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Abstract 

The search for causal relations from observational or experimental data is an open and 

pervasive problem that spans many fields of research. In the area of learning, this is 

especially important. The ability to determine the effect of a new teaching strategy or the 

cause of an upswing in student performance is persistently desirable. In computer science 

courses, integrated development environments (IDE) offer students a plethora of features 

promising to accelerate the coding process and instill the necessary competency skills for 

seamless migration to industry. In this work, we introduce a mathematical definition of a 

coding process and apply causal discovery methods to data collected from an IDE. We 

approached the problem statically and dynamically and found strong evidence of a causal 

effect of consultations on coding competency. We set forth the groundwork for future 

analyses of these processes and exhibit the extendibility of this work to other disciplines.   

 Keywords: coding process, causal discovery, time series data, dynamical systems 
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A Causal Approach to Assess Student Competence

Chapter 1. 

1. Introduction 

1.1 Causality 

 The motivation behind most research is either explorative or causal in nature 

(Pearl, 2009a). The former involves investigating new methodologies or techniques to 

solve existing problems in more effective ways. The latter involves answering questions 

that require causal reasoning based on data obtained from either randomized controlled 

trials or observations (Winship & Morgan, 1999).  

 Causal inference is the act of deducing that a certain intervention or treatment was 

the ‘cause’ of an observed ‘effect’ (Rubin & Zell, 2018). For instance, statements such as 

“if the pan is too hot, the pancakes will burn” or “the smoke alarm went off, so there must 

be a fire” are examples of some of the causal inference tasks we perform on a daily basis 

with little mental exertion. Human beings have been deriving causal connections for 

hundreds of years and the human brain is the supreme tool for this task. We make 

connections between cause and effect or reason and consequence with limited prior 

knowledge and little experimentation. These connections play a critical role in 

humanity’s evolution and progress since knowledge of both causal connections and 

causal chains is the foundation of human reasoning, inference and decision-making 

(Chan et al., 2005; Pena et al., 2008).  

 However, causal connections are not always easy to derive from simply 

experimenting or observing. The world is a complex place, and most often, several 

variables are at play, rendering the ability to disentangle cause from effect difficult. In 

order to derive any causal conclusions effectively, we need a way to fix one variable 

while observing the change in others. Randomized control trials (RCT) are the true and 

trusted methodological approach to causal discovery (Winship & Morgan, 1999; Pearl 
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2009a; Pearl & Mackenzie, 2018). An RCT is an experimental design where subjects are 

randomly assigned to either a control or experimental group. Consequently, any 

difference in the outcome between both groups is due to the treatment variable. Despite 

being efficacious, RCTs can be expensive, longwinded and even unethical in some cases. 

In the era of big data, there is a growing impulse to determine causal relations from 

observational data alone. However, this data may be static, providing no indication of the 

temporal changes it underwent or the mechanisms that led to them. Associational 

methods such as correlation and dependence analysis can be conducted after the data 

collection process. However, these are shallow indicators of causality as they do not 

explain the data-generating process. An example of such spurious associations is the 

correlation between ice cream sales and crime rates. It would be nonsensical to think that 

crime rates and ice cream sales are causally related due to the correlation between them. 

Observations that appear to be related to one another may share a common driver, giving 

rise to the observations (Reichenbach, 1956). Dependence can manifest in the context of 

causations also. Two events can be causally dependent if they fall along the same causal 

chain (Lewis, 1974). Static observations can be thought of as a collection of points from a 

dynamic system at equilibrium (Dash, 2005). This is in violation of a crucial premise for 

causal discovery, which necessitates the observance of a dynamic change in system 

variables when one variable is fixed to a certain value (Peters et al., 2017).  

Causal graphs offer a graphical approach to simulating distributional changes using both 

a graph and the observational distribution (Pearl, 2009a; Pearl, 2009b).  

 However, generating a graph that represents true system dependencies requires 

expert knowledge and awareness of all influencing variables (observed or unobserved). 

Despite these hindrances, several methods have been proposed and have produced 

successful results in various settings depending on the type of data and the problem at 

hand. 
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1.2 The Importance of Causality 

 The persistent desire for informed decision-making and the establishment of 

better policies spans many fields of interest. This is especially critical in highly sensitive 

domains such as human resources, criminal justice system and education, to name a few. 

Due to the complexity and intricacy of these domains, disentangling variable interactions 

and non-spurious dependencies is usually beyond the confines of human cognition. 

However, they still require an element of human reasoning.  

 The abundance of data and increased computational power has led to a heavy 

reliance on data-driven approaches for many inference tasks such as prediction, 

forecasting or the uncovering of relations between variables of interest (Hwang, 2018; 

Guo et al., 2020). Two of the most popular approaches to gaining such insights would be 

building a statistical or a machine-learning model from the data at hand. You can think of 

these models as simplified descriptions of the data. The former relies on a rich statistical 

toolbox of supervised and unsupervised methods such as regression and clustering. The 

latter requires learning a complex function that is trained to fit the data using a relevant 

optimization method such as gradient or stochastic descent. Both sets of models have 

produced impressive results in ideal settings where the data is independent and 

identically distributed (i.i.d.) (Schölkopf & von Kügelgen, 2022). The data, being the 

driving force of either methodology, is usually treated like a black box, and the 

generating process is not extensively considered. For instance, questions like: “How did 

this data come about?” or “What are the mechanisms that led to this data?” are not 

rigorously investigated. Observations are passive and do not encode any temporal 

structure or interventional information. Distributional shifts that are commonly present 

between different samples are typically ignored or engineered away and are combated by 

‘dumping’ more data on the model as it is acquired. The more data that a model 

incorporates or sees during training, the better its performance during testing. This sets 

forth the need for stringent assumptions and recurrent hyper-parameter adjustments. Any 
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insights or variable relations derived from the data could be merely coincidental and not 

grounded on a robust theoretical base. An elegant model or an overarching theoretical 

framework can almost never be established and the ability of these models to generalize 

beyond the training distribution would be highly unlikely (Davison, 2003).  

 In contrast, a causal model offers much more than these models can (Pearl, 2018; 

Schölkopf et al., 2021). It can answer questions that are both descriptive and explanatory 

in nature on three cognitive levels (Pearl & Mackenzie, 2018; Wold, 1956). First, 

questions about the associations between variables of interest (this can also be done by 

any one of the above two mentioned models or directly from the data). Second, it can 

answer questions about interventions (if we manipulate  what will happen to ). Third, 

it can answer counterfactual questions that are beyond our cognitive abilities as humans. 

Therefore, causal connections are far more powerful than mere associations. Any 

relations that a causal model encodes are invariant across different distributions (Peters et 

al. 2017; Guo et al. 2020), allowing us to generalize past the observational data. 

Therefore, the inferences that we are certified to draw from a statistical or machine 

learning model are inferior to those we are able to draw from a causal model. These 

causal inference tasks are more in alignment with human-level and can even surpass 

human-level abilities in more complex settings. The complexity of real-world scenarios 

and the intricate mechanisms that connect the variables, known and unbeknownst, can 

not be captured by statistical or machine-learning models (Pearl & Mackenzie, 2018). 

1.3 Motivation 
  

 Computer science students spend a significant amount of time developing code in 

an integrated development environment (IDE). Students rely on these IDEs to expedite 

and streamline the development process. In some cases, an IDE can alleviate instructor 

overload by providing timely and meaningful feedback on how to optimize code and 

adhere to best practices. There is a rich body of data that can be collected by an IDE, 

X Y
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which can provide insight into the learning process and student coding habits. As such, 

this data can be analyzed and leveraged to discover causal models that will ultimately 

improve learner outcomes. 

 The main purpose of this work is to establish a causal link between didactic 

feedback provided in an integrated development environment (IDE) and student coding 

competence. We apply several causal discovery techniques to data collected from an IDE, 

where we consider the data in two different ways: statically and dynamically. In addition, 

we develop a mathematical definition of a coding process and the objects by which it is 

entailed, setting forth the groundwork for future analysis of such processes.  

 In Chapters 2-4, we provide the necessary background information. This includes 

a discussion of the importance of causality and its superiority over associational statistics. 

Associations can be spurious and, as a consequence, produce unreliable models that 

obfuscate decision-making. Then, we provide an overview of two prolific causal 

modelling frameworks, followed by a summary of pertinent causal discovery methods for 

static and dynamic data.  

 In Chapter 5, we discuss the importance of learning analytics in computer science 

and the presence of a rich body of data that can be collected from IDEs and leveraged for 

this purpose. In addition, we explain that these IDEs can be instrumented to provide 

meaningful interventions to facilitate learning.  

 In Chapter 6, we provide a detailed description of a coding process in general and 

define the objects it entails. In addition, we provide relevant definitions to the variables in 

our study. 

 In Chapter 7, we provide a detailed description of the data, including the 

collection process and any preprocessing it underwent before applying the various causal 

discovery techniques. We also present the results from each technique and a detailed 

discussion ensues in section seven.   

 We conclude with a list of recommendations for future studies (Chapter 8), the 

applicability of our approach in other disciplines (Chapter 9) and some concluding 

remarks about future research (Chapter 10). 
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Chapter 2. 

2. Causal Models 

 There are two prolific and intuitive frameworks that are used for causal 

modelling: Structural Causal Models (SCM) and Causal Graphical Models (CGM) 

(Schölkopf & von Kügelgen, 2022). These models are closely related. A CGM relies on 

causal conditionals that can be calculated directly from the data using conditional 

probabilities. An SCM relies on functional assignments that can also be calculated from 

the data using methods such as ordinary least squares, where each variable is regressed 

on all its influencing factors. Any noise or errors are attributed to unobserved influencing 

factors. SCMs are more powerful as they are able to answer more questions than CGMs 

but are more difficult to generate. 

2.1 Structural Causal Models 

Let  be a system represented by the following sets:  

   

where  and  are the endogenous and exogenous variables of the system respectively.   

is a set of functions inducing a probability distribution over .  is the set of nodes, 

a.k.a parents, that causally influence  such that . By 

influence, we mean that if we observe a change in any  then we will observe a 

change in . 

S

V = {vi}i=m
i=1

U = {ui}i=m
i=1

F = { fi (Pa(vi), ui)}i=m
i=1

V U F

V Pa(vi)

vi Pa(vi) = {vk |vk ∈ V, k ≠ i}

Pa(vi)

vi
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The system  represents a SCM.  

Definition 2.0. Endogenous Variable. A variable  is endogenous if it is observed 

and is causally influenced by zero or more endogenous variables

 of  .  

Since the complexity of any real-world system can never be accurately captured and, 

therefore, modelled, we assume that each variable in  has an exogenous variable in  

acting on it. Exogenous variables can be viewed as unexplained phenomena which 

account for prediction errors.  

Definition 2.1. Exogenous Variable. A variable  is exogenous if it is unobserved 

and causally influences one and only one endogenous variable .  

