow technology has been reported to be effective in specifying, executing, and
coordinating the flow of tasks within a distributed environment” [10] stated Badir etal. A
fourth element used in applying distributed project management is a relatively new
technology that is an agent-based system. An intelligent agent object is an autonomous
application, or part of an application, that has the ability to problem-solve without being
prompted by the human element making up the entire system process. There are other
implementations of this new and exciting technology. The intelligent agent most recognized
18 the Microsoft Paper Clip. In distributed project management, the application of agent-

oriented technology according to Badir et al. is viewed as “a workflow agent knows all the

29

tasks that must be done, and the time of their execution. Therefore, agents search for
subjects capable of executing the next task. When a subject is found, the agent moves

directly to it an provides the data items needed so the subject can fulfill the task.” [10]

Nienaber & Cloete put forward the following example of the application of agent
based technology. They suggest that an agent team could be used for the communication
management aspects of a distributed project management undertaking. The agent team
would address identified functions, by employing specialized software agents. Currently the
following specialized software agents are available: [11]

» Messaging Agent: Responsible for inter-agent message transportation.

» Personal Assistant (PA) Agent: Responsible for assisting individuals accomplish
tasks.

» Task Agent: Invoked by the PA Agent and monitored by the Monitoring Agent, this
agent supports a specific task.

» Monitoring Agent: Responsible for monitoring and reporting schedule and
rescheduling of task information.

» Client Agent: Interacts with other agents, but are for a specific task normally, such
as information retrieval.

» Team Manager Agent: Responsible for managing the agent team activities.
There are a host of tools supporting the distributed project management efforts,

clectronic mail, bulletin boards, MSN type tools, teleconferencing, videoconferencing, and

project management software tools of one-tier or two-tier infrastructure. All of which

30

increase the dynamics of a project’s hife cycle. Bernhard et al. stated: “Increases in the
sophistication of communication technology, coupled with geographical dispersion of the
organization’s workforce, provide the impetus to move from traditional to distributed

projects.” [16]

In considering the key aspect of Distributed Project Management, as well as the
cycles of Software Development Methodologies, it is suggested that Distributed Project
Management practices will impact Software Development most dramatically in the
preliminary stages of the software development activities. It is during these first phases
where communication is the most critical during traditional (collocated) projects. Projects
with everyone in a single location versus evervone distributed globally would allow one to
hypothesize that these critical preliminary steps become severely at-risk in a distributed
environment. Similarly, a distant student could be at greater risk of experiencing learning
challenges, if compared to a campus-based student, during the mitial learning cycles where

critical patterns/information are communicated.

Iustrated below in Figure 3 are aspects of Distributed Project Management that are
suggested as potentially imposing an influence, over a particular Software Development
Methodology. As is suggested in Figure 3, some aspects have a high or moderate degree of

impact, while some aspects are impact neutral.

31

Document
Virtual

Communication

Plan

Technology
Architectural
infrastructure

. Globatization

Team Dynamics i (i.e. Time Zones/Cuitures

Aspect of Mstributed
Software Development|

impacts

| Y
g N . . Rapid Extreme
g - Waterfall Object-Orient Prototyping Programming
25 Software Software ;
£2 | pevel | Software Software
oz | evelopment Development i Development Development
§§ | Methodology Methodology | P P
=
w

—— High Impact on Software Development Methodology

o o - wfie Moderate impact on Software Development Methodoiogy

None Neutral impact on Software Development Methodology .
Figure 9 ~ Distributed Project Management Impacts over Software Development Methodology

According to Figure 3, (see above) the Extreme Programming Methodology is
possibly the most impacted, by all aspects of Distributed Project Management, while the
Waterfall Methodology is possibly the least impacted. Because the Waterfall Methodology
is the oldest of the four reviewed methodologies, it has potentially the greatest ability to
absorb aspects of Distributed Project Management without being negatively impacted.
Conceivably this is primarily due to the collective experience of current IT and/or IS
practitioners with the Waterfall Methodology and their ability to transfer their learned

experiences from previous collocated projects to the Distributed Project Management venue.

32

CHAPTER IV

INDUSTRY SURVEY

Scanned Environment Review

A survey, of local industry, sites was administered. In an attempt to ascertain what
the current regional (Atlantic Canada) exposure or experience to this paper’s questions might
be. The industries contacted are categorized into the following groupings:

A. Computer Consulting Firms (7 sites)

B. Corporations (8 sites)

C. Govermnment (3 sites)
With each industry, individuals possessing a variety of technical credentials completed the
survey. The survey is designed to capture observations by these respective individuals on the
current utilization and/or awareness of distributed project management on software

development methodologies.

Data Collection Technigues

The quantitative. data collection approach was applied in collecting data for the
survey. A copy of the survey is located in Appendix A of this paper. Computer firms,
corporations with information systems departments, and government information systems
departments, sites contacted were deliberately gravitated toward, because private industry, it
is assumed should not be as burdened by bureaucratic process. The survey circulated to key

contacts within each site, requesting them to circulate throughout the respective information

systems department areas, to be completed and returned. It is assumed of the 18 sites
contacted a possible 180 surveys could have been circulated and returned. Only 37 surveys
were returned translating to a 20.5 % respondent rate, which is a low data base from which to
draw solid supportive data for arguments put forward in this paper. However, what the
survey does do is provide a perspective of the current state of affairs from an IS/IT

i

practitioner group viewpoint.

Data Analysis

Below are detailed reviews and observations of data obtained from the survey. Itis
important to note that this data should not be interpreted as statistically defendable, but only a
scan that provides information on the current state of affairs within the sampling group. The
intent of the survey is to examine the common practices pertaining to distributed project
management and to ascertain what software methodologics are being applied within industry.
Nonetheless, the results do show what and how these practitioners are applying within their
respective software development activities. Therefore, the results can be interpreted as

informal cbservations.

34

The survey group is composed of more
private sector contacts, however, according
to the tabulated results more public sector
survey participants (42 %) responded to the
survey. Corporate respondents (36 %)make

up the second largest contact grouping.

Employment Sector

] Public i
Corporate g

Smaii Emterprise E
Education H
Other i

Spoited Ji

Figure 10

The largest grouping of respondents is the
programmer / analyst group, followed closely
by fhe project manager group. This was
expected based on the survey administration
directions. It is hypothesized that the ‘other’
sampling is composed of management

personnel given its size (17 %).

