
 

1 

 

 

ATHABASCA UNIVERSITY 

 

 

ANALYSIS OF PARALLEL PRE-PROCESSING OF MALWARE DATA FOR 

MACHINE LEARNING IN PYTHON 

BY 

NELS LARSEN 

 

 

A THESIS/DISSERTATION 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES  

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE IN INFORMATION SYSTEMS 

 

 

SCHOOL OF COMPUTING AND INFORMATION SYSTEMS 

ATHABASCA, ALBERTA 

 

JULY 2023 

 

 

  



 

 

 

1 University Drive, Athabasca, AB,  T9S 3A3  Canada 
Toll-free (CAN/U.S.) 1.800.788.9041 ex. 6821 

fgs@athabascau.ca  |  fgs.athabascau.ca  |  athabascau.ca 

Approval of Thesis 

 

 

The undersigned certify that they have read the thesis entitled 

 

 

ANALYSIS OF PARALLEL PRE-PROCESSING OF MALWARE DATA FOR  

MACHINE LEARNING IN PYTHON 

 

 

Submitted by 

 

 

Nels Larsen 

 

 

In partial fulfillment of the requirements for the degree of  

 

 

Master of Science in Information Systems 

 

 

The thesis examination committee certifies that the thesis   

and the oral examination is approved 

 

 

Supervisor: 

Dr. Qing Tan 

Athabasca University 

 

 

Committee Member: 

Dr. Harris Wang 

Athabasca University 

 

 

External Examiner: 

Dr. Ali Dewan 

Athabasca University 

 

 

August 9, 2023 

mailto:fgs@athabascau.ca


 

2 

 

Abstract 

Machine learning-driven malware detection and identification helps protect computers. 

This thesis initially aimed to develop a machine-learning malware detection solution by utilizing 

intermediate languages so that malware studies can ignore specific hardware and operating 

systems while effectively using machine learning to detect and classify malware. Reduction of 

instruction set size lowers computing costs when using machine learning. Malware must be 

processed for machine learning before it can be studied. The evolution of tools and diversity of 

intermediate languages requires that binaries must be processed in a way that order to explore 

opportunities to optimize based on diverse types of opcode generation from binaries.  

Since Python programming language is a popular choice for machine learning and much 

more machine-learning computation has taken place on the cloud, this research aimed to 

improve existing Python code to detect malware on the cloud platform. However, data 

preparation is an essential step for all machine-learning processing. This research focused on 

better malware processing by examining previous research's code. Optimization 

recommendations of this research can be generalized to applications outside of malware 

research but are focused on what a malware database would require for processing and would 

be unsuitable for broad applications without limitations. The first part of the research identified 

how the data preparation can delay research and incur costs when using cloud infrastructure 

through the analysis of measurement of performance in different environments.   

The second part of the thesis research has created a dictionary system that includes 

multi-process and coroutines to address the idea of reducing computing costs. This system 

functions as a single dictionary to optimize time to gain efficiency and save the machine learning 

pre-processing computation costs. Understanding how to alter parallel processing allowed for 

the reduction in costs and time for both academic research and commercial practices.  The 



 

3 

 
implementation of this dictionary system addresses how to process datasets specific to malware 

research.  The dictionary system demonstrates further knowledge in dealing with parallel 

processing associated with the high processing requirements and high size of this dataset.   

A standard cost model for cloud infrastructure is to charge by time. This thesis research 

shows that a single-threaded dictionary takes more time but fewer resources than a parallel 

processing solution used with dictionaries. As Python's internal multithreading mechanisms can 

slow execution time, this research found that some wasteful types of concurrent processing can 

save time. Because virtual machine (VM) costs are primarily time-based, this research has 

proven that a multi-process dictionary can save time for processing machine-learning data. 

However, the time saving is not linear with increasing a VM's resources. 