The presence of  is assumed, but the extent of its effect is not known., The elements of 

 are mutually independent of one another and exclusive to their counterparts in . In 

other words, an element  of   can only influence  from  (Pearl, 2009b).  

 is a set of functions such that for random variable , 

   

    

where  is a function (known or unknown) that encodes an invariant mechanism between 

the effect  and its cause(s),  and . These equations are not like a typical 

algebraic equation where variables can be moved between either side of the equal sign 

but rather are interpreted as assignments (Pearl & Mackenzie 2018; Heinze-Deml et al. 

2018; Peters et al. 2017). They are called structural equations since they define the 

generating process.  

Definition 2.2. Structural Equation. A structural equation of a variable  is an equation 

that defines a complex relationship in the form of a function    between  and all 

S

vi ∈ V

Pa(vi) = {vk |vk ∈ V, k ≠ i} S

V U

ui ∈ U

vi ∈ V

ui

U V

ui U vi V

F vi

vi = fi(Pa(vi), ui)

fi
vi Pa(vi) ui

vi

fi vi
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variables  that influence it. A structural equation in a structural causal model 

defines the relationship between the effect (left-hand side) and its direct causes (right-

hand side).  

These models allow prediction in i.i.d. settings under changing distributions and are able 

to answer counterfactual questions (Peters et al., 2017).  

2.2 Causal Graphical Models 

 A Graphical model represents a family of probability distributions over a set of 

random variables in terms of a directed or undirected graph (Jordan, 2004). These models 

harness the power of both probability theory and graph theory to offer a principled 

approach to dealing with uncertainty and complexity (Koller et al., 2007). In addition, 

they help reduce intricate systems with many interacting variables into smaller modules 

that are easier for humans to visualize and comprehend. A CGM consists of a graph that 

is both directed and acyclic, i.e. a directed acyclic graph (DAG). The former means that 

any edge between any two nodes is unidirectional (  or ). The latter means that no 

path starting at a node can lead back to it.  

Definition 2.3. Directed Acyclic Graph (DAG). A DAG (Figure 2.1) is a graphical 

representation of variable relations within a system. Each node in the graph represents a 

system variable and each edge in the graph is unidirectional such that any edge from node 

 to node  means that  is a direct cause of . Acyclicity means that the graph can not 

contain any cycles; a path starting at a node cannot lead back to it. 

Pa(vi)

→ ←

x y x y
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Figure 1 

  

Note: A directed acyclic graph (DAG) over three variables.  is a direct cause of both  

and ,  is a direct cause of . Note that there are no cycles in this graph. 

Let  be a graphical model such that  represents a set of nodes or vertices in 

the graph and  is the set of directed edges connecting the members of . An edge 

  from  to  such that  implies that  is a direct cause 

of  respectively. The distribution is considered Markovian with respect to the graph, 

meaning that any conditional independencies the graph encodes can be verified by the 

joint probability distribution of the observations, which can thus be factorized as follows:   

 ,  

where  is the cardinality of the set . Equation 3 represents the factorized 

representation of the probability distribution entailed by the causal relations encoded in 

the graph. In other words, the joint probability distribution can be written as the product 

of the probability of each variable given its parents.  

vi vj

vk vj vk

𝒢 = (𝒱, ℰ) 𝒱

ℰ 𝒱

ei, j ∈ ℰ vi vj {vi ∈ 𝒱, vj ∈ 𝒱 | i ≠ j} vi

vj

p(v1, . . . , vn) =
i=n

∏
i=1

p(vi |Pa(vi))

n 𝒱

9



A Causal Approach to Assess Student Competence

Definition 2.4. Conditional Independence. Two variables  and  are conditionally 

independent given  iff  

  

Definition 2.5. Markov Condition. Given a DAG  and a joint distribution  over , 

then  is said to be Markovian w.r.t.  iff,  

   

 .  

In other words, any conditional independencies found in the DAG must also be present in 

the observational distribution. In addition, the distribution is assumed to be faithful to the 

DAG such that any conditional independencies found in the data can be verified by the 

causal connections in the graph.  

Definition 2.6. Faithfulness. Given a DAG  and a joint distribution  over , then  

is said to be faithful to the DAG  iff the conditional independencies in the distribution 

are also encoded in the DAG,     

 .  

With such causal models, we can answer both associational and interventional questions 

using the joint distribution and the graphical model.  

vi vj

vk

P(vi |vj, vk) = P(vi |vk)

𝒢 P 𝒱

𝒢 𝒱

vk ⊥⊥ 𝒢 vj |vi ⟹ vk ⊥⊥ P vj |vi

𝒢 P 𝒱 P

𝒢

vk ⊥⊥ P vj |vi ⟹ vk ⊥⊥ 𝒢 vj |vi
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Chapter 3. 

3. Causal Discovery in i.i.d. Data 

 ‘Data are profoundly dumb’ (Pearl et al., 2018). Data does not give any indication 

of the generating process. Any meaningful or overarching insights can only be drawn 

from a causal model. A large body of continuously-evolving research is dedicated to 

discovering causal models from data. Most causal discovery methods are implemented 

under the assumption that the data is independent and identically distributed (i.i.d) i.e. 

each observation is drawn independently from the same or different samples governed by 

the same probability distribution. Such a stringent assumption does not produce robust 

models deployed on real-world data. Data obtained from different environments will 

automatically nullify the validity of a model since they violate the above assumption. The 

most prolific approaches that will help either model from the previous section fall under 

two main categories:  

- Constraint-based methods 

- Score-based methods 

Constraint-based methods leverage conditional independencies in the data to return a 

family of applicable graphs up to a certain equivalence class (see definition 3.1), whereas 

score-based methods leverage a goodness-of-fit approach by scoring learned parametric 

models. 

11
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3.1 Constraint-Based Methods 

These methods exploit the conditional independencies that are found in the data. They 

typically begin with node pairs  and test whether node subsets

 d-separate , where d-separation is defined below. 

Definition 3.0. d-separation. Two nodes  and  are said to be d-separated or blocked 

by a node  iff  lies on a path between  and , such that ,  and  form a chain or 

fork, as shown in Figure 3.1. 

If such a set exists, then  are not adjacent in . Otherwise, they are connected by 

an edge. A skeleton graph with undirected edges manifests from these adjacency lists. 

The direction of each edge is then determined by looking for colliders in the graph. For 

instance, if  and  belong to the adjacency list then  exists in the 

skeleton graph. If  then  is a node that d-connects  (Figure 3.1.c). By 

repeating this process, corresponding subgraphs that comprise  will emerge. These 

methods also assume that the distribution is faithful to the DAG. Three underlying 

subgraphs of interest are chains, forks and colliders.   

Figure 2 

             

Note: The graphical representation of (a) a chain (b) fork and (c) collider  

(vj, vk)

v = {vi ∈ 𝒱 ∖ {vj, vk}} (vj, vk)

vj vk

vi vi vj vk vi vj vk

vi and vj 𝒢

(vi, vj) (vi, vk) vj − vi − vk

vi ∉ v vi (vj, vk)

𝒢

12
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In chains and forks, all node pairs  are likely dependent (Pearl 

2009a). Variable  is said to d-separate , since upon learning ,   

become independent. Therefore, both graphical representations, chains and forks, encode 

the same conditional independencies in the distribution  and are said to belong to the 

same equivalence class.  

Definition 3.1. Equivalence Class. Two graphs  and  are said 

to belong to the same equivalence class if all conditional independencies 

 found in  are also found in  . 

Colliders play a slightly different role. Variables that are seemingly independent, since 

they do not share a common cause, nor do they directly or indirectly cause one another, 

become dependent in the presence of a known common effect (Pearl 2009a). 

These methods suffer from their inability to scale as the space of candidate DAGs 

increases since they require conditional independency tests for all permutations of all 

node triples in the graph. Hence, the time complexity is exponential in the number of 

nodes. Several methods such as inductive causality (IC) (Pearl, 2009b), Peter-Clark (PC) 

algorithm (Spirtes et al., 2000), fast causal inference (FCI)  algorithm (Colombo et al., 

2012) and several others have been proposed for this task with the attempt to mitigate the 

scalability issue. In addition, the conditional independency tests can be unreliable as they 

depend on the type of data (discrete or continuous) and sample size.  

3.2 Score Based Methods 

These methods attempt to learn a set of causal graphs  by learning a set of 

parameters   for structural equations . However, the model class for the structural 

equations is restricted first. For instance, in most cases, the equations are assumed to be 

linear, and the noise is additive and follows a standard normal distribution, i.e. . 

{(vi, vj), (vi, vk), (vi, vk)}

vi vj and vk vi vj and vk

P

𝒢 = (𝒱, ℰ) 𝒢′ = (𝒱′ , ℰ′ )

p(vi, vj |vk) = p(vi |vk) p(vj |vk) 𝒢 𝒢′ ∀vi, vj, vk ∈ 𝒱, 𝒱′ 

{𝒢i}

θ F

∼ 𝒩(0,1)

13
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Corresponding graphs are read from the equations and the goodness of fit is determined 

using a scoring function. The most popular scoring is the Bayesian Information Criterion 

(BIC), which takes into consideration the parameters  of the structural equations, the 

chosen graph , the data , the cardinality of  and sample size , which is given by: 

   (7) 

However, such methods suffer from several issues. For one, the number of potential 

graphs is exponential in the number of variables. Greedy methods have been introduced 

to mitigate this issue by narrowing down the search space. Once a candidate graph has 

been scored, neighbouring graphs are then scored to see if any have a higher score than 

the current candidate. If so, the search moves on to a higher-scoring graph, and in turn, its 

neighbours are tested. Second, choosing an appropriate scoring function can be difficult. 

Third, restricting the model to a specific class can produce unreliable or inconclusive 

results. For instance, variable relations may be non-linear or the noise terms might follow 

a non-Gaussian distribution.  

̂θ

𝒢 𝒟 𝒱 n

S(𝒟, 𝒢) = logP(𝒟 | ̂θ, 𝒢) −
|𝒱 | log n

2
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Chapter 4. 

4. Causal Discovery in Time Series Data 

 The approaches in the previous chapter apply to statically collected data. Unlike 

statically collected data, data collected at both regular or irregular time steps offers a 

unique ability to capture the dynamics of any one variable over time. Causal discovery in 

time series data, at least intuitively, seems more advantageous than causal discovery in 

static data since it offers a time ordering for observations (Peters et al. 2017). A large 

body of research has been dedicated to causal discovery in time series data from both 

linear and non-linear systems. Many approaches and variations thereof have been 

adopted to dismantle these relations. We divide these approaches into two broad 

categories: methods for stochastic systems and methods for deterministic systems. In 

contrast to stochastic systems, deterministic systems are not separable, meaning they can 

not be broken down into a sum of parts. Information from the driver system will surely be 

contained in the driven system. Although a prevalent amount of research has been and is 

still being dedicated to causal discovery in stochastic processes, there has been a growing 

interest and desire to disentangle causal relations in deterministic systems. 