Job Title/Duties

Asalyst
Designer
DBA

Prograsnmer ! Analyst ;
Project Manager :
Other §
Spoiled §

Figure 11

35

It is highly probable that the sampling
group 1s a senior group with (36 %) of

respondents having 8 - 15 years experience,

IS/IT

! CS Experience

o}
Under 2 years |

2.4 years
4.8 years i
and (33 %) having over 15 years experience. :‘)—-‘5:?“‘- g
ver 15 vears |
, B spoed |
Given the seniority of the group this raises
37%
concern, as they may not be open adopters of
S
distributed project management models.
Figure 12
4 . . 7
Highest Credential
It appears that the sampling of this group
r0%
1s balanced with respondents possessing ' [R —
B Degree

Diploma credentials at a rate of (44 %) of

respondents, and Degree credentials (41 %).

42%

Ph)
8 Other

8 Spoied

B Graduate (Master [

v
Figure 13
‘{ Worked on Team Projects
As anticipated, given that project work is
such a large component of the IS /IT / CS
professions, the majority of respondents had : o
A Spoited

worked on team projects.

v,

Figure 14

36

The results would indicate that the
majority of respondents work, or have
worked on geographically distributed
projects, however, they do not indicate how

often or for what duration.

Respondents indicate here that they are
currently involved in the application of
project management during their software
development activities. They do not
specifically report that they are in a
distributed application, but conceivably,
distributed or not, the respondents would be
applying project management structures at

their respective locations.

Geographically Distributed

3%

2% B Contralized |
8 Distributed

Figure 15

e

Current PM structures

E e
B Ne
O Spofed

[—

Figure 16

37

With approximately almost (60 %) of
respondents holding 4 - 15 years experience
it is logical that object-oriented (27 %) is the
most applied methodology, with Waterfall
being employed at a rate of (24 %). What is
unanticipated is that {30 %) of respondents
use other types of methodologies, than those

listed within this survey.

SD Methodology

8 waterfall

B Rapid Prototyping

O eXtreme
Programming

L Ohject-Criented
¥

M Other

Figure 17

The findings that (97 %) of respondents
apply project management as part of their
software development process indicates that
they are collaborating. Therefore, it is
consistent that (89 %) of respondents report

using collaborative tools.

Collaborative Tools

88%

B ves
B nNo
8 Spoiled

Figure 18

With respondents (97 %) applying project
management it is consistent that e-mail
(25 %) would be the highest collaborative
tool used. Followed by PM Software (22 %),
teleconference (18 %), and videoconference
(9 %). Web Project Management tools at

(3 %) has the lowest utilization statistics.

(48 %) of respondents report that they are
able to stay ‘Mostly’ within their adopted
software development methodology. .While
(30 %) of respondents report *Somewhat’
and only (8 %) report ‘Fully’. This may
indicate that methodologies are impacted to
varying degrees by distributed project
management given that only (8 %) indicated
they were able to stay fully within the

software development methodology.

Collaborative Tools

neaeEonDAD

PM Sofiware

Internet Conterence
Teleconference
Videa Conferance
E-Mat

Bultetin Boards
MSN Type too
Web PM Tool
Other

Spoilec

Figure 19

Stay in SD Methodology

14%

8%

Fuby
Mostly
Somawhat
Little

nocoRa

Spoted

Figure 20

Respondents indicate the following:
6 % reporting 1 or2
30 % reporting 3
55 % reporting 4 or §
9 % not applicable

Scale: NeverAlways N/A
123435

Figure 21

Respondents indicate the following:
25 % reporting 1 or 2
30 % reporting 3
35 % reporiing 4 or 5

10 % not applicable

Scale: Never....... Always N/A
12345

Privacy Policy

40

Respondents indicate the following:
19% reﬁqrting lor2
19 % reporting 3
52 % reporting 4 or 5

10 % not applicable

Scale: Never....... Always N/A
123435

Security Policy

Figure 23

Respondents indicate the following:
17 % reporting 1 or 2
19 % reporting 3
35 % reporting 4 or §

29 % not applicable

Scale: Never ... Always N/A
123435

Virtual Trust

Figure 24

Respondents indicate the following:
11 % reporting 1 or 2
22 % reporting 3
56 % reporting 4 or 5

11 % not applicable

Scale: Never Always N/A
12345

Leadership / Supportive

Figure 25

41

Respondents indicate the following:

13 % reporting 1 or 2
24 % reporting 3

49 % reporting 4 or 5
14 % not applicable

Scale: Never....... Always N/A
12345

Team Collocation

éﬂTeam Coliocation

@ AW e U@

1 2 3 4 5 MA

Figure 26

Respondents indicate the following:
& % reporting 1 or2
22 % reporting 3
60 % reporting 4 or 5
10 % not applicable

Scale; Never....... Always N/A
12343

Technical Infrastructure

[BTecmcat eascucnre |

Figure 27

Respondents indicate the following:
17 % reporting 1 or 2
38 % reporting 3
30 % reporting 4 or 5
15 % not applicable

Scale: Never....... Always N/A
123435

Conflict Resolution

[PContis Rasotn |

Figure 28

42

Respondents indicate the following:

38 % repqrting Por2
22 % reporting 3

25 % reporting 4 or 5
15 % not applicable

Scale: Never....... Always N/A
1 23 435

Cultural Diversity

Figure 29

Respondents indicate the following:
17 % reporting 1 or 2
30 % reporting 3

44 % reporting 4 or 5

Clear SD Methodology

| BICiear SO Matnoroiogy

9 % not applicable
Scale: NeverAlways N/A
23453 Figure 30
Respondents indicate the following: Flexibility in SDM
Change

27 % reporting 1 or2
24 % reporting 3
38 % reporting 4or5

11 % not applicable

Scaie: Never....... Always N/A
12345

“BFiexiabity n SPM |
Change

Figure 31

43

Respondents indicate the following: Flexibility tailoring SDM
8 % reporting 1 or 2 i

24 % reporting 3 3

[BFlexiifty takioring SON |

57 % reporting 4 or 5

11 % not apphicable

3t R Gl €1 B OO

Scale: Never Always N/A
123435

Figure 32

Survey Findings Summarization

Based on the survey results, all respondents work, or have worked on team projects
with half of the sampling group having experienced distributed projects. The group appears
to be well credentialed, with the large majority possessing at minimum four years experience
in the IS /IT / CS domains. Software development methodologies remain within the two
most common methodologies, Waterfall and Object-Oriented. One third of the sampling
group reported using other types of methodologies other than the four listed on the survey.
A significant majority of the group reported having used collaborative tools; e-mail ranked
the haghest with regards to usage. Based on data from Section C of the survey it is
determined that aspects of distributed project management were not present in the
environment of over 15% of respondents. The aspects identified by the respondents as not
normally being part of the distributed project management processes are the following:

privacy policy, security policy, virtual trust, conflict resolution, cultural diversity, clear

44

software development methodology, and flexibility in changing software development

methodology.