Keywords: Python Optimization, Effective Cloud Computing, Virtual Machines, 

Concurrent Processing Dictionary 

  



 

4 

 

Table of Contents 

 
Abstract ............................................................................................................................... 2 

Table of Contents ................................................................................................................ 4 

List of Tables ...................................................................................................................... 6 

List of Figures and Illustrations .......................................................................................... 7 

List of Abbreviations .......................................................................................................... 8 

Chapter 1 Introduction ........................................................................................................ 9 

1.1 Background and Motivation ................................................................................... 11 

1.2 Research Purposes .................................................................................................. 13 

1.3 Research Objectives and Research Problem ........................................................... 13 

1.4 Research Findings and Contributions ..................................................................... 17 

1.5 Research Limitations and Delimitations ................................................................. 18 

1.6 Definition of Terms................................................................................................. 19 

Chapter 2. Literature Review ............................................................................................ 21 

2.1 Introduction to Malware ......................................................................................... 21 

2.2 Datasets ................................................................................................................... 24 

2.3 Malware Detection .................................................................................................. 25 

2.3.1 Static Analysis ................................................................................................. 26 

2.3.2 Dynamic Analysis ............................................................................................ 32 

2.3.3 Image Analysis................................................................................................. 34 

2.4 Machine Learning ................................................................................................... 35 

2.5 Intermediate Languages .......................................................................................... 39 

2.6 Evasion Techniques ................................................................................................ 40 

2.7 Pre-Processing methods .......................................................................................... 41 

Chapter 3. Malware Detection and Classification ............................................................ 43 

3.1 Opcode Techniques for Detection and Classification ............................................. 43 

3.2 Augmentation and Collection of Data Inputs ......................................................... 44 

3.3 Limitations of the current pre-processing ............................................................... 47 

Chapter 4 Methodology .................................................................................................... 48 

4.1. Machine-learning Data Processing Foundations ................................................... 48 

4.1.1 Pre-Processing Specifics for Malware Machine Learning ............................... 48 

4.1.2 Replication Process and Results ...................................................................... 50 



 

5 

 

4.1.3 Code Changes .................................................................................................. 51 

4.1.4 Resolution of topic speed issues ...................................................................... 52 

4.1.5 Standardization for Future Machine-Learning Research Involving Malware . 53 

4.1.6 Task Selection .................................................................................................. 54 

4.2 Systems Measurement ............................................................................................ 54 

4.2.1 Goals of Environmental Measurement ............................................................ 54 

4.2.2 Python Implementations of parallel processing ............................................... 55 

4.2.3 Evaluation Tools .............................................................................................. 60 

4.2.4 Description of Task .......................................................................................... 61 

4.2.5 Research Design............................................................................................... 68 

Chapter 5. Environment Measurements and Evaluation................................................... 76 

5.1 Results from Testing Environments........................................................................ 76 

5.2 CPU Comparison .................................................................................................... 81 

5.2.1 GCP Compute Variable Speed......................................................................... 82 

Chapter 6. Parallel Processing Results and Recommendations ........................................ 84 

6.1 Implementation of Parallel Processing Method’s Code.......................................... 85 

6.2 Data Size Effects on Execution Times .................................................................... 86 

6.3 Explanation of the mk13 Algorithm ....................................................................... 88 

6.4 Time Results for Pre-Processing Data .................................................................... 91 

6.5 Hard Drive Effects on parallel pre-processing........................................................ 94 

Chapter 7. Conclusion ....................................................................................................... 97 

References ....................................................................................................................... 100 

 



 

6 

 

List of Tables 

Table 1 WinPE File Format .............................................................................................. 27 

Table 2 Dictionary Creation Times Varied by Queue Size .............................................. 68 

Table 3 Dataset Characteristics ......................................................................................... 68 

Table 4 HDParm Hard Drive Speed Results ..................................................................... 78 

Table 5 Fio Read Speed Results ....................................................................................... 79 

Table 6 Hard drive read comparison ................................................................................. 81 

Table 7 CPU Speeds ......................................................................................................... 82 

Table 8 Virtual Server Dataset Size Runtimes ................................................................. 87 

Table 9 Multi-processing Queue Message Size Comparison ........................................... 88 

Table 10 Single Vs Multi-Thread Execution Times ......................................................... 92 

Table 11 Multi-Process Vs mk13 Execution Times ......................................................... 94 

 

  



 

7 

 