4.1 Causal Discovery in Stochastic Systems 

4.1.1 Granger Causality 

 Granger (Granger 1969) used predictability, not correlation (Sugihara et al., 2012) 

to see if one variable is causal to another. Let  and  

be two time series that are realizations of stochastic processes  and  , respectively, and 

X = {x1, x2, . . , xt} Y = {y1, y2, . . , yt}

Xt Yt
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 account for all the relevant information in the universe up to and including 

time . Granger’s method states that  is causal to  if the inclusion of past values of 

 reduces the error in predicting  at time : 

 , (8) 

where  denotes the variance in the prediction of . In the above equation, the variance in 

the prediction of  when past values of  are included is compared to the variance in the 

prediction of  when past values of both  and  are used. In the language of conditional 

independence, we check to see if  is independent of  given : 

In other words, if past values of  up to a certain time lag   improve the 

predictability of  by producing smaller variance , then  Granger causes . Granger 

argued that  must play a mechanistic role in generating  otherwise, it would not 

improve its prediction (Shojaie et al. 2022).  

Granger’s Method  

 A common approach in time series analysis is first to find a suitable way to model 

the series. Linear vector autoregressive (AR) models are a popular choice: 

   (9)    

  (10) 

where  are autoregressive coefficients.  and 

 are the order of the autoregressive models indicating the number of past values 

required to obtain a reasonable prediction of  and  respectively. The choice of   and  

I = (X, Y )

t − 1 X Y

X y t

σ (yt |yt−τ, xt−τ) < σ (yt |yt−τ)

σ yt

yt y

yt y x

Y Xpast Ypast

x τ {xt−k}k=τ
k=1

yt σ X Y

X Y

A R(n) : xt = ϵxt +
i=n

∑
i=1

aixt−i

A R(m) : yt = ϵyt +
i=m

∑
i=1

biyt−i

{ai, bj ∈ ℝ |n , m > 0, i ∈ [1,n], j ∈ [1,m]} n

m

xt yt n m
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is not an easy task, but a simple approach is to begin at  and move 

incrementally to a max value  and see which value of  produces the smallest prediction 

error. The error terms  and  are chosen as white noise Gaussian processes with mean 

 and . There is no correlation between the error terms and therefore 

 and .  

Granger argues that if  is causal to  then the inclusion of some past values of  will 

improve the prediction of . The new model for  becomes: 

  (11) 

If  is not causal to  then  and thus . Granger assumes that there are 

no instantaneous effects i.e. . In addition, process  and process  must be 

weakly stationary. This means that: 

• The means  and  are independent of time i.e.    and   

• The autocorrelation i.e. the relationship between two points in the series is 

independent of  and only depends on time lag  :   and 

. You can think of autocorrelation as the rate of change of  

with time  

• Linearity. Each data point can be written as a weighted linear combination of its 

predecessors up to a certain time lag (autoregressive model)  

• The cause always proceeds the effect 

Such assumptions will allow a range of mathematical and statistical tools to be used in 

the analysis (Granger et al., 2015). Stationarity is a very important assumption since we 

are stipulating that the process maintains a statistical equilibrium: if  causally effects 

 then  causally effects . If the process is not stationary, several techniques, 

such as differencing, can be used to de-trend the process (Brockwell & Davis, 2009). 

n = m = 1

τ′ τ

ϵyt ϵxt

μϵxt = 0 μϵyt = 0

E[ϵxt, ϵx(t−k)] = 0 E[ϵyt, ϵy(t−k)] = 0

X Y X

Y yt

̂yt = ̂ϵyt +
k=τ

∑
k=1

ak yt−k + bk xt−k

X Y bk = 0 ∀k ̂ϵyt ≥ ϵyt

k can not be 0 X Y

μxt μyt ∀t μxt = μx μyt = μy

t τ E[xt, xt−τ] = γx(τ)

E[yt, yt−τ] = γy(τ) x and y

t

xt−k

yt xt+m−k yt+m
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Granger’s method and its variations are still one of the most prolific methods for causal 

discovery in stochastic systems. However, its application is not pragmatic in many real-

world problems. Non-linear systems, latent variables, systems with confounding 

variables and those that are not separable are all excluded from its realm of applicability.  

4.1.2 Transfer Entropy 

 Transfer Entropy (Schreiber 2000) is an information theoretical approach that is 

analogous to Granger’s method. However, it is not restricted to linear systems with 

Gaussian errors. It is based on Claude Shannon’s method of quantifying the amount of 

uncertainty contained in a random variable marginally or when conditioned on the 

observance of another variable (Shannon, 1948). Instead of comparing the variances, this 

method relies on comparing the amount of uncertainty in  in the presence of . It aims 

to quantify the information exchange between subsystems  and . This transfer of 

information is measured by computing the joint entropy of  and  conditioned on any 

mutual information between both variables. 

  and  define the average 

amount of information contained in  and  over all possible realizations of both  and  

respectively. 

 defines the average amount of information contained in  

once conditioned on  where  is the joint entropy or amount of information 

contained in  and  together: 

. 

In other words, the conditional entropy gives the amount of uncertainty left in  in the 

presence of . 

Y X

X Y

X Y

H(X ) = − ∑
x

p(x) log p(x) H(Y ) = − ∑
y

p(y) log p(y)

X Y X Y

H(Y |X ) = H(X, Y ) − H(Y ) Y

X H(X, Y )

X Y

H(X, Y ) = − ∑
x

∑
y

p(x, y) log p(x, y)

Y

X
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Then, the amount of information transferred from  to  up to a certain time lag  is 

given by: 

   (12) 

Intuitively, if there is a lot of information transfer from  to  then the amount of 

uncertainty in  is reduced in the presence of . Thus the quantity in the minuend should 

be larger than that in the subtrahend. 

4.2 Causal Discovery in Deterministic Systems 

4.2.1 Convergent Cross Mappings 

 Many real-world systems suffer from inconsistent correlations or mirage 

correlations (Sugihara et al., 2012). A mirage correlation is a correlation that fluctuates in 

time between positive, negative or none at all. An old aphorism in statistics, “correlation 

does not imply causation,” will always ring true; however, visualizations play a critical 

first step in data analysis, nonetheless, causal discovery. Sugihara argued that such 

contradictory findings are a hallmark of non-linear complex systems and any casual 

discovery method that relies, even partially, on correlations may not be reliable.  

The underlying premise of Convergent Cross Mappings (CCM) is that the interactions 

within the system are governed by an underlying dynamical system. In other words, we 

are dealing with a deterministic continuous or discrete time system. A continuous time 

dynamical system can be defined by a set of ordinary differential equations that relate the 

rate of change of a variable to any system variables that influence it. For instance, in a 

system consisting of two variables  and , the instantaneous rate of change of each 

variable can be written as a function of all influencing variables: 

X Y τ

TX→Y = H(Yt |Yt−τ) − H(Yt |Yt−k , Xt−τ)

X Y

Y X

x y
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  (13) 

Or, in the discrete case, an iterative map can be used to describe the state of the system at 

times  : 

  (14) 

Where  and  in both systems can be linear or non-linear functions.  

If X is not causal to Y then  i.e.  does not play a role in determining the 

next value or the change in .  

CCM is grounded in Takens embedding theorem (Takens, 1981). Takens theorem states 

that if a system has an attractor, then the dynamics of the full phase space can be 

reconstructed from a single time series from the system (Strogatz, 1995). In other words, 

all information in the system could potentially be recovered from observations of a single 

variable, given that the system is coupled. Using just the observations of a single variable 

and an appropriate embedding dimension  and time delay , we can construct a shadow 

manifold  that is topologically equivalent to the original system manifold . A 

manifold is a topological space that geometrically describes the state of the system. It 

consists of the set of all trajectories of the system. For instance, in a bivariate system, it 

consists of the set  for some initial state . 

Topologically equivalent means there is a one to one mapping between the shadow and 

the true manifold. A single time series can be viewed as a projection of the manifold on to 

its coordinate axis thus allowing us to reverse engineer the manifold by using time delays 

d x
dt

= fx(x, y)

dy
dt

= fy(x, y)

t

x (t) = fx(x (t − 1), y(t − 1))
y(t) = fy(x (t − 1), y(t − 1))

fx fy

fy(x, y) ≡ fy(y) x

y

d τ

Mx M

{(x (t), y(t)) as t → ∞} (x (0), y(0))
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of the observed time series. As such properties of the original manifold can be derived 

from the properties of its reconstructed shadow. 

Similarly, the same can be done with . Sugihara argued that if  is causal to , then  

contains unique information about  that can only be relayed via . Neighbouring points 

in the shadow manifold  around time  must have a corresponding neighbourhood in 

.  

Let  and  be the shadow manifold of the true manifold . Without any information 

about the system dynamics, we attempt to build a shadow manifold from time series  

and time series : 

  (15) 

Four different plausible causal relations can exist within a simple bivariate system: 

, , , . As a result, there are four different sets of governing 

equations assuming the system’s evolution is in continuous time (Figure. 2). 

If a variable is causal to another, then the variable appears in the differential equation of 

that variable (Sugihara et al., 2012; Rubenstein et al., 2016; Bellot et al., 2021). 

Figure 3 

           

 (a)   (b)   (c)   (d) 

Note: (a) If we have feedback between  and  then  is causal to  and  is causal to . 

This is a coupled system. (b)  is causal to  but not vice versa. (c)  is causal to  but 

not vice versa. (d) No causal relation between  and . 

Y X Y My

X Y

My t

Mx

Mx My M

X

Y

Mx = [x (t), x (t − τ), x (t − 2τ), . . , x (t − (m − 1)τ)]
My = [y(t), y(t − τ), y(t − 2τ), . . , y(t − (m − 1)τ)]

X → Y X ← Y X ⟷ Y X Y

dx
dt = fx(x , y)
dy
dt = fy(x , y)

dx
dt = fx(x)
dy
dt = fy(x , y)

dx
dt = fx(x , y)
dy
dt = fy(y)

dx
dt = fx(x)
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dt = fy(y)

X Y X Y Y X

X Y Y X

X Y
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Longer time series will provide denser neighbourhoods and, thus, eventual convergence. 

If  is causal to  then there is a 1-1 mapping from every neighbourhood in  to a 

neighbourhood in . The converse is not true unless  is also causal to . If  is not 

causal to  then the mapping is from  to  would be more sparse. The stronger the 

coupling in either direction, the denser the neighbourhood will be (Harnack et al., 2017). 

CCM works best with weakly coupled dynamical systems. In strongly coupled systems, it 

is hard to distinguish between cause and effect.  

4.2.2 Causal Kinetic Models 

Much of the longitudinal data that is collected from different environments in various 

disciplines tends to belong to an underlying kinetic system. Learning the structure of such 

systems is important in order to conduct various inference tasks (Pfister et al., 2019). 

Some of the most prolific approaches include learning the underlying ODEs in a data-

driven way when feasible and tractable. However, in many situations, this may not be 

possible when the system is complex or high dimensional, rendering the space and time 

complexity high. Given a d-dimensional system , Pfister et al. 

propose a new framework CausalKinetiX, that learns a set of models  for each variable 

 by sourcing the data from different environments (Pfister et al., 2019). 