Further analysis of the survey results suggest that for respondents coming from
government or larger corporations, budgetary considerations and resources may be Iess of an
issue given the size of the organizations. This is interpreted from the statistics which
indicate that 62% have a communication plan, 62% have a security plan, and 70% express
the existence of a technical infrastructure. These éhree categories are indicative of a stable
and structured organization. In analyzing respondent feedback pertaining to collaborative
tools, indications are that 25% of respondents rely on e-mail as their primary collaborative
tool. This high e-mail usage is a result of one or a combination of the following three
possible scenarios: ease of availability, historical experience by practitioners, and/or low
availability of Web Project Management tools, which appears to be supported by respondents

indicating that only 3% use Web Project Management tools.

From a Distributed Project Management collocation effort, 63% of the respondents,
responding with a four or five, indicating that they value occasional face-to-face collocation
gatherings as an important element of Distributed Project Management. This is a strong
indicator that our social and cultural experiences remain rooted in physical interaction, and
that our evolutionary shift to a virtual interaction comfort zone is still evolving. A larger,
more extensive sampling would be required to derive further defendable arguments from the

survey results,

45

With 48 % of the respondents, responding with a four or ﬁve, able to remain true to
the implemented Software Development Methodology. It would be premature in nature to
claim a positive or a negative position regarding industry’s ability to remain true to a
methodology. What can be ascertained is that only 3 % of the respondents indicate that they
use the Extreme Programming Methodology, which is the methodology data suggests has the
highest probability of being impacted by Distributed Project Management practi(l:es. Two
conceivable rationales for this low percentile use of Extreme Programming are the relative
newness of the methodology, and/or industry’s self-diagnosis that this methodology may be

difficult to implement within a distributed environment,
A larger sampling would be necessary to derive solid and defendable data from a

survey of this type. What can be derived from the survey results are soft indicators of what is

transpiring within a small sector of the local technology industry.

46

CHAPTER YV

DISTRIBUTED PROJECT MANAGEMENT IMPACT ON SOFTWARE

DEVELOPMENT METHODOLOGIES

Impact on Software Development Methodology by Distributed Project Management

Software development can be described by software developers as a complex
undertaking in ideal conditions; an undertaking that finds itself continuously at risk from
external and/or internal factors which may impact on a project’s successful completion.

Even in the most traditional development approaches, i.e. all employees working from one
location, project after project can be affected negatively for a multitude of reasons.
According to the 1999 Standish Group Chaos report, projects incur negative impacts due to
the following factors: lack of user input, incomplete requirements and/or specifications,
changing requirements and/or specifications, lack of executive support, technology
incompetence, lack of resources, unrealistic expectations, unclear objectives, unrealistic time
frames, and the introduction of new technology. [1] These factors are listed in order of

highest to lowest negative impact.

Current methodologies in software development provide a varied repertoire from
which programmers may choose when tasked with matching system functionality with
suitable development methodology. The industry survey reports the following breakdown of
methodology usage within the five methodologies offered: Waterfall (24%), Object-Oriented
(27%), Rapid Prototyping (14%), Extreme Programming (5%), and Other (30%). The small

mndustry utilization of Rapid Prototyping and Extreme Programming complicates the ability

47

to draw specific impact indicators on the respective methodologies. The low industry
application of these methodologies suggest that practitioners have self-determined that these

methodologies would be more challenging to utilize in a distributed environment.

While Software Development Methodologies have a greater documented record of
accomplishment, Distributed Project Management is a relatively new model, app'earing n
software development mainstream in the last ten years, therefore, still an evolving domain.
With the domain still in a stage of infancy, to date, best practices have not been ascertained.
This, coupled with the reality that computer science, information systems, and information
technology domains are moving forward rapidly with regards to available technologies,
making it increasingly daunting for practitioners to maintain currency with available software

technologies and their respective applications.

In examining potential impacts on development methodologies overall, it is arguable
that the following factors influence the entire process, therefore making it difficult to isolate
what area is specifically impacted the most, the software development process or the
distributed project management process. The four areas of influence discussed here are not
intended to be a comprehensive list of areas influenced, but are put forward as key areas that

could most strongly influence the methodology and/or project process.
The first area of influence put forward for review is communication. Communication

is integral to a successful project outcome, and currently there are various technologies to

allow both synchronous and asynchronous communications. It could be surmised that given

48

a project’s particular stage, decisions to utilize one communication mode, synchronous
and/or asynchronous, over another would be best or even required to better secure a positive
project outcome. Regardless of the communication mode issues, language (translation
requirements), technology speed and/or compatibility, to name but two will in all likelihood
present themselves continuously, or at least intermittently during different tasks of a project.
I.mpacts on methodology are not solely limited to technical or cultural issues. One could
propose that in a distributed environment it is easier to ‘not hear’ the voice of a distant team
member or virtual project manager. In this situati;)n, no process or technology will rescue
the development project; individuals must apply an overall sound professional work ethic
toward their approach in working together. As well, they must actively listen to all team
members and/or the project manager and assertively maintain clarification practices to ensure
success in project efforts. It is critical that the entire team, whether physically or virtually

present, be vigilant in communicating effectively.

With today’s globalization of economies and work forces, we find an increase in the
occurrence of projects that span multiple borders, countries, and continents; global projects
spanming great distances, and encompassing multiple organizations, encounter the challenge
of multiple time zones. Thus, the second area of influence is geographic distance. Although
not a complicated issue onto itself, it does present logistical challenges that are complex to
manage. An example of this complexity is a project scenario in which the time zones span
more than six hours from one location of the project team spectrum to the other. This
scenario would automatically dictate that somewhere within the global team, someone will

be required to work very early in the morning or very late at night, possibly even in the

49

middie of the night, should the team want or need to meet virtually. In addition, if the time
zones span less than six hours there may be a very narrow window of opportunity for

everyone to conveniently attend a virtual meeting within their respective workdays.