List of Figures and Illustrations 

Figure 1 Generalized Machine Learning Malware Analysis Workflow ........................... 16 

Figure 2 Citation Timeline ................................................................................................ 17 

Figure 3 Assembly Example ............................................................................................. 29 

Figure 4 Extracted F-Droid Archive ................................................................................. 30 

Figure 5 Dictionary Update Using Full Dictionary Locking ............................................ 57 

Figure 6 Dictionary Update Using Single Value Locking ................................................ 58 

Figure 7 File Header of file 125y4VsArzkCNOGZfu6o.bytes ......................................... 62 

Figure 8 Scalene Output for a control run for 20 files. ..................................................... 62 

Figure 9 Pseudocode for entire execution for multi-processing without a queue ............. 66 

Figure 10 Output of lstopo command for first system ...................................................... 73 

Figure 11 Output of lstopo command for virtual system .................................................. 74 

Figure 12 Execution Times Using Slower Hard Drives ................................................... 95 

Figure 13 Execution Times Using Faster Hard Drives ..................................................... 96 

 

  



 

8 

 

List of Abbreviations   

Abbreviations Full Meaning 

MAIL Malware Analysis Intermediate Language 

QEMU Quick Emulator – This technology allows 

for virtualization 

GIL Global Interpreter Lock 

GCP  Google Cloud Platform 

 

  



 

9 

 

Chapter 1 Introduction 

Malware detection, or commonly Anti-virus detection, ideally prevents business 

and personal loss on computer systems. Malware research detection has changed over the 

last couple of decades. The research requires improvement as malware authors have 

adapted to malware research to improve their methods of compromising systems. 

Malware production has become a business. Ransomware-focused criminals have 

established service desks to help victims to make Bitcoin payments. These service desks 

will educate the ransomware victims on how to buy cryptocurrency to pay the malware 

authors or sponsors of the malware.    

Malware authors can pursue financial and non-financial goals, although non-

financial goals can be preconditions for making more money later. Compromising a 

computer system can allow an attacker to restrict control of the system, gain access to the 

system’s data or cause detriment to the owners of the system. An attacker’s goals can 

shift as a malware campaign continues. When a malware author threatens a business or 

individual, the response to the author is not consistent. Many government agencies 

discourage paying malware authors and stress that a backup and recovery plan is safer 

than getting financially involved with a cyber threat actor [1]. 

Ransomware is a popular malicious method of extorting currency from companies 

and individuals. Ransomware will lock the users of a computer out of the system. Using 

ransomware, criminals can demand money to restore access to the system. Refusal to pay 

the attacker can result in data transfer to the attacker. The attacker may transfer the data 

regardless of the ransom payment status. The data can be sold to other criminals, 

especially for website compromises to social media platforms. Criminals monetize this 



 

10 

 

information by making it available to perform future social engineering attacks on the 

current victims. Depending on the type of stolen data, criminals can use the information 

to steal from banks, credit cards and trade illegally on the stock market. Threatening to 

release the data is another technique that ransomware authors can use. The DC police 

were victims of a ransomware attack [2]. The criminals threatened to release data about 

undercover police and other police matters should the ransom not be paid. 

This thesis research initially targeted qualification of the effects of instruction set size in 

intermediate languages.  This target requires information synthesis as the first step.  Current 

intermediate language papers provide solutions using standard machine-learning techniques. 

For example, many papers have successfully detected classifying malware using random forest 

algorithms and distributed neural networks (DNN). However, the current works don’t 

significantly overlap while using the same intermediate language or describing intermediate 

languages that are still supported. To be able to process immediate languages and the original 

methods of analysis the data must be able to process from the malware executables to 

organized data in a reasonable timeframe.  This research identified the pre-processing speed as 

a core problem to implementation and switched focus from processing intermediate languages 

to solving issues with pre-processing intermediate languages and binary input.  This research 

focuses on processing this data specifically and does not attempt to provide a general best form 

for using Python dictionaries.    