Simulation of different environments is done by taking a known system and intervening 

on it by either changing the initial conditions or fixing a variable to a certain value. In 

real world systems without a known underlying model, this can be done by sampling data 

from different environments having disparate data distributions. Then, a stable model that 

lies at the intersection of all generated models is chosen. A stable model is one that 

contains covariates that persist across models in  and maintain reasonable predictive 

power. Also, by learning a model for one variable at a time, they reduce the 

X Y My

Mx Y X Y

X Mx My

X = {X1, X2, . . , Xd}

Mi

Xi | i ∈ [1,d ]

Mi
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computational complexity significantly. These models strictly deal with discrete time 

dynamical systems. 

Causal Kinetic Models (Peters et al., 2022) were proposed to address the need for causal 

discovery techniques in continuous time dynamical systems. These models are closely 

related and can be thought of as an extension of Structural Causal Models. Since 

interventions are a key method for inferring causality, Peters et al. lay the road map for 

the type of interventions that can be performed in such systems, such as intervening on 

the initial value, fixing the rate of change or setting a variable to a specific value. They 

also account for any stochasticity in such systems in the form of either additive or driving 

noise. In terms of interpretability, systems defined by a set of ODEs are the gold standard 

(Schölkopf, 2019; Schölkopf et al., 2021). They offer the granularity that is necessary to 

understand not only the evolution of each variable but also the invariant mechanisms that 

generate the phase space. Consider a multivariate d-dimensional process 

 governed by a set of ordinary differential equations: 

   (17) 

With corresponding initial values  where  

is the time derivative of  at time . Unlike structural causal models,  can be in the set 

of parents  of . The existence and uniqueness of a solution of the initial value 

problem is assumed and required. Since the initial values are not known and therefore 

may be chosen at random, this induces a probability distribution over the . As 

mentioned before, noise can be additive: 

Xt = {x1
t , x2

t , . . . , xd
t }

d x1
t

dt
= fx1(Pa(x1

t ))

:
:

d xd
t

dt
= fxd(Pa(xd

t ))

{x1(0) = η1, x2(0) = η2, . . . , xd(0) = ηd}
d xd

t

dt

xd t xd

Pa(xd) xd

X
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  (18) 

Where  is the observed value of  at time  and  is the true value. Or the noise can be a 

system driver: 

  (19) 

However, such systems are considered to be stochastic.  

̂xt = xt + ϵt

̂xt x t xt

d x1
t

dt
= fx1(Pa(x1

t )) + ϵ1
t

:
:

d xd
t

dt
= fxd(Pa(xd

t )) + ϵd
t
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Chapter 5. 

5. Learning Analytics in Computer Science 

Education 

 In Chapters 2, 3 and 4, we discussed the benefits of establishing a causal model in 

contrast to a statistical or machine learning one and how these models can be built using 

various causal discovery techniques. In this Chapter, we discuss the area in which we 

apply these techniques and the reasoning behind them. 

 With the advent of online learning platforms and the prevalent use of learning 

management systems, the accumulation of learner data has become commonplace. The 

collection and analysis of such data for the purpose of improving student learning and 

experience is referred to as learning analytics (Baker et al., 2014). Such data can be 

analyzed to understand learner behaviour and gain insight into the intricacy of the 

learning process in order to offer learners tailored recommendations and interventions 

which will ultimately improve learning (Hundhausen et al., 2017).  

 Computer science (CS) is a fairly new science in comparison to other sciences. 

There are not any true and tested ways for best practices when it comes to delivery. For 

instance, in mathematics, the mantra ‘drill and kill’ has been a long-standing approach to 

cementing certain concepts and maximizing knowledge retention. However, in CS, 

students usually begin their post-secondary journey with little pre-existing knowledge 

about computer languages, algorithm writing and, not to mention, best practices. As a 

result, the learning curve is steep and students are left with the difficult task of balancing 

between understanding theoretical components and learning the lexical structure of a new 

programming language and proper application. 
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To offset the material overload, CS students spend a significant portion of the term in the 

laboratory working on different assignments that are meant to bridge the gap between 

theory and application. This gives students an opportunity to apply what they are learning 

in creative ways by using a combination of problem-solving skills and the available 

language library and constructs. The solution space can grow exponentially since there 

are multiple pathways to a functional program. However, a functioning program does not 

necessitate robustness or optimality as a precursor nor does it guarantee either as an 

outcome. Once a student is able to produce the expected output little attention is paid to 

the quality of the written code (Keuning et al., 2017). Students spend a considerable 

amount of time trying to produce syntactically and semantically correct programs while 

paying little attention to best practices (Dietz et al., 2018). Such practices are necessary in 

industry where projects are more complex and multifaceted and the outcome should 

possess attributes such as reasonable complexity, maintainability, extendibility and 

security. These characteristics are the hallmark of quality-code and are all standard 

industry goals during the software development process. The ideal place to learn and 

apply such practices is in the laboratory either from the instructor or from the 

development environment. However, it is unfeasible for an instructor to provide such 

feedback in a timely fashion as the number of students increases and the solution space 

grows. Feedback might come after grading, however this can be problematic since it may 

not come in time before the next assignment and even then the instructor may be 

oblivious to all flaws that are present due to the intricate nature of a given program. The 

alternative would be to exploit the development environment for instant feedback so that 

students ascertain these best practices as quickly as possible and begin to use them 

effectively.  

5.1 Integrated Development Environments  

 In CS education, there is growing interest in understanding learner behaviour, 

improving success rates and producing industry-ready programmers. Since students use 
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an integrated development environment (IDE) for their programming tasks and 

consequently spend a lot of time in the development environment, a rich body of learner 

data can be inconspicuously collected and leveraged to understand the coding process. 

Therefore, for CS students, there is no better place than the IDE to collect leaner data 

(Hundhausen et al., 2017). An IDE is a software application with an extensive amount of 

user-support and features where programmers can write, debug and test their code. They 

are intended to simplify the development process and offer programmers real-time 

feedback. In computer programming courses, students spend a copious amount of time in 

the IDE working on different applications and programming assignments. As such, much 

of the learning takes place in the IDE as it provides the means to apply what is learned in 

the classroom, making it an ideal candidate to monitor student activity and progress at a 

granular level. This means that, at relevant time steps, important attributes such as the 

number of lines of code, compilation errors and code deficiencies can be recorded. The 

dynamic collection of such data offers a unique insight into student practices and sheds 

light on the learning process as a whole. 

 While the main reason to use an IDE as opposed to a command line interface 

(CLI) is to streamline the development process, IDEs can also be extended through a 

standalone independent plug-in component. For instance, a broad range of information 

might be of interest, so a snapshot of the code alongside other features can be uploaded 

automatically via a version control system such as GitHub at regular or irregular time 

intervals. The data can be analyzed, and the text can be parsed to build a learning model. 

Then, the model can be used to create tailored features for coordinated interventions 

during the coding process. Consequently, IDEs can be instrumented to help students 

develop the necessary competency skills in order to ensure seamless migration into 

industry. 
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5.2 Assessing Student Competency  

 One way to assess a student’s competency is to examine the quality of the source 

code the student writes. Quality code is imperative in both academia and industry. As a 

computer program’s objectives grow and program length increases, the issues with low-

quality code become more apparent as it reduces the ability to scale a project and 

maintain it (Dietz et al., 2018). Its relevance in industry is considerably higher since 

budget and understandability among teams of developers are at stake (Östlund et al., 

2023; Kirk et al., 2020). Source code metrics such as number of lines of code and other 

characteristics such as readability, maintainability, extendability and security are often 

used to measure and assess the quality of code. A visual inspection of the code by a 

human examiner doesn’t always uncover any violations of these criteria due to the 

intricacy and length of a given program. Consequently ed, IDEs are often instrumented to 

uncover any ineptness in the code in the form of competency violations. Not only can the 

IDE point to the issue, it can also provide students with consistent, uniform and timely 

feedback on the issue. As a result, a student can learn about an issue, why it is occurring 

and how it can be fixed.   
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Chapter 6. 

6. A Coding Process 

 In order to effectively study and apply causal discovery techniques to data 

collected from an IDE, a set of mathematical definitions must be carefully curated. This 

will allow the construction of robust models that can be studied from a theoretical 

standpoint and facilitate inference tasks.  

Assumptions 

 Data is committed (saved) to a version control system (VCS) at different 

timestamps. Several variables of interest can be the target of each timestamp, such as 

lines of code (LOC), number of issues and type of issue. In addition, another timeline can 

simultaneously exist where each timestamp registers whether the student consulted the 

system for feedback or not. Other consults, such as interactions with a lab instructor and 

the duration of that interaction, can be manually committed.  

Definitions 

Definition 6.0. Commit Timeline. Let  be a sequence of times where  

for . Furthermore,  represents the first timestamp at which the code was committed 

to the VCS and  is the last timestamp the code was committed to the VCS. 

Definition 6.1. System-Consult Timeline. Let  be a sequence of times 

where  for . Furthermore,  represents the first timestamp at which the 

T′ = {t′ i}i=n
i=1 t′ i < t′ j

i < j t′ 1

t′ n

T′ ′ = {t′ ′ i }i=m
i=1

t′ ′ i < t′ ′ j i < j t′ ′ 1
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student consulted the system for feedback and  is the last timestamp at which the 

student consulted the system for feedback. 

Definition 6.2. System Timeline. This is an amalgamated timeline of the commit 

timeline and the system-consult timeline. Let  represent the system timeline such that 

 where .  

Definition 6.3. System Variable. A system variable is any variable that is tracked and 

registered by the IDE during the course of writing a computer program.  

Definition 6.4. Coding Process. The coding process is the process of working on a 

programming task from time  to time . Then, the lifetime of a 

coding process is the time interval . The coding process entails one or more 

stochastic processes. 

Let  be a coding process defined by a multivariate stochastic process  and 

a set of interventions  that are indexed by time and can be performed on the coding 

process over the course of the coding lifetime and a set of states , also indexed by times 

that are reached by the system over the lifetime of the coding process. 

Let  such that  for  is a collection of random 

variables pertaining to a single system variable indexed by time . Each  process is 

representative of a variable of interest during the coding process. For instance, variables 

such as LOC, number of issues in code, human consults and system consults each 

represent a stochastic process belonging to . 

Let  be the set of all interventions done on the system such that  

 where  and  is a constant value that  is set to and  is 

the vector of assignments that are carried out at time . In other words, at time , one or 

more assignments  are done on one or more system variables. All other variables 

t′ ′ m

T

T = {T′ ∪ T′ ′ } T′ ∪ T′ ′ = {t | t ∈ T′ ∨ t ∈ T′ ′ }
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at time  remain the same. For instance, if  represents consults and at time  the 

student is forced to consult (a tutor or the system), then the assignment  is carried 

out where  and the remaining system variables at time  remain untouched 

rendering . Here  means the student consulted at  and  otherwise. 