The multi-organizational aspect of a distributed project 1s the third area of influence
offered for discussion. In a large global organization, the occurrence of a distributed project
is highly possible but in this context, it is contained within one organization. The term
multi-organizational implies that a distributed project is resourced from a host of
organizations, possibly spanning the globe, implying that a number of organizations would
participate in a singular project effort. This aspect of distributed project may introduce
possible 1ssues pertaining to each respective organization such as: intemal culture, internal
standards, ethics, technological infrastructures, beliefs, and employment stability. Certainly,
the reality of a multi-organizational model suggests the need to deal with many entities
working toward a commmon objective. One could assume that there is a higher probability of
issues surfacing as a result of the multi-organizational dynamic versus single-organizational

model.

The multi-cultural aspects derived from the multi-organizational, muiti-border
dynamics of a distributed project is suggested as the fourth area of influence. There can be
little argument that individuals possess diverse beliefs and value systems that are to some
degree, influenced by the socictal norms of the country in which they reside. Two individuals

may well disseminate information and events differently, thus directly suggesting that a

50

multi-border level of complexity within a project, could result in influencing the process

itself.

Review of Specific Software Development Methodologies Impact from DPM

The Waterfall methodology, as described previously, has been in use for
approximately four decades and is deemed as a solid methodology. Although, today’s
software development tools are complete integrated development environments (IDE), that
certainly incline toward a more spiral approach to software development; as a methodology
Waterfall 1s highly procedural in structure and certainly lends itself well to project
management models and practices. With regards to distributed project management it can be
argued that Waterfall does fit this environment with its high documentation requirements and
sequential processing approach to software development. The software methodology
requirement of phase start and stop milestones, with all stops requiring client sign-off before
proceeding to the next start, certainly allows for greater control over the software build at
specific points in time by the entire distributed team. According to the survey data, of the
respondents using the Waterfall methodology during distributed projects, they were able for

the most part, to stay within the development methodology processes.

The fact that the Waterfall Methodology may be able to lend itself more conveniently
to a distributed project management approach is not to suggest that issues could not present
themselves as a result of being applied during a software development project via a

distributed project management approach; and it is put forward that the following issues may

51

arise due to this particular pairing of processes. Project teams at different sites may apply
the pure form of the Waterfall methodology differently, i.¢. tailoring or creating a hybrid
variation causing the actual methodology to yield uncertain outcomes. This would depend
directly on the level of variation from one site to the other, as well as on what phase or key
process of the methodology changes were made and to what degree. Uncertainty will

invariably have an undesired impact on the methodology and/or project management

Processcs.

General observations around the application of the Waterfall Software Development
Methodology and Distributed Project Management are that it is well suited for a distributed
application because of its highly structured sequential process approach to software
development. Presently, Waterfall has a large base of experienced adopters, hence, as these
adopters migrate into a distributed project versus a collocated project, they will carry their
accumulated experience of working with the methodology into the distributed project
application of the methodology. It is possible to argue that these experienced practitioners
are best equipped to implement and manage a distributed software development project given

their collective experience base.

The Object-Oriented approach has had a shorter existence in contrast to the Waterfall
Methodology, but nonetheless, it has proven to be an accepted and reliable software
development approach for the past two decades, based on a spiral approach to software
development. As a result, it may be argued that it is more complex in its approach due to the

multiple iterations taken to develop a solution to a problem. The increased process

52

complexity found within Object-Oriented, coupled with the increased dynamics complexity
of distributed project management versus collocated project management, may yield a more
overall complexénvironmental process to software development. According to the data

acquired from the survey, adopters of Object-Oriented software development report that by

and large they can stay within the process during a distributed project environment.

Issues that may present themselves as a result of utilizing the distributed project
management on the Objeci-Oriented Meihodology may well be: Variation of methodology,
spiral cycle communication complexity, and virtual team members being absent from a cycle.
In considering the first 1ssue identified, we notice that this is similar to the issue found in the
Waterfall Methodology. Virtual team members may all be adopters of Object-Oriented
software development, but it is possible that one, or several, virtaal participant(s) may
modify the process within their respective environments. The second issue refers to the
spiral nature of this approach. Adopters of object-oriented development view the spiral
nature of the methodology as a strength, however, within a distributed context the absence of
large start and stop milestones may result in negative impacts. These impacts may well result
from multiple sites and multiple phase iterations not being 100 percent synchronized thus
causing gaps within the development process. While this third impact is local in nature, it is
nonetheless critical to Object-Oriented software development. If a virtual team member
misses a spiral iteration, hence misses the related communication, the result could be a

significant negative impact on their portion of the overall project outcomes.

33

General observations of the Object-Oriented software development application under
a Distributed Project Management process are that, as this is a less mature process, its
adopters are most likely earlier along in their professions thus more open to applying
distributed approaches to the process. As well, Object-Oriented process itself promotes
multiple iterations and parallelisms as it moves throughout its process. Another observation
of Object-Oriented software development could conceivably be that it may be m;)re

challenging to manage within a distributed context.

Rapid Prototyping, as a methodology within a distributed development project
context, may present an initially higher challenge, but generally lends itself to a distributed
approach. As a methodology, once the initial prototype is created the virtual team will find
themselves observing a process similar to the Waterfall Methodology. The creation of the
prototype as the first task or phase of the methodology could be argued to be similar to
runming a 10-kilometer race on the first day of a new exercise regime. The virtual team is
tasked at the commencement of the build to enter into the most complex dynamic, software
coding, of any Software Development Methodology, at the same time as they work out the
virtual nuances associated with working with new team membership. Clients view this
approach, due to the functional prototype creation, as an excellent process to ensure their
input (feedback). The research data collected from the survey does not provide adequate
feedback pertaining to this methodology to allow for a formal interpretation and therefore are

not referenced.

54

Issues and observations related to the Rapid Prototyping Methodology are centralized
around the initial build complexity and challenge of the entire process. Once completed the
process should become quite similar to the Waterfall process, hence, presenting similar issues

as previously identified pertaining to the Waterfall Methodology.