Resources needed for machine learning can be demanding. Large datasets used to 

perform training for machine learning can take hours or days. The shift to using cloud resources 

encourages machine learning practitioners to use powerful virtual machines, which have high 

costs that change based on the time the machine is operational. The second part of this thesis 

research shows analyzes the data processing execution time for this dataset.  The processing can 



 

11 

 
be improved by better hardware, and this research provides specific recommendations for 

hardware improvement. This research demonstrates how a dictionary that accepts multiple 

concurrent inputs can improve the time taken for data processing tasks.  Standardization of the 

time taken for a task to run can allow for better budgeting decisions and encourages 

documentation and process changes that allows future researchers better outcomes.   

Better outcomes can be achieved by using available resources.  This paper discusses that 

machines needed for machine learning tend to be powerful.  To fully use these resources, code 

must employ methods to run tasks in parallel.  Tasks run in parallel or parallel processing can be 

achieved in Python using multi-processing, multi-threading or coroutines.  The parallel 

processing in Python is discussed further in section 5.2.  The algorithm that was written as part 

of this research was to improve the speed of pre-processing, employing a combination of 

coroutines and multi-processing.   

1.1 Background and Motivation 

 
The initial tasks of this thesis research are to explore and qualify the effects of 

instruction set size in intermediate languages through literature review and hands-on 

implementation of machine learning algorithms in malware detection to understand malware 

algorithms and dataset usage. It strives to use intermediate languages and machine learning 

techniques, such as random forest and DNN, to detect and classify malware. However, with the 

progression of the research, there are limitations and barriers to using intermediate language 

and machine-learning algorithms for malware detection during the first part of the research 

implementation. We identified the computational issues in machine-learning processing, which 

this research can contribute towards.   



 

12 

 
As machines gain additional capabilities, users will want to use CPUs and threads to 

push computing limits. Having data structures capable of responding to concurrent requests 

allows larger datasets to be processed. Dictionaries are a standard method to organize datasets 

in many machine learning applications, especially for frequency analysis. Python built-in data 

structures are considered thread-safe. However, the overhead for thread safety poses a 

challenge to implementing concurrent processing for data processing with standardized timing 

outcomes.   

Resources needed for machine learning can be demanding. Performing the data 

processing required for datasets needed for training can take hours or days. The shift to cloud 

resources encourages machine-learning practitioners to use powerful, expensive virtual 

machines. Many cloud providers charge clients based on rate multiplied by usage—the rate 

increases as the number of cores used, memory available, and increased hard drive size. The 

usage based on the time the virtual machine is powered on is standard. Machine-learning 

activities can be broken into parts that utilize several virtual machines but would incur setup 

costs. A professional using several virtual machines would need to transfer datasets and may 

need to re-initialize environments needed for machine learning.    

A paper produced for the Microsoft Big 2015 challenge uses a huge dataset the 

researchers stated could complete in two days. This research followed the paper and tried to 

reproduce the results. As part of this process, the hardware was purchased that could meet the 

requirements of the task. In 2015 a Google compute instance had a speed of 2.6 GHz [3]. The 

purchased hardware could not perform the task of data processing in an equal amount of time. 

The execution of the Python code in this paper was investigated further to achieve the results of 

the original topic.  



 

13 

 

1.2 Research Purposes 

 
In this thesis research, two focuses of research have been completed. The first part of 

the research is to better understand the pre-processing of the malware data that could be used 

for intermediate languages and machine-learning algorithms in malware detection. The second 

part of the research focuses on the computational issue of data pre-processing of the machine-

learning algorithm.  Optimization of computation time will allow future research to start closer 

to changing the machine-learning process. Data preparation for machine learning requires that 

data sources are in a form suitable for processing. Dictionaries can be used to organize 

information when moving from raw data to processed data. However, the powerful computing 

resources used for machine learning will only be used during data preprocessing if multi-

processing, multi-threading or coroutines are used. This research shows the feasibility of a 

Python dictionary that can handle multiple concurrent inputs.  Dictionaries can be used to 

organize information when moving from raw data to processed data. However, the powerful 

computing resources used for machine-learning resources will only be used in data pre-

processing if a parallel computing method such as multi-processing, multi-threading or 

coroutines are used. This research shows the feasibility of a Python dictionary that can handle 

multiple concurrent inputs.   