Then,  can be characterized as a perturbation of the system either in the form of help 

from a human tutor or a system consult where the student engages with either the human 

tutor or the system to understand what the issue is and how to fix it.  

 is a set of states that the system passes through during the coding process.  

where  is the number of states the system reaches over the coding lifetime and  is the 

number of system variables, then: 

. 

The rows of matrix  represent the different states of the system over the coding lifetime 

such that  represents the state of the system at time . 

Note that if there are no forced interventions, then: 

. 

This means that  is a pure manifestation of the observational data. 

At time  , all system variables are set to  and  is the last recorded timestamp 

of each series.  

Specific to the analysis conducted in Chapter 7, three processes were noted throughout: 

LOC, issues and consults. This, in turn, is a 3-dimensional system ( ).  
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Definition 6.5. LOC Time Series. If the stochastic process  defines lines of code 

(LOC), then the LOC time series is a realization of this stochastic process. Let  be 

a collection of random variables over time  where  and  is the number of lines of 

code in the program at time . 

Definition 6.6. Issues Time Series. If the stochastic process  defines the number of 

issues in the code, then the issues time series is a realization of this stochastic process. 

Let  be a collection of random variables over time  where  and  is the 

number of issues in the code at time .  

Definition 6.7. Consult Time Series. If the stochastic process  defines student 

consults, then the consult time series is a realization of this stochastic process. Let 

 be a collection of random variables over time where  and  

where  indicates that the system was consulted at time  for feedback and  otherwise. It 

is worth mentioning that,  can also be registered as a duration as opposed to a binary 

value. This duration is the time in seconds the students spends interacting with the system 

to understand and rectify an issue.  
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t
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t }t=tn
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Chapter 7. 

7. Application of Causal Discovery Methods in 

IDE Data 
 In this chapter, we apply an appropriate causal discovery method on data collected 

from an IDE. In section 7.1 we discuss the data and its source. In section 7.2 we present 

our research question and in section 7.3-7.6 we discuss the applicable methods used and 

the results obtained from applying each method. We leave a detailed discussion for 

Chapter 8 and a list of recommendations for Chapter 9.  

7.1 Data Source  

 The data was collected in a study done at a Canadian University in 2017 

(Boulanger et al., 2017). The study was conducted as a randomized controlled trial where 

students were randomly selected from a Java programming course to participate. A total 

of  participants accepted the invite and were randomly assigned to the control or 

experimental group. All students were given three programming tasks that would take 

approximately five hours to complete. However, there was no restriction on when the 

tasks should be finalized. Consequently, tasks were completed in a range of  

days for the control group and  days for the experimental group. The coding 

activities for both groups were tracked in the IDE through a series of commits, either 

manual (by the user) or automatic (by the system), to a version control system (VCS). A 

commit is the act of saving the current version of the code plus any other features to a 

VCS. However, the origin of the commit and when exactly it would happen were not 

clear from the data. With each commit, various variables of interest were registered 

(Table 7.1). This, in turn, generated a timeline for each student where, at each timestamp, 

several variables of interest were saved to the VCS (see definition 6.0). In addition, 

students were given a short quiz prior to running the experiment to determine their 

110

(4 − 141)

(7 − 190)
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respective coding levels and, as a result, assigned an appropriate task based on skill level. 

Students were also asked to report their ‘perceived’ coding level. We call the former ‘task 

level’ and the latter ‘reported level.’ 

For the experimental group, the IDE was extended with a plugin that would offer students 

real-time feedback on issues in their code. This, in turn, generated a new timeline where 

each timestamp represented when a student consulted the system for feedback (see 

definition 6.1). In total,  competence criteria were measured in the code (Table 7.2) 

(Boulanger et al., 2017). Each measurement was determined by a set of (10-30) rules for 

each competence measure. If the student was in violation of any of those rules in her 

code, the system would alert her of the competence measure and the rule within that is 

violated. Through a simple click, a student can see the competence measure that was 

violated, read about it and learn how to fix it.      

Table 1 

Name and Description of variables that were tracked in the study 

12

Variable Name Description Source Group

Coding 
(Commit) 
Timestamp

Unix timestamp at which the code 
was captured

VCS Experimental/
Control

LOC Lines of code at a given timestamp VCS Experimental/
Control

Issues Number of issues at a given 
timestamp 

VCS Experimental/
Control

*Consult 
Timestamp

Unix timestamp at which a student 
engages the system for feedback

VCS Experimental 

Consult 
Category

Type of consult VCS Experimental

Consult Action Type of issue found in the code VCS Experimental

Task Level Determined task level after the 
student took a short quiz

Quiz Experimental/
Control

Reported 
Level

A students self-perceived coding 
ability

Survey Experimental/
Control
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Table 2 

Competence criteria that were used to assess the code 

Competence Goal Explanation

Clarity Code that is easy to read and understand in terms of 
syntax; avoids use of ambiguous functions or confusing 
function/class names.  

Cleanliness Code that contains only those lines of code needed to do 
an assigned task (e.g. no unused variables, methods, and 
classes; no commented blocks or lines of code).  

Conciseness Code that avoids verbosity and redundancy. A program is 
considered concise that accomplishes as much as 
possible in the fewest lines of code. Examples of non-
concise code include duplicate lines of code, calls to 
different functions that basically do the same action, 
redundant casts, etc.  

Efficient Multi-Threading Code that properly uses multi-threading techniques such 
as threads, run methods, locks, synchronization, etc.  

Follows Standards Code that uses proper formatting, white-space, naming 
conventions for variables, methods, and classes, 
conventional method signatures, etc.  

Good Practices Code that adheres to a set of Java-specific “best coding 
practices” which dictate how certain Java classes and 
methods should or should not be used and in what 
context. These include: method overriding, use of 
threads, null checking, method return types and how to 
use them, etc. 

Performance Code that only uses those methods, classes and concepts 
that are absolutely needed to solve a problem (e.g. uses 
proper types to store different types of data, has methods 
returning only required data, etc.). 

Proper Error-Handling Code that uses proper Java constructs to handle errors 
that are or may have been thrown by the program. 
Relates to try/catch/finally, exceptions, etc. 

Proper Java8 Concept Use Code that makes proper use of Java8-specific features 
like lambdas, anonymous classes, try-with-resources, the 
Optional class, etc. 
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At the end of the study, a total of  usable datasets remained,  of which were 

from the control group and  from the experimental group. 

7.2 Research Question 

 Our goal was to determine whether there was a direct causal link between system 

consults and the number of issues present in the code once the student finished the coding 

task. Did we see competence growth in the experimental group over time? By 

competence growth, we mean, did we see a reduction in issues defined in Table 7.2 at the 

end of the coding process? 

7.3 Methodology 

 Due to the nature of the data, the problem was approached in two different ways: 

statically and dynamically. For the former, the data was considered as a whole, where a 

single value for each student was calculated for each of the recorded variables. This 

approach utilizes both the experimental approach (RCT) to causal discovery and Pearl’s 

Reliability Code that avoids possible pitfalls or bugs in the code, 
meaning items which may work now but risk causing 
issues down the road due to inherent flaw in using them 
in a certain manner (e.g. use of raw types with 
collections, use of variant “for” loop stop conditions, 
instantiating StringBuffer/StringBuilder with single 
character, etc.). 

Simplicity Code that is simple to read and understand and is 
computationally efficient (i.e. time complexity and the 
Big(O) notation). NOTE: The lower the complexity, the 
better. Examples of higher complexity include complex 
Boolean expressions, nested loops, many lines of code in 
switch statements, too many switch statements, etc. 

Well Designed Code that is properly designed conceptually, which 
includes proper use of return types, inheritance, proper 
use of constructors, proper use of the static keyword, etc. 

N = 29 16

13
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inductive causation approach, such as the constraint-based methods mentioned in Chapter 

3. For the dynamic approach, each student’s timeline was used, resulting in several time 

series’, three for each student in the experimental group: lines of code (LOC), issues and 

consults. This approach utilizes the definitions introduced in Chapter 6 and the methods 

mentioned in Chapter 4. Methods from the stochastic case, such as Granger’s method and 

transfer entropy, were used, in addition to convergent cross mappings that are found 

under the deterministic methods.  

7.3.1 Data Preprocessing 

 The registered variables served as a good starting point to gain insight into the 

coding process and understand its evolution. Each registered variable was, in turn, 

analyzed and used either directly or indirectly as part of an engineered new feature. Since 

the research questions were approached statically and dynamically, each methodology 

necessitated a different set of features. Table 7.3 provides a list of all pertinent features 

for each approach and the groups considered.  

Table 3 

List of applicable variables for each methodology 

Method Group Feature Feature Description Feature 
Type

Randomized 
Controlled 
Trial

Control/
Experimental

Number of Issues 
(NI)

Number of issues present at the end of 
the coding timeline

Raw

Issues per line 
(IPL)

The number of issues at the end of the 
coding timeline relative to the number 
of lines of code at the end of the 
coding timeline

Engineere
d

Inductive 
Causation

Experimental Number of Issues 
(NI)

Number of issues present at the end of 
the coding timeline

Raw

Lines per issue 
(LPI)

The number of lines at the end of the 
coding timeline relative to the number 
of issues at the end of the coding 
timeline.

Engineere
d
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 7.4 Randomized Controlled Trial 

 Since the data was collected from a randomized trial and such trials are the gold 

standard for causal inference, we aimed to establish causality by first comparing the 

Consult (C) The type of consult Raw

Number of 
consults (NC)

Aggregate value which is the total 
number of times the student consulted 
the system over the course of the 
coding timeline. Each time the student 
looked at an issue, read a hint or 
looked at a regulation card the system 
timestamped that specific action. Each 
timestamped action incremented 
nConsults.  

Engineere
d

Number of consult 
episodes (NCE)

Consecutive consults addressing the 
same competency are amalgamated 
into one consult

Engineere
d

ImprovementScore 
(IS)

This is measured by taking the ratio of 
the length of the unique unique list 
(one with no duplicate rules) divided 
by the length of the entire consult list. 
Eg. consult_lst = [Rule1, Rule5, Rule7, 
Rule4, Rule6, Rule5, Rule1,Rule4] and 
consult_lst_unique= [Rule1, Rule5, 
Rule7, Rule4, Rule6]. Therefore, the 
improvementScore = 5/8 = 0.6. Scores 
closer to 1 are good - meaning the 
student is learning from past mistakes 
(i.e. we do not see a lot of repetition in 
the competence rules)

Engineere
d

Granger, 
Transfer 
Entropy, 
Convergent 
Cross 
Mappings

Experimental Time stamp at which the code was 
saved or committed to the VCS

Raw

Time stamp at which a consultation 
took place

Raw

Number of issues at time t Raw

Raw0 or 1 where 1 indicates that the 
system was consulted at time  and 0 t

Lines of code (LOC) sat time t

x 2
t

t′ ′ 

x 1
t

t′ 

x 3
t
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means of both groups and then calculating the average causal effect (Figure 7.1). By 

randomization, we eliminate selection bias and any latent covariates since the groups will 

be statistically equivalent. Table 7.4 shows that the groups are relatively similar. Task 

level is synonymous to programming experience. In each group, the distribution between 

groups based on programming experience was relatively the same. 