Extreme Programming Methodology with its multiple build cycles is a radically
different application within a collocated project context; logically it would be a more
complex application in a distributed project context. The fact that the methodology is based
on very short and tight cycles makes it very effective with regards to a build-as-you-go-
forward, but from the perspective of distributed project management, it presents the process
as a daunting undertaking. The analogy of creating flowerbeds as you move earth into the
middle of the flowerbed, hence build as you go, certainly provides a visual to some of the
challenges of the methodology. Building as you go, would be applicable in the areas of
requirements, specifications, code design, and testing. All areas incurring multiple re-starts
logically would present greater demands on all resources and both technical and human
infrastructures; these demands could be more defined during a distributed approach due to
the distributed associated challenges themselves. It may be difficult to stay true to the
multiple-build approach of the XP methodology in a distributed approach given that most
developers demonstrate a tendency to migrate towards a sequential approach such as the
Waterfall Methodology. The reality of the short historical experience of Extreme
Programming makes it challenging to draw sound observations as to how the methodology

may be impacted.

55

Foreseen issues for Extreme Programming Methodology are suggested in the following
statements. Defining requirements during the development process in a distributed approach
could cause a state of ‘lack of direction’. Pair programming would be more difficult as some
team members may not be in the same physical location, therefore, losing various aspects of
having both members working on one CRT/LCD. As well, the physical approach of Extreme
Programming, all in one location, would present a challenge in numerous ways i£i a distributed
approach; so too would the physical client participation requirement in the development area
during an XP project. The Extreme Programming Methodology is somewhat radical in its
approach; key factors for this are the physical collocation requirements of team members and
clients, which are certainly huge challenges within a distributed context. The fact that the

methodology requires people be in the same physical location places a parallel force against the

fundamental aspects of the distributed approach.

Accepting that Extreme Programming is impacted to the greatest degree as a
methodology due to the distributed application of software development, it is not surprising
that possible accommodations have been, and continue to be explored. Recent studies by the
University of Lincoln are exploring the question of: what environment supports distributed
extreme programming. [19] This research will add to the body of knowledge being

accumulated in regard to the evolution of classical extreme programming.

Kircher et al. suggest that distributed extreme programming is possible and quite

attainable. They define distributed extreme programming as follows: “as Extreme Programming

with certain relaxations on the requirements of close physical proximity of the team members. ”

56

[20] For this evolutionary model of extreme programming to work certain assumptions
pertaining to the availability of tools must be accepted. These assumptions are: connectivity
between team members already exists, electronic mail is available to all team members,
adaptation of configuration management has occurred, application sharing is practiced, video

conferencing is made available, and familiarity among the team members exists. [20]

Maurer and Martel defined the use of Minimally Invasive Long-term Organizational
Support (MILOS) as a process-support environment developed to aid software developers
functioning within a distributed extreme programming environment. For MILOS to support
distributed extreme programming it must first provide an environment that coordinates both
tasks and developers in a distributed project, second it must provide synchronous
communication via tools such as electronic mail, third it must provide active information and
information routing among team members, and finally 1t should support integration of

process execution with knowledge management systems. [21]

Distributed Extreme Programming (DXP) is a recent adaptation of an infant methodology,
which appears thus far to indicate that the adaptations are supporting distributed software
development; although the relatively short historical experience of DXP software development

makes it more challenging to concretely determine proven practices. [20]

Distributed Project Management Benefits / Impediments in Software Development
In Table 2 benefits and impediments of distribution as an approach are identified and

explained.

57

Professional Base

The large global area that one can draw from makes it viable to resource project tasks with

highly experienced professionals who are specialists in their respective areas.

Issue Visibility

In a distributed approach communication and documentation is highly critical; it could be

argued that issues will be more defined given the micro-review aspect of the process.

| Creativity
The virtual aspect of a distributed approach in itself is a dynamically creative process;
thinking outside the box is a valued skill, therefore, all participants may find themselves

adopting a higher degree of a risk taking in their creativity processes.

Competitive Edee

This approach may allow, due to the large employee base from which to draw for its team,
for a competitive business edge versus a team physically located within a si'ngle

organization.

Standards / Protocols

Members of the virtual team may evolve to a higher level with regards to their respective
documentation and coding standards from an exposure to a broader sector of professionals

and their respective professional standards.

38

Communication

In a distributed };rocess, communication elevates to higher degrees of importance. Both
asynchronous and synchronous communication technologies support aspects that present
challenges to communicating in a virtual context. Communication is said to be critical
regardless of the process approach in a physical context, thus moving into a virtual context

it is a logical assumption to reason that communication would be even more critical.

Security

The aspects of security and privacy are at great risk in a distributed environment given
that to communicate team members must do so via external channels versus into a single

organization’s internal security infrastructure,

Standards / Protocols

From one organization, or from one team member to another, different standards or
protocols in coding, communicating, documentation, may exist. These variables will
cause issues unless they are recognized and regulated into a single standard and/or

protocol.

Budgetary

In distributed environments cost overruns can become a concern as it can be difficult to
identify the exact overrun source. It is critical that the project manager have a varied
repertoire of tools and skill sets to manage the financial complexity and diversity of a

distributed project.

Table 2 ~ Benefits / Drawbacks of Distributed Projects on Seftware Development Methodologies

Distributed Project Manapgement Impediment Elimination Strategies

Communication impediment can be partially resolved with the adoption of solid and
reliable asynchronous tools such as e-mail or web discussion boards. The web discussion
boards can be expanded to include specific web discussion rooms. The creation ofa Q & A
virtual area may assist virtual team members in being informed of challenges being
experienced by others, as well as, possible solutions to these challenges, The wéb—enabied
environment that accommeodates for posting information is one that the project’s client could
take full advantage of as well. Web tools that would allow for joint, as well as an
individualized, calendaring of tasks may present logistical management challenges on the
communication of what tasks need to be completed by whom and by what deadline. The
documentation of all communiqués is more essential in a virtual environment compared to a
collocated environment structure because there is no convenient physical access to team
members. Traditional synchronous communication tools, such as teleconferencing and video
conferencing would provide the opportunity to have face-to-face discussion without the need
of physical displacements. Recent technologies such as voice-over-IP and video-over-IP

technologies permit the application of traditional communication approaches at a fraction of

the cost.