1.3 Research Objectives and Research Problem 

 
Through the first part of the research, we find the limitations to implementing malware 

detection further using an intermediate language instruction set when we use the machine-

learning technique. The computational issue observed is part of the critical path to using 

machine-learning techniques for malware detection.  



 

14 

 
In the second part of the research, we focus on improving computation efficiency to 

enhance the Machine-learning algorithm processing. The speed of Python execution continues 

to be a topic for improvement. Guido van Rossum, the creator of Python, continues to focus on 

improving the speed of Python [4]. As a language that requires a byte-code interpreter to 

improve the speed can, there are limited options to improve execution time in the language. 

Many features are missing in this high-level language that would allow programmers to perform 

more optimizations. For example, many of the implementations of machine-learning libraries 

and data structures in Python are written in C. The Python dictionary is implemented as a hash 

table [5]. The Python language does not have a hash table implementation. There is no way to 

create pointers for a hash tables in Python. The lack of language structures limits the 

possibilities for optimizing Python code.   

Building a dictionary or changing the current dictionary will yield poor results with the 

data structures available in Python.  This research focuses on how to load data into the 

dictionaries better and explore how the current dictionary could be adapted to simultaneously 

accept multiple inputs.  The code written during this research demonstrates the results of a 

system that allows multiple inputs to a dictionary-like object.  The new code functions as a 

dictionary but uses parallel processing and smaller dictionaries to increase execution time in 

some environments.  Analysis of the underlying available parallel processing methods across 

different hardware was required to show that this problem is complex and that Python code 

does not react deterministically when the hardware is changed.   

This research implemented a dictionary that can accept parallel input, referred to as 

mk13.  This implementation dictionary was written entirely in Python and attempted to 

minimize calls to underlying C or C++ functions.  These calls can not be eliminated as they are 

required for system activities like reading a file.  The algorithm is novel as it targets the malware 



 

15 

 
dataset used in the original topic and attempts to optimize execution time at the cost of using 

more CPU resources.   

As Python uses byte-code translation, many efforts have been made to optimize 

machine-learning libraries. Many machine-learning libraries have been written in a compiled 

language such as C or C++ that interface with Python. The C and C++ are large portions of 

popular machine-learning libraries code such as PyTorch, NumPy and TensorFlow use compiled 

languages such as C and C++, representing 51.3%, 36.3% and 63.1% of the code repositories, 

respectively [6], [7], [8].  Using libraries causes a transfer of data structures between the Python 

byte-code and the libraries. This transfer penalty can also occur when Python internally 

transfers data structures to C. In situations where the data structures must remain whole, this 

can be costly for execution time.   

Data preparation for machine learning requires that data sources are in a form suitable 

for processing. For example, dictionaries can be used to organize information when moving 

from raw data to processed data. However, the powerful computing resources typical for 

machine learning were not utilized during the original topic. This research uses previously 

unused resources to expand on the data preparation topic.   

Challenges running older code from previous papers are primarily due to age and 

hardware. Software becomes more challenging to obtain and execute. Python 2 support 

has ended. The Python community has been diligent in cleaning older libraries, making it 

difficult to duplicate software. Additionally, the Python repository requires encrypted 

connections, which forces installation outside established Python toolchains.  

The original work from the BIG 2015 winners [9] was duplicated as part of this 

research proposal. Finding the older libraries and compiling from the source was 

necessary because the encryption needed to access the repositories was not in the 



 

16 

 

required Python version. In addition, some of the older versions were unavailable, and 

implementation forced minor version upgrades, which caused issues with prerequisite 

library versions. The literature review found that standard modern research follows a 

consistent flow during malware analysis shown in Figure 1. As issues became clearer 

while upgrading the code to modern standards, it was observed that this research needed 

to shift from the target of comparing the intermediate languages to how to load 

information into data structures better so future research on this topic could flourish.   

 

 

Figure 1 Generalized Machine-learning Malware Analysis Workflow 

 

The research review used primarily peer-reviewed sources and conference papers. 