Figure 4 

Note: (a) Difference in means (issues) between control and experimental group. (b) The 

number of issues at the end of the coding timeline for the control group. (c) The number 

of issues at the end of the coding timeline for the experimental group. The red line 

represents the average number of issues in that group (threshold). 

Table 4 

Task Distribution 

(a) (b) (c)

Task Level Group

Control Experimental 

Beginner 9 8

Intermediate 6 4

Advanced 1 1
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Note: Task distribution after randomly assigning students to the control and experimental 

group. The task level was determined after each student completed a short quiz.  

7.4.1 Difference In Means (Direct) 

 In Figure 7.1(a) we can see that the average number of issues (NI) at the end of 

the timeline was significantly higher for the control group than the experimental group. 

This is a strong indicator that the experimental group’s exposure to system consults has 

led to this difference. However, to verify that this difference is not due to chance but due 

to the treatment (system consults) that the experimental group received, a t-test was 

conducted. Let  be the null hypothesis and and  be the alternate hypothesis: 

 : difference in means in NI is due to chance 

 : difference in means in NI is due to a fundamental difference between 

groups 

In comparing the NI between both groups, the average number of issues in the control 

group ( , ) was significantly higher than that of the experimental 

group (  , ) with an average difference of 30 more issues 

( , ). Using a significance value of , we can reject the 

null hypothesis  since  and confidently state that the 

difference between the control and experimental group is not due to chance and that 

consulting the system does in fact reduce the number of issues at the end of the coding 

timeline. 

7.4.2 Difference in Means (Indirect) 

As the LOC increases, a larger number of issues will naturally manifest in the code. 

Consequently, we wanted to consider the number of lines in the code when determining 

ℋ0 ℋa

ℋ0

ℋa

μ = 55.875 σ2 = 983.98

μ = 23.62 σ2 = 524.09

t (27) = 3.197 p = 0.0035 α = 0.05

ℋ0 p = 0.0035 < α = 0.05
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the number of issues at the end of the timeline. This resulted in a normalized metric 

which is the average number of issues per line (IPL) for the group. Again, in comparing 

the average IPL, the control group had a larger mean but similar standard deviation 

( , ) to the experimental group ( , ) with an 

average of 0.045 issues more per line ( , ). In other words, 

students in the experimental group on average had to write 6 more lines of code than their 

counterparts in the control group to see an issue. Again, using a significance value of 

, we can reject the null hypothesis  since  and 

confidently state that the difference between the control and experimental group is not 

due to chance and that consulting the system does in fact reduce the number of issues at 

the end of the coding timeline even when scaled by the number of lines. 

Summary of Results 

 Students in the experimental group saw, on average, fewer issues than those in the 

control group (Table 7.5). The average causal effect, which is the difference between the 

outcome of the control and experimental group, is positive in both mean calculations. A 

positive result indicates that the number of issues (raw or normalized) was greater in the 

control group than in the experimental group. This indicates that there was a positive 

effect from consulting the system since the average number of issues in both cases was 

less for the experimental than the control group.  

μ = 0.11 σ2 = 0.0023 μ = 0.065 σ2 = 0.0065

t (27) = 2.44 p = 0.021

α = 0.05 ℋ0 p = 0.021 < α = 0.05
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Table 5 

Note: Results from the randomized controlled trial 

7.5 Causal Model Search (Static Case) 

 In this section, we begin our casual model search by considering only the 

experimental group. Among those who have access to system consults, we aimed to find 

evidence that an increase in system consults resulted in fewer issues at the end of the 

coding timeline while considering other variables in the system. This may appear to be a 

rudimentary question. However, we wanted to investigate whether students were 

passively consulting the system and not deeply contemplating the reason and the 

resolution to the issue they encountered.  

Any causal model search begins with either a causal claim or a causal discovery 

algorithm. Causal claims are based on expert or prior knowledge about variable relations 

in the system. These claims manifest themselves into a pool of potential DAGs whose 

validity can be verified using conditional independence testing or any other suitable 

method. If a DAG is not Markovian, i.e. not supported by the observational data, then it 

is discarded from the pool of DAGs.  

Control Group Experimental Group Average Causal Effect Remarks

Mean (NI) 55.875 23.62 32.255 On average, students in 
the control group saw 
32 more issues in their 
code at the end of the 
coding timeline.

Mean (IPL) 0.11 0.065 0.045 On average, students in 
the experimental group 
had 1 issues per 15 
lines of code where 
students in the control 
group had on average 
of 1 issue per 9 lines of 
code. 
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If a causal claim can not be made, an appropriate causal discovery method is chosen, 

taking into consideration the nature of the available observations. 

Figure 5 

   (a)       (b) 

Note: (a) Potential DAG with no confounding variables.  are the 

unobserved (exogenous) variables that are influencing  respectively. 

 are independent i.e.  (b) Potential DAG where  is a 

common cause. 

Causal Model (Prior Knowledge) 

 To initiate our causal model search, we began isolating variables of interest. Table 

7.3 shows all system variables, some of which were obtained directly while others were 

engineered. If an engineered variable were utilized, it would replace any variable(s) 

involved in its construction in the final model. For instance, if LPI were considered, its 

use would eliminate the number of issues (NI) and lines of code (LOC) from the final 

model.  

 Since programming tasks were assigned based on skill level, program length 

differed based on the task. As a programming task increases in length and becomes more 

UNC and ULPI

NC and L PI

UNC and ULPI UNC ⊥⊥ ULPI RL
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intricate, a student will likely encounter more issues. Therefore, lines per issue (LPI) 

were utilized instead of number of issues (NI) in order to mitigate the increase in issues 

introduced by longer programming tasks. Following this process, three variables of 

interest remained: lines per issue (LPI), number of consults (NC) and reported level (RL). 

Two potential graphs were identified, given the provided data and prior knowledge 

(Figure 7.2). The first DAG (Figure 7.2a) is a simple two-node model where we assume 

the presence of exogenous variables acting on each node but were not measured in the 

study. For instance, variables such as motivation and discipline can influence NC but they 

are unobserved. The second DAG (Figure 7.2b) is a three-node model that is an extended 

version of the two-node model. Here, we assume the presence of a common cause RL. 

The reported level can be a potential common cause since it can convey the student’s 

level of confidence and ability, thus affecting the number of times she consults and the 

number of issues she encounters.  

7.5.1 Additive Noise Models (Two-Node DAG) 

 Calculating the conditional probabilities may appear to be a good starting point. 

However, data is passive, and conditional probabilities merely tell us what the probability 

of LPI is for a subset of the data, i.e., for a specific NC value. In the language of do-

calculus (Pearl, 1995), we need to find the conditional probability of LPI when NC is 

manipulated, i.e. . If  then NC has no 

effect on LPI. For the two-node model, this would be trivial. An alternative approach for 

a bivariate system is additive noise models (ANM) (Hoyer et al., 2017). These models 

assume that the effect can be written as a function of the cause and an added noise term. 

These models fall under both constraint-based and score-based methods. They exploit 

both independence testing and function fitting. Two potential models emerge in our 

bivariate case: 

   

P(L PI |do(NC )) P(L PI |NC ) = P(L PI |do(NC ))

LPI = f (NC) + NLPI NC ⊥⊥ NLPI
NC = NNC

NC = g(LPI) + NNC L PI ⊥⊥ NNC

LPI = NLPI
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  Model (a)     Model (b) 

The functions  and  can be linear or non-linear and the noise term in each model must 

be independent of the regressor. In model (a) LPI is regressed on NC and in model (b) 

NC is regressed on LPI. In the true model, the error term from the regression equation 

must be independent of the regressor. In other words, if model (a) was the correct model, 

then  must be independent of . Similarly, if model (b) was the correct model then 

 must be independent of LPI. An independence test is done between these terms in 

each model and the one with lower degree of independence is rejected. The python 

package CDT (Kalainathan et al., 2019) was used to fit the data to an ANM. The 

algorithm returns a score on the interval  where scores on  indicate that  

causes  and otherwise.  

Summary of Results 

 If the data is truly generated by an additive noise model, then the true causal 

direction can be recovered from the data. An independence test is conducted between the 

regressor and the noise term in each model, yielding two scores (test statistics). The 

algorithm returns the difference between both scores (Table 7.6). 

Table 6 

ANM results 

A positive result indicates the true causal direction. Therefore, system consults (NC) does 

have a causal effect on lines per issues (LPI) at the end of the coding timeline. However, 

f g

NLPI NC

NNC

[−1,1] (0,1] NC

L PI

Model Causal Direction Independence Score Results

Model a

Model b L PI → NC

NC → L PI

−0.1

0.1

0.342

0.423
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since results closer to 1 are stronger indicators of causality, it would be pragmatic to 

consider these results inconclusive. This could be due to several factors. For one, 4 out of 

the 13 students did not consult the system for feedback, grossly affecting the regression 

results. Other factors, such as the use of an inappropriate model, a small dataset or 

feedback between the variables, i.e. a bidirectional edge between  and  could also 

affect model performance.  

7.5.2 Inductive Causation (Three-Node DAG) 

 For the three-node DAG (Figure 7.2b), some variables were first transformed into 

categorical (Figure 7.4). With categorical data, calculating the average causal effect 

became simple since any assumptions or predictions about the underlying distribution of 

the variables was not required. If students consulted the system more, then  is greater 

than the threshold and, therefore, has a categorical value of 1 and 0 otherwise. If students 

wrote a substantial amount of code before encountering any issues then  and 0 

otherwise. The  variable was already a categorical variable, so no transformation was 

required.  

To verify our causal claim, we performed the following conditional independence test: 

 

 By d-separation, if LPI is independent of  conditioned on RL then the reported level 

is a common cause (confounding variable). This means that even though  and  are 

dependent, knowledge of  abolishes that dependency. Conditional independence 

testing returns a family of graphs up to a certain equivalence class. The following 

subgraphs are possible: 

NC L PI

NC

LPI = 1

RL

P(NI ∩ LPI |RL) ?= P(NI |RL) P(L PI |RL)

NC

NC L PI

RL
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Figure 6 

Note: (a) fork (b) chain (c) chain 

However, the reported level is reported by the student and cannot be manipulated by the 

remaining observed variables. In other words, it is unlikely that we would see RL 

influenced by NC or LPI. Therefore, Figure (7.3a) can be the only possible structure that 

exists between the 3 variables if the conditional independence test  passes. 

Figure 7 

   

Note: Each variable was transformed into a category based on a specific threshold. For 

each variable, both the mean and median of the group were considered. The results 

showed little difference using the two different thresholds. 