Security impediments may be managed with the appropriate centralization of critical
information, the adoption of appropriate firewall technology, and the documentation of
virtual team member’s rights and profile assignments. The implementation of a global,
distributed Intranet would allow for more access control as well as the ability to impose

standards and protocols. Basic data encryption will facilitate in providing appropriate

60

security levels. Finally, the creation of security agents whose task is to constantly search out

any infractions of the standards and protocols would enhance security.

Standards / Protocols impediments may be minimized if the virtual team undertakes
early in the process the establishment of a single standard and/or protocols for their project
and the project’s respective components. The adoption of standards and protocols alone is
not sufficient; these standards and protocols must be communicated to the virtual team
otherwise, it is of no worth to establish them. The: communication of the standards can be
accomplished via e-mail attachments, physical mail outs, or the establishment of a quality
website that contains all documentation samples in PDF format. By establishing such a
website these samples would be available for review upon demand by any virtual team

member.,

Budgetary impediments, from a management perspective should not be an issue
assuming everyone follows the project plan and uses the identified resources. Human nature
being what it is and software development having the historical background that it has,
certainly one 18 required to face the harsh reality that projects usually go over budget. Two
possible approaches in combating budget-overrun realities are, introduction of budget agents,
who independently follow and approve what is transpiring as it occurs in the project and the
creation of a project budget website. This website would allow virtual team members to
view all line items and, when required, concentrate within any one of the main budgetary line

items for a more in-depth budgetary explanation.

61

Best Practices of Distnibuted Project Management on Software Development

As the domain of Distributed Project Management evolves it is highly predictable that
a progression of best practices will evolve. In time, the Project Management Institute (PMI)
will most certainly endeavor to establish such a list. It can also be assumed that as the IEEE
Computer Society put forward the 1058 Software Project Plan Standard so too will a
distributed standard be developed by the IEEE Computer Society to assist the im.:reasing
number of practitioners of this domain. Regardless of standards existing ot not, Distributed
Project Management does have the potential of positively or negatively impacting every

aspect of software development and the respective methodology processes. At this point-in-

time, one can but put forward only suggestions on what a best practices list might entail.

Best Practice I ~ Communication

Maintain open communication channels via asynchronous or synchronous
technologies, to name the most apparent, computer mediated communications, instant
messaging, web conferencing, voice-over-IP, video-over-IP, electronic mail,
teleconferencing, and video-conferencing. It is important not to presume that no physical
gatherings are required; strategically positioned physical team meetings or individual site
visits may encourage the effectiveness of distributed communication channels used during

the project.

Best Practice 2 ~ Infrastructure

Secure the appropriate technological infrastructure, both hardware and software, to

support the distributed aspects of the project in question. Equally important, is the need to

62

secure the appropriate technology to facilitate the application of the particular Software
Development Methodology being applied. Workflow management systems, Web project
management systems, etc. will enhance the success factor of the software development

project.

Best Practice 3 ~ Development Methodology

Select a Software Development Methodology that works best for the functional
requirements of the software being developed, Idéntifying a methodology which allows the
entire team to focus on a united process and resource your team with members who are
experienced in the application of the selected Software Development Methodology. The
environmental development tools available today promote a more spiral methodological

approach versus a more structured methodology, such as the Waterfall Methodology.

Best Practice 4 ~ Standards & Protocols

Select documentation standards and protocols that will facilitate use of the selected
methodology. The application of such standards and/or protocols throughout the
development methodology will assist in minimizing needless confusion, which accounts for

potential loss of time, productivity, and finances.

Best Practice 5 ~ Collaboration
Maintain regular contact with team members, whether it is the project manager
contacting a virtual team member, or a virtual team member contacting other members or the

project manager. It is critical to maintain regular contact, otherwise, a sense of lost

63

connectivity may permeate the virtual team. A virtual member can easily feel they are not
being heard, therefore, it is important to regularly initiate such practices as: virtual member
show-and-tell, member reviews of work accomplished, and occasional on-site visits,
Keeping in mind that, in most cases, a member overcome with the feeling of total isolation
will not function as effectively as a member who feels they are part of a group - even a

virtual group.

Best Practice 6 ~ Code Controlling
Select an appropriate source code controlling software tool that is specifically

designed for virtual team application.

Best Practice 7 ~ Quality Assurance
Establish quality assurance protocols regardless of the methodology being adopted for
the software build, for in the end they will serve the process well by ensuring a software

product that is as fault free as possible.

Distributed Proiject Management Evaluation Criteria

A step in the direction of quality assurance is to establish a mechanism by which the
process can be evaluated objectively and in a timely fashion, The proposed assessment
matrix in Appendix B is a tool that may assist in determining the level of impact that
distributed processes could have on the software methodology used by the virtual team. As
seen in the matrix, with a possible total score of 40, a total score greater than 35 may indicate

no impact on the software methodology while a score of less than or equal to 35, but greater

64

than 25 may indicate a low negative impact on the software methodology. A score of less
than, or equal to 25, but greater than 10, may indicate a moderate to significant negative
impact on the software methodology. Finally a score less than or equal to 10 may experience

a high negative impact on the software methodology.
Distributed Project Management, as defined, presents many opportunities as well as

challenges. This scction has attempted to demonstrate how Software Development

Methodologies may be influenced by Distributed Project Management.

65

CHAPTER V1

CONLUSIONS AND RECOMMENDATIONS

Conclusion

Software Development Methodologies are complex processes that are simultaneously
resilient and fragile; distributed projects and their management have the potential of
mmpacting Software Methodologies negatively hence potentially compromising the positive
delivery of a sound software product. Methodologies themselves provide diverse approaches
to resolving the requirements of a particular proéess. When looking at their respective
theoretical models, although diverse, a common thread is woven among them. Whether it is
a histortcally long-standing methodology such as the Waterfall approach or a new innovative
methodology such as Extreme Programming, all have an identical goal in the end, to provide
a solid, i.e. fault free, software product that meets the client’s stated or determined

requirements.

Distributed Project Management is a relatively new application of a proven approach,
i.e. project management, but the fundamental aspects of project management are still being
observed and evaluated throughout the project’s life span. The key challenge of a distributed
project, while no different than a geographically centered project, is one of communication.
In a distributed project context, this challenge is elevated above all others. It is suggested
that regardless of the strength of the adopted Software Development Methodology, if the
project manager is not promoting strong communication practices, the entire process will be

flawed.