Twenty-eight percent of the sources were journal articles, and fifty percent were 

conference papers. Of the 49 sources used, 43 were published after 2015, with the earliest 

and latest publication dates of 2009 and 2021. The years and papers used in the literary 

review are shown in Figure 2.  Removing the papers with zero citations and the two with 

hundreds of citations, the average number of citations in the literature review was 



 

17 

 

nineteen. The popular tags for the literature review are feature extraction, support vector 

machines, training, static analysis, variations on machine learning and security.   

Figure 2 Citation Timeline 

1.4 Research Findings and Contributions 

By conducting the literary review, it became understood that the accuracy of 

known algorithms would also change as the size changes. Due to some common 

machine-learning issues, such as overfitting, it was expected that the size of the 

intermediate language might not have a direct correlation to accuracy. Smaller sizes of 

instruction sets may be more accurate sets, but tiny instruction sets may be the least 

accurate. The efficiency of the training and implementation of the algorithm also was 

measured. Some machine-learning techniques, such as DNN, require massive 

computational power. Lowering the cost for implementation with no loss in accuracy 

would be beneficial. There is a trend in more recent research to strip and alter the input. 

Altering input is done to raise efficiency, raise accuracy and lower false positives. This 

step is based on researcher selection and requires the researcher’s time and knowledge to 

perform. When using an intermediate language, the file input must be processed into an 

existing structure, but the knowledge and effort decreases due to the framework an 

intermediate language provides. As the instruction set size falls, opcodes that benefit and 



 

18 

 

do not benefit the process will be reduced. Therefore, the need for the researcher to make 

decisions or run machine learning to eliminate opcodes will be lowered. Research that 

uses intermediate languages can use common structures and patterns regardless of the 

operating system. Intermediate languages will convert malware from the Windows 

operating system to the same code as the Android operating system. Whatever the target 

operating system for the malware, the test files must be processed into a usable form in a 

reasonable time for the algorithm to be tested and improved. The results are expected to 

be platform-independent, although any research should track the target operating system 

for the malware. 

Knowing this research is important, this research focuses on allowing researchers 

to process this data in a timely manner that makes future research possible. The testing of 

multiple intermediate languages was necessary. Translating from hex to another input 

would be provided by the intermediate language. With slow execution times for data 

organization, it would be difficult to complete the following steps of machine learning 

analysis. Counting occurrences of artifacts is essential to the original topic and future 

research. Without an increase in the pre-processing research into intermediate languages 

could not proceed in a reasonable manner.   

1.5 Research Limitations and Delimitations  

 
By conducting the first part of the research, we understood that the accuracy of known 

algorithms would also change as the size changes. Due to some common machine learning 

issues, such as overfitting, it was expected that the size of the intermediate language might not 

have a direct correlation to accuracy. Smaller sizes of instruction sets may be more accurate 

sets, but tiny instruction sets may be the least accurate. The efficiency of the training and 



 

19 

 
implementation of the algorithm also was measured. Some machine learning techniques, such 

as DNN, require massive computational power. Lowering the cost for implementation with no 

loss in accuracy would be beneficial. There is a trend in more recent research to strip and alter 

the Input. Altering input is done to raise efficiency, raise accuracy and lower false positives. This 

step is based on researcher selection and requires the researcher’s time and knowledge to 

perform. When using an intermediate language, the input must still be processed to fit into an 

existing methodology, but the effort required will decrease. As the instruction set size falls, 

opcodes that benefit and do not benefit the process will be reduced. Therefore, the need for the 

researcher to make decisions or run machine learning to eliminate opcodes will be lower. Using 

multiple operating systems is one goal of this research. Malware from the Windows and Android 

operating system will convert to the same output through conversion to an intermediate 

language. Whatever the target operating system for the malware, the test files must be 

processed into a usable form in a reasonable time for the algorithm to be tested and improved. 

The results are expected to be platform-independent, although any research should track the 

target operating system for the malware.  

1.6 Definition of Terms  

 
The “Global Interpreter Lock,” called the GIL, is the mechanism the CPython interpreter 

uses to ensure that only one thread executes Python byte code at a time. The GIL simplifies the 

CPython