(a) (b) (c)

LPI ⊥⊥ NC |RL

NC = {0 NC < threshold
1 NC > threshold LPI = {0 LPI < threshold

1 LPI > threshold RL =
0 Beginner
1 Intermediate
2 Advanced
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Figure 8 

Note: Manipulated model after performing . Any arrows into NC are severed. 

Since NC is now fixed we are generating a new distribution for the system. 

In order to estimate the causal effect of NC on LPI, we must find  

 which is the probability that  if the student consulted 

the system more, i.e. .  means that we are fixing NC to some value and 

seeing what happens to LPI. The DAG in Figure 7.3a becomes the DAG in Figure 7.5. 

The estimated effect of NC on LPI in the new model is just the conditional probability 

, which can be calculated from the observational distribution 

using Pearl’s adjustment formula (Pearl 2009a):  

. 

All probabilities on the right-hand side can be computed from the observational 

distribution. Then, the average causal effect (ACE) is just the difference between 

 and . 

Summary of Results 

 To estimate the average causal effect of system consults ( ) on lines per issue 

( ), we use Pearl’s adjustment formula and the dichotomized data: 

do(NC )

P(LPI = 1 |do(NC=1)) L PI = 1

NC = 1 do(NC )

P(LPI = 1 |do(NC=1))

P(LPI=1 |do(NC=1)) = ∑
RL

P(LPI=1 |NC=1, RL) P(RL)

P(LPI=1 |do(NC=1)) P(LPI=1 |do(NC=0)

NC

L PI
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, 

where 

, and

. 

The results returned an . This means that the reported level can be a 

possible common cause between  and . However, these results remain 

inconclusive due to the limited size of the dataset.  

7.6 Causal Model Search (Dynamic Case) 

Temporal precedence is an important aspect of causality: the cause always proceeds the 

effect (Granger, 2004). Since the variables LOC, NI and C (see Table 7.3) were recorded 

at certain time stamps, this gave each variable temporal structure and an unprecedented 

opportunity to monitor its change during the coding process. Such temporal structure can 

be leveraged to make causal connections by treating the coding process as a dynamic 

system whose interactions are observed at different time steps.  

Let  be a multivariate stochastic process such that  is the process 

representing lines of code (LOC),  is the process representing issues, and  is the 

process representing consults (see definitions 6.5, 6.6, and 6.7 in Chapter 6). 

We had two sets of timestamps, one reflecting a change in LOC and/or issues ( ), and 

another reflecting the time at which the student consulted the system for feedback ( ) 

(see definitions 6.0 and 6.1 in Chapter 6). Before we could commence our test for 

causality, synchronization of the time steps of the issues time series  and the 

consult time series  was required. This means that we want to have the same 

timestamps for all three series so that  ,  and  (see definition 6.2 in 

Chapter 6). This synchrony had already existed between  and  since they were both 

ACE = P(LPI |do(NC=1)) − P(LPI |do(NC=0))

P(LPI=1 |do(NC=1)) = ∑
RL

P(LPI=1 |NC=1, RL) P(RL)

P(LPI=1 |do(NC=0)) = ∑
RL

P(LPI=1 |NC=0, RL) P(RL)

ACE = 0.415

NC L PI

X = {X1
t , X2

t , X3
t } X1

t

X2
t X3

t

T′ 

T′ ′ 

{x2
t }t∈T′ 

{x3
t }t∈T′ ′ 

{x1
t }t∈T {x2

t }t∈T {x3
t }t∈T

X1
t X2

t
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timestamped according to the commit timeline. Much consideration had gone into this 

synchronization process. One method considered was taking the timestamps from the 

issues timeline and engineering an appropriate corresponding value using the consult 

timeline and the consult time series. An ‘appropriate’ value for consults at timestamp  

from the commit timeline i.e.  would be an aggregate representing the number of 

consults that occurred on the interval  where . In other words, any timestamp  

from the consult timeline such that  would contribute a single increment  

to this aggregate value. However, this resulted in an imbalanced consult timeline with an 

overwhelming amount of zeros that would hinder the performance of any algorithm. 

Instead, the two timelines were merged to reflect all timestamps relevant to the time spent 

in the IDE, whether it was writing code or consulting the system for feedback. Therefore, 

the timelines of each time series increased in length to  in order to include all 

relevant timestamps in the system, generating a new timeline called the system timeline 

(see definition 6.2 in Chapter 6). As a result, each time series underwent interpolation and 

possible extrapolation with suitable values so that each new timestamp had a 

corresponding value. For instance, each random variable at a given time  in the 

consult time series is either 0 (no consult occurred) or 1 (consult occurred). As a result, 

any timestamp added to the consult timeline was given a 0 value for consulting, reflecting 

the fact that the student did not consult the system at this timestamp. Similarly, the coding 

timeline and LOC timeline were given, for each added timestamp, a value from the 

closest (previous) timestamp. 

We can then think of each time step as the state  of the system at time  denoted by . 

Then,   such that  where each  is a row in . Then, 

 is a vector representing the status of each variable at time . For instance, if at time 

,  then . 
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Since there were no forced interventions on this system,  where .  

This means that  is based purely on observational data. 

Then,  defines the coding process.   

7.6.1 Granger Causality, Transfer Entropy, Convergent Cross Mappings 

Granger’s method is a statistical hypothesis test that seeks to determine if one time series 

granger-causes another. Granger believed that information about the driver variable was 

uniquely contained in the response variable. He hypothesized that including information 

about the cause in the prediction of the effect will reduce the prediction error. 

Autoregressive models are used to model time series data by regressing a future value on 

past values of the series itself up to a certain time lag . According to Granger, if the 

inclusion of another variable in the model reduces the regression error, then the two 

variables must be causally connected. If consultations at time  does effect the 

number of issues at time  then its inclusion in the prediction of the number of issues at 

time  should reduce the prediction error. 

Let  and  be the predicted values of  at time , then: 

   if past values of  up to time lag  are used to predict , and 

   if past values of  and  up to time lag  are used to predict . 

 and  are the regression coefficients.  

If   then  granger-causes .   

Before performing Granger’s test, we had to ensure that each time series was stationary, 

i.e., the mean was independent of time, and variance was dependent only on time lag . 

Stationarity ensures the persistence of the results for any part of the timeline. From the 
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graphs in Table 7.6, the astute reader will notice that most of the timelines are not 

stationary. In particular, we can see a trend in LOC and NI. As a result, a transformation 

such as differencing was necessary to transform each time series so that the Granger test 

could be performed. 

The Granger test in the Python package statsmodels (Seabold et al., 2010) and in the R 

package ‘lmtest’ (Zeileis et al., 2002) was used to conduct the Granger causality test.  

The Granger causality test was deployed in both directions: 

    , and 

    . 

It is reasonable to think that the causal connection may be in reverse order. If a student is 

experiencing an issue, whether it is functional or competence-related, she may be 

inclined to consult the system. Such a possibility warrants a causality test in both 

directions. An appropriate time lag is difficult to establish in the Granger test and can be 

investigated by finding the order of the best-fitting autoregressive model. As a result, the 

time lags  were tested. The Python module VAR found in statsmodels was 

used to fit each process using the above mentioned ’s. The  whose model provided the 

lowest prediction error was used. Since some of the timelines were shorter, as the time 

lag increased the algorithm failed. 

However, the Granger test used is only able to detect linear relationships. This may be 

problematic as real-world systems, such as learning processes, are complex and can not 

be easily modelled. Two particular impediments may be at play here. First, a non-linear 

relationship may exist between  and . Second, the system may not be separable. In 

order to account for non-linear systems, an information theoretic approach was deployed 

using the R package ‘RTransferEntropy’ (Behrendt et al., 2019) to investigate the 

presence of a non-linear causal relation. For systems that are not separable and possibly 

deterministic, an implementation of convergent cross mappings found in the R package 

rEDM (Sugihara et al., 2019) was used. 
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Table 7 

Student Timelines 

Note: The plots of the consult, issues and LOC time series for each student. Most of these 

timelines required de-trending before performing the Granger test. The x-axis represents 

the normalized times, the labels on the left y-axis represent the number of issues, and the 

labels on the right y-axis represent the lines of code. 
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Summary of Results  

Table 7.7 shows the results from the Granger causality tests, transfer entropy tests and 

convergent cross mappings (CCM) tests. The test for causality was done in both 

directions as it is quite possible that consulting can cause a decrease in issues or the 

presence of an issue forces the student to consult. It is also possible to have feedback 

between both variables such that a bidirectional edge may exist between them. The cells 

highlighted in grey show a clear causal direction between the variables. Either the p-

values are at or below the significance level of  for the given test (Granger and 

transfer entropy), or the reconstructed manifold of one time series successfully predicts 

values from the other (convergent cross mappings). For these tests, we can stipulate that a 

causal direction does exist in the given direction. 

Looking at the results from each timeline, we can see that both the Granger test and 

transfer entropy returned a clear causal connection from system consults to the number of 

issues. Following a number of consults, we can see a drop in issues. In some cases, the 

Granger tests indicated a causal connection from issues to consults. However, this was 

not conclusive as it did not appear to be the case in about half the students.  

CCM returned mixed results, showing mainly a causal connection from system consults 

to number of issues. However, it also showed, in some instances, an influence from issues 

to system consults. This may indicate the presence of feedback between both variables or 

moderate coupling. 

α = 0.05
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Table 8 

Results from Dynamic Tests 

Note: Results from the Granger test, transfer entropy and convergent cross mappings. The 

results show the p-values from each test for each student's timeline. The cells highlighted 

in grey indicate a p-value below the significance level of  or in the case of 

CCM, these cells indicate a direction of causality 

α = 0.05

Student Total 
Consults

Timeline 
length

IS CCM

1393 64 162 0.4 0.0 0.5 0.005 0.11  , 

1420 99 218 0.5 0.6 0.5 0.03 0.03

1438 17 45 0.4 0 0.8 0 0.005 , 

1452 95 163 0.6 0.04 0.9 0.002 0.13 , 

1453 41 206 0.2 0.01 0.13 0.7 0.9

1464 4 37 0.1 0.04 0.19 0.02 0.0006 , 

1475 23 57 0.4 0.003 0.74 0.03 0.04 , 

1482 124 172 0.7 0.03 0.25 0.06 0.2

1484 54 87 0.6 0.01 0.82 0.01 0.0001
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Chapter 8. 

8. Discussion 
  

Looking at the data from the controlled experiment, a clear causal effect between system 

consults and the number of issues at the end of the coding timeline was present. Students 

who did make use of the feedback provided by the system upon consultation were able to 

reduce the number of issues at the end of the coding timeline regardless of program 

length or complexity. Two-thirds of the students from the experimental group opted to 

use the system and, as a result, contributed to a difference in (number of issues) NI means 

at the end of the coding timeline between both groups. However, in both analyses, direct 

and indirect (see 7.4), the mean of NI and IPL was almost double for the control group 

than that of the experimental group. However, 4 out of the 13 students in the 

experimental group did not consult the system for feedback, increasing the calculated 

means (NI and IPL) of this group. We suspect that this difference in means would be even 

more notable had the entirety of the experimental group made use of system consultations 

and feedback and or if students used the system more effectively. In addition, the 

sparseness of the consult timelines for the experimental group signifies that students were 

not always willing to use the available help or that optimality was not a primary goal so 

long as a program was functional. 