66

In this report, results from the survey, although not meant to be statistically
defendable but to be used only as a scan of the regional state of affairs, did indicate
communication as the single most critical aspect that could influence software methodology.
What the survey did not directly report, is how the four software methodologies, listed could

be impacted by the distributed nature of the project.

This author suggests that Software Development Methodologies are process
challenged by being applied over a virtual venue with the level of challenge being directly

correlated to the Distributed Project Management application strengths and/or weaknesses.

Although no one methodology was singled out as one that would usually fail if
applied over a distributed venue, the fundamentals of Distributed Project Management
support that the methodology that would present the greatest challenge if adopted over a
distributed venue is the Extreme Programming Methodology. This is due to the physical
characteristics of the Extreme Programming Methodology that could be negatively impacted
by being applied via a distributed approach, such as pair programming and client constant
interaction with the entire development team. This is not to suggest that creative adaptations
and/or accommodations could not be made to allow for the convenient use of this
methodology over a distributed venue. This trend may well emerge with the evolution of

Distributed Extreme Programming models.

67

Further Research Sugpestions

Future research exploration on the following aspects of the application of Software

Development Methodologies and Distributed Project Management would provide

enlightening data that could provide greater understanding of the application of Distributed

Project Management and the impact introduced by such an application.

2

a

Distributed Extreme Programming State of the Art,

Distributed Project Management Life Cycle Versus Collocated Project Management
Life Cycle Vanation in Process.

Software Development Methodology’s Influence over Distributed Project
Management Models.

Application of Agent Technology on Distributed Project Management.

68

10.

11

12.

REFERENCES

The Standish Group. 1995. The Standish Group Report ~ CHAOS. Web
Reference: http://'www.projectsmart.co.uk/docs/chaos report.pdf. Accessed:
January 4, 2005,

Bonnal, P. etal. (2002, March). The Life Cycle of Technical Projects. Project
Management Journal, pp 12-19. Web Reference:

January 12, 2005.

Schach, R. S. (2002). Object-Oriented and Classical Software Engineering, 5™
Edition. New York, NY: McGraw-Hill Higher Education.

McMahon, P. (2001, November). Distributed Development: Insights, Challenges,
and Solutions. The Journal of Defense Software Engineering. Web Reference:
hitp://www.stsc hill. af. mil/crosstalk/2001/06/leishman.html . Accessed: January 7,
2005.

Fjermestad, J. etal. (2004). Collaborative Project Management. A Special Issue of
the Journal: International Journal of e-Collaboration. Web Reference:
http://web.niit.edu/~jerry/1ieC-Collaborative-Project-Management. htm . Accessed:
November 5, 2004.

Chaar, J. etal. (1996, May). Virtual Project Management for Software, IBM T.J.
Watson Research Center. Web Reference: htip:/Isdis.cs.uga.edu/activities/NSF-
workflow/santanu html . Accessed: December 16, 2004.

Damian, D., & Zowghi, D. (2002). An insight into the interplay between culture,
conflict and distance in globally distributed requirements negotiations. IEEE
Computer Society. Web Reference:
http://esdl.computer.org/comp/proceedings/hicss/2003/1874/01/18741001 9c.pdf .
Accessed: January 30, 2005.

Beise, C. (2004, April). IT Project Mangement and Virtual Teams. ACM, pp 129-
133. Web Reference: https://portal.acm.org/ . Accessed: January 20, 2005,

The Program Management Group ple. (2004, December). Web Reference:
www.pm-group.com. Accessed: January 5, 2005.

Badir, Y. et al. (2003, September). Management of Global Large-Scale Projects
Through A Federation of Multiple Web-Based Workflow Management Systems.
Project Management Journal, pp. 40 — 47. Web Reference:
http://search.epnet.com/login.aspx?direct=truc&db=tth&jid=INR . Accessed:
January 12, 2005.

Nienaber, R. & Cloete, E. (2003). A Software Agent Framework for the Support of
Software Project Mangement. Department of Computer Science and Information
Systems, University of South Africa, pp. 16 — 23. Web Reference:
hitp://portal.acm.org/ . Accessed: December 27, 2004.

Schwalbe, K. (2002). Information Technology Project Management. Boston, MA:
Thompson Learning Inc., pp. 4 - 27.

69

13.

14.

15.

16,

17.

18.

9.
20.

2L

Jaafari, A. (2003, December). Project Management in the Age of Complexity and
Change. Project Management Journal, pp 47 - 57. Web Reference:
http://search.epnet.conv/login.aspx ?direct=true& db=tth&jid=1NR . Accessed:
January 12, 2005,

Collaborative Strategies. (2002). Distributed Project Management Update 2002
(Volume 1) Executive Summary. Web Reference:

http://collaborate com/announcemenisanounce 6.html . Accessed: December 29,
2004.

Hill, L. & Morgan, JP. (1995, October). Object Oriented Project Management.
OOPSLA "95 Proceedings, pp. 89 — 93. Web Reference: hitpy//portal.acm.org/ .
Accessed: December 30, 2004.

Katzy, B. et al. (1999, September). Knowiedge Management in Virtual Projects: A
Research Agenda. Web Reference:
htip://portal.cetim.org/file/1/92/KatzyEvaristoZigurs.pdf . Accessed: January 29,
2005.

Katayama, T. (2001). What 1s Object-Oriented Methodology?. Tokyo Institute of
Technology. Web Reference:
http//'www.sot.wide.ad.jp/class/20010030/slides/05/img/5.png . Accessed: April 26,
2005.

Kanbay, J. (2002, January). Extreme Programming (XP). Serverworld Magazine.
Web Reference:

http://www. qerverworldmdgazzne com/webpapers/2002/01 Kanbay.shtml. Accessed
on: April 25, 2005.

Adams, P. A Collaborative Environment to Support Distributed eXtreme
Programming. University of Lincoln. Web Reference:
http://eprints.Jincoln.ac.uk/39/01/abstract.pdf. Accessed on: April 27, 2005,
Kircher, M. et al. Distributed eXtreme Programming. Corporate Technology.
Munich, Germany. Web Reference:

hitp://www.cs. wustl.edu/~corsaro/papers/XP2001.pdf . Accessed on: April 27, 2005,
Maurer, F. & Martel, S. Process Support for Distributed Extreme Programming
Teams. University of Calgary, Computer Science Department. Calgary, Alberta,
Canada. Web Reference:
httpi//sern.ucalgary.ca/~milos/papers/2002/maurerMarte|2002a.pdf Accessed on:
April 27, 2005 .

70

APPENDIX A ~ Survey Tool

71

Athabasca University ~ Master of Science in Information Systems
COMP 696 Thesis Essay

Research Survey
Researcher: Gerald L. Caissy BCS

Topic: Impact of Distance / Distributed Project Management on Software Development Methodologies.

Section A: Please check the one description that best reflects your situation:

Employment sector: Current primary job title/duties:
o Public _ o Analyst '
o Corporate o Designer
3 Small Enterprise a Data Base Administrator
o Education o Programmer/Analyst
g Other a Project Manager
o Other
IS or IT or CS professional experience; Highest credential level obtained in any field:
g Under 2 years o Diploma
o 2.4 years o Degree
o 4.8 years o Graduate {(Master or Doctorate)
o &.13 years o Other
o Over 15 years
Work (or have worked) on team based projects: Work teamns are geographically:
o Yes a Centralized
o No a Distributed

Section B: Please select the answer that best reflects your situation:

Are you currently applying project management structures in your software development activities?
o Yes o No

What software development methodology would you classify as your primary methodology?

o Waterfall (Structured) o Rapid Prototyping
o eXtreme Programming a Object-Oriented o Other

Are you currently using collaborative tools to enhance your software development project management.

0 Yes o No
If YES please indicate the tools you have used fvou may select many):

o PM Software (ex. MS Projects) o Internet Conference o Teleconference

o Video Conference a E-mail o Bulletin Board
o MSN type environments 2 Web PM tools o
ul o o

OVER to Section C ...

72

Section C: Please fill in the following as it best reflects your experiences:

Were you able to stay within the SD methodology given that you were using distributed project management?
a Fully (to the purest intent of the SD methodology)
o Mostly {used the SI» methodology but experienced a few challenges)
o Somewhat (SD methodology itself caused challenges due to the distributed aspect of the PM)
a Little (most attempts to stay within the SD methodology did not work)

Based on your experience and development methodology identified, what impact(s) occurs on the development
methodology as a result of working via distributed project management?

Based on your experience and development methodology identified, what possibility{ies) occurs towards the
development methodology as a result of working via distributed project management?

How would you rate the existence of the following aspects, as they pertain to distributed
project management: (Circle the appropriate response that best reflects your experience)

Never Always
1. Communication plan / strategy 12345 nha
2. Privacy policies 12345 wnha
3. Security Protocols 12345 nma
4. Virtual trust environment 123435 nh
5. Leadership / supportiveness ' 23 435 nh
6. Occasional team collocation 123435 na
7. Appropriate technical infrastructure 12345 nha
8. Conflict resolution processes 12345 nha
9. Cultural diversity awareness 12345 nha
10. Clear software development methodology adoption ' 23 435 nhia
11. Flexibility in changing development methodology 12345 wvha
12. Flexibility in tailoring adopted development methodology 12345 nha

Thank you for participating in my survey! Please return by January 28, 2005 to:

Gerald L. Caissy Telephone: 902.566,9663
Holland College Charlottetown Centre Fax: 902, 566.9335
140 Weymouth Street E-mail: geatssvigchellande pe.ca

Charlottetown, PE, C1A 471

73

Appendix B ~ Assessment Matrix

74

Distributed Project Management
Impact on Seftware Development Methodology
Assessment Matrix

Directions: Select the appropriate impact level, record the respective weight score in the score column.

Methodology has not been
adopted.

Methodology has been
wdentified, but each team
member is applying their own
interpretation {variation) of the
methodology.

Methodology has been
identified with standards on its
application. Team members
are adhering to it the best of
stheir ability.

Methodology has been
identified with standards
on its application, Team
members are complying
190% to the standards.

No communication plan exist.

Communication pian exist but
no one is adopting it as the
standard. Team members are
functioning more at an
asynchronous mode.

Communication plan exist
and is adopted as the
standard. A few team
member are aot
practicing it 100%, with
most fuactiening at a
synchronous mode.

Communication plan exist
and is adopted by all team
members 100%. Team is
functioning in a blend of
synchronous /
asynchronous
commugication modes,

No security plan exist.

Secunity plan exist but only
some have adopted it,

Security plan exist and most
team members have adopted it.

Security plan exist and ali
team member have
adopted it.

Team membership composed
of different socie, political,
and economic beliefs.

Team membership composed
of similar socie, political, and
economic beliefs.

Team membership composed
of commen socio, pelitical, and
economic beliefs,

Team membership
composed of identical
socio, political, and
economic beliefs.

Members work in 100%
isodation with ne synchronous
communication with other
team members.

Members work together in
asynichronous mode only,

Members work in over a
muttitude of asynchronous and
synchronous modes.

Members work in a fully
synchronized mode.
Inferact very freely with
one another.

No technological
infrastructure is defined,
hence everyone is using their
OWD interpretation,

Technology infrastructure is
documented but only partially
implemented.

Technology infrastructure is
documented and implemented
bt not adopted by all
members.

Technology infrastructure
is documented,
implemented and adopted
by all members.

Everything requires
franslation.

Team members can read and
write in one common language
but verbal skills are mixed.

Team members can read and
write in one commen language
and converse at a functional
tevel.

Team members are filly
fluent in one commoen
language existing within
the team.

Functioning at level 1 of the
1 Capability Maturity Model
(CMM).

Functionmg at level 2 or 3 of
the Capability Maturity Model
(CMM).

Functioning at level 3 or 4 of
the Capability Maturity Model
{CMM).

Functioning at level 4 or 5
of the Capability Maturity
Model (CMM).

Client is not available.

Client is difficult to contact.

Client is avzilable within a
reasonable timeframe,

Client is part of the tean.

No standards are defined,
hence documentation is not
being captured.

Scoring Results: /49

Standards exist but almost no
one has adopted them.

Standards exist and they are
being adopted by mest
members.

Standards exist and they
are adopted by all.

Score <= 10 High negative impact of software methodology
Score > 10 and <= 25 Moderate negative impact of software methodology
Score > 25 and <= 35 Low negative impact of software methodology

Seore>35No negative impact of software methodology