Our causal discovery search within the experimental group yielded inconclusive results in 

the static models but auspicious results in the dynamic models. In the static two-node 

models, a causal effect was present under the assumption that a common cause was not 

present (see 7.5.1). However, the results were not definitive since the independence tests 

between the noise terms and the corresponding regressors in both models ‘a’ and ‘b’ 

produced values close to zero. Model ‘a’ did yield a higher score (0.1) than model 

‘b’ (-0.1), indicating a weak possibility of a causal connection between the number of 

consults and issues at the end of the timeline. These are still galvanizing results since we 
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are looking at aggregate values for consults in our static models, and 1/3 of the 

experimental group did not consult the system for feedback, and 1/2 of those that did 

consult the system used it sporadically (  of the time). The number of 

consultations ranged from 0 to 124, with the highest number of consultations leading to 0 

errors at the end of the timeline. However, more consultations did not always mean fewer 

issues at the end of the timeline. This may signify that students are not learning from past 

mistakes, and the same pattern of errors is continuously being repeated.  

In the static three-node models, conditional independence testing concluded that RL was 

determined to be a potential confounder. However, the results remain inconclusive. The 

pc algorithm did not return any results. The edges in the graph were undirected, 

indicating the evidence was too ambiguous to establish a strong causal connection in the 

presence of RL. However, this could be due to the small dataset, which could affect the 

behaviour of the algorithm. Statistical testing, such as correlations and conditional 

independence tests, are grossly hampered by small datasets. In addition, other possible 

confounders should also be considered, such as age, gender, socioeconomic background 

and past experience. These variables are strong contenders as they affect both a student’s 

willingness to consult the system as well as the number of issues they would experience 

during the programming task.  

In the dynamic models, we found that a causal effect was present in most timelines. In the 

Granger causality tests, 90% of the timelines showed a causal connection from consults 

to issues ( ), one of which was close to the significance level . In 

addition, 80% of this subset showed a causal connection in the opposite direction as well 

( ). However, for the causal connections from consults to issues, the time lag  

had an average and median value of 4, whereas causal connections from issues to 

consults,  had an average value of 7 and a median value of 8. This implies that it takes 

about 4-time steps, each signifying an interaction with the system on a specific issue, in 

order to see a reduction in issues. Viewing precise hints, viewing regulation cards or rule 

explanations are some of these interactions. In addition, it signifies a more immediate 

effect of consultations on the number of issues. On the other hand, it takes about 7 time 

< 40 %
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steps, each signifying a snapshot of the code at a given (random) time, for a student to 

check the state of issues in the code. It is unclear whether students perform these checks 

out of sheer curiosity about the competence level of the code or because they are 

experiencing functional issues and hope to gain insight into why these issues are 

occurring. Unlike Granger’s method, transfer entropy can detect non-linear relationships. 

Checking for a causal relationship from consults to issues ( ), transfer entropy 

returned a causal relation in 90% of the students in the experimental group. In this subset, 

all but two of the cases overlap with the Granger causality results. In addition, a time lag 

of  was the predominant value required to model the transfer of information. This 

implies a more immediate effect of consultations on the number of issues in the code. 

This also corroborates the results from the Granger tests but also indicates that the 

relation is nonlinear since a shorter time lag than the Granger tests was able to conclude a 

causal effect from consults to issues. However, transfer entropy returned only negative 

results in the causal direction from issues to consults. This may not be entirely true since 

the algorithm failed for longer time lags (only time lags up to  were tested), and the 

Granger tests returned a causal effect from issues to consults for an average time lag of 

. Convergent cross mapping was able to show a causal connection from consults to 

issues in every timeline, 60% of which showed a causal connection from issues to 

consults as well. It seemed that the algorithm did converge in most cases. However, the 

correlation values  to which the algorithm converged were lower in the causal direction 

from issues to consults. Similarly, this ratifies the results produced by the Granger 

method and transfer entropy. A common thread is present between all three algorithms. 

One can definitively stipulate the existence of a causal connection between system 

consults  to issues . In addition, a weaker, less evident, causal connection appears to 

be present from  to . This may indicate a more immediate effect of consults on the 

number of issues and a more distant effect of issues on the number of consults. This 

implies that the coupling is stronger in one direction than the other. 

In summary, the three causal discovery methods yielded a notable causal effect of system 

consults on the number of issues at the end of the system timeline. Looking at the results 
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from Granger and Transfer Entropy, we can see that the time lags ranged between 1 

(Transfer Entropy) and 4 (Granger). We also argued that the relation between consults 

and issues is non-linear since any real-world system is likely to be complex. This 

signifies that the effect of a consult is almost immediate since we see a reduction in issues 

in the near future (next timestamp).  
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Chapter 9. 

9. Recommendations 

9.1 At the Data Collection Level 

Much work is also required at the data collection level. The time to complete the tasks 

should be limited and the same for all participants. For instance, making the plugin 

available to all students during the semester will foster this goal. It will automatically 

enforce a time limit on each task, which will be the time between the assignment release 

and the assignment due date. Participants from the same cohort should be given the same 

programming task, eradicating the need to normalize the number of issues per task level 

or at least making the raw timeline an option to analyze. In addition, commits to the VCS 

should not be irregular and controlled solely by the system to ensure regularly timed 

commits reporting the number of issues and current number of lines of code. This would 

allow for more consistent timelines. This would also provide other useful information, 

such as pique productivity times for each student, which can be leveraged to improve 

learner experience and provide timely feedback. The time stamping of the consults would 

remain the same since it solely depends on student engagement and curiosity. However, if 

the student has access to a human tutor, then these consults may be forced interventions 

on the coding process and, therefore, must be labelled as such i.e. forced and not 

voluntary. In addition, another process that reports on functional issues can be added to 

the coding process. A set of labels defining functional milestones can be curated 

beforehand. Thus, consultations in this regard would be exclusive to the human tutor.  

Therefore, differentiating between both consults (system and human) may be desired to 

distinguish between them.  
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9.2 At the Consult Level 

In addition to reducing the number of issues, the goal is also to improve students’ 

understanding of the violations that are occurring. As such, mindlessly consulting the 

system without putting thought into an issue and why it is occurring negates the purpose 

of the system. Timely feedback on the issues in their code is critical, but we also want 

students to learn from past mistakes so that best practices are cemented. As such, we 

recommend the introduction of an engineered metric called the improvement score (Table 

7.3). The consult timeline is checked for duplicate occurrences of a specific rule. If a rule 

appears often, then the student will be alerted and warned of potential system misuse. 

This will force the student to take a step back and reflect on the issue. The student is then 

encouraged to engage further with the rule explanations and examples provided to 

understand the issue and its occurrence better. The improvement score is inversely 

proportional to the number of duplicates. A higher number of duplicates means a lower 

improvement score.  

9.3 At the Assignment Level 

As we saw in the given timelines, 4 out of 13 students from the experimental group did 

not make use of system consults. As an incentive, a portion of the grade can be allocated 

to the improvement score and another portion to the number of issues present at the end 

of the commit timeline. The former will encourage students to use the system effectively 

and properly in order to solidify best practices. The latter will simply encourage its use. 
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10. Other Applications 

Indisputably, the improvement of learner experience and outcomes is universally 

advocated. New approaches are constantly being tested, and old approaches are 

challenged in order to reach a wide range of learners and cater to their individual styles. 

As such, there is a persistent desire to determine the effect of a new teaching strategy or 

the cause of an upswing in student performance not just in computer science but across 

other disciplines as well. 

It is important to note that the analysis and methodology presented herein can be applied 

in any discipline where learner data is collected either statically or dynamically. For 

instance, in automated essay scoring (Ke et. al. 2019), the predicted score of an essay is 

based on several features such as grammatical accuracy, lexical diversity and word count. 

However, it might be desirable to inspect the impact or the effect of a feature on the 

overall score of an essay in order to prescribe a plan to improve the outcome. In addition, 

seemingly uncorrelated features might have an influence on one another, and thus, 

improving one might improve the other, rendering a positive impact on the final score. 

Similarly, in automated short answer grading in mathematics (Zhang et. al. 2022), or any 

other discipline for that matter, it also might be desirable to find the impact of one feature 

on another or the impact a feature might have on the overall quality of the answer. We 

can deploy either our static or dynamic approach. In the essay scoring scenario, aggregate 

values of any features of interest can be registered and preprocessed appropriately and 

then an applicable causal discovery approach can be used (section 7.5). More 

interestingly, if data can be collected longitudinally where the essay writing process is 

monitored via a version control system, we can deploy our dynamic approach. The latter 

provides the means to conduct the analysis at a granular level by observing the dynamics 

of the system over time. How the variables change and interact with one another offers a 

rare glimpse into the learning process and student progress over time. In addition, it may 
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be a more appropriate approach when the number of participants is smaller and presents 

an obstacle in the static case.  
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11. Final Notes 

Causality is a fascinating topic that has garnered attention for millennia. Yet, due to its 

fundamental intricacy, its definition remains disputed. The ability to isolate cause from 

effect or reason from consequence has allowed humanity to adapt and progress. Data with 

temporal structure like time series data offers a unique setting to disentangle cause from 

effect since we are able to monitor the change in variables over time. We argue that cause 

and effect form a system whose dynamics remain consistent over time and are best 

modelled and disentangled using approaches and methods from dynamical system theory. 

The world around us consists of many systems such as social, biological, economical and 

many others such as educational. Just like in these systems, the governing body of a 

cause and effect system depends on the parts at play and the nature of the interactions 

between them. The behaviour of such systems can not be explained by a single part or 

broken down into a sum of parts. For instance, in biological systems, the growth or 

decline of a predators population over time can not be explained by its past populace 

alone but also the number of prey and other factors such as disease and environment. 

Similarly, a change in the effect can only be explained by the dynamics of the system 

which includes all influencing factors. The size and complexity of these systems is 

unknown as one can never, with conviction, quantify all driving forces of a single 

component. However, as people of science, we often aspire to find appropriate models for 

these systems even if principled approaches or base equations do not exist yet. In the 

language of do-calculus, we can simulate interventions on these systems in three different 

ways: 1- fixing a specific variable, 2- bifurcating the system by modifying its parameters 

or 3- perturbing the system by some value . Then we can study the behaviour and 

conduct a stability analysis on the system to find the effect of the intervention. 

In this thesis, we set forth the preliminary steps for defining a coding process and what it 

entails. We define any processes of interest that are involved, the types of interventions 

that are permissible and the different states the system can achieve. To the best of our 

ϵ
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knowledge, at the time this thesis was written, this has not been done before. This paves 

the way for studying and analyzing a students coding activities in a principled way using 

mathematical concepts and notations.  
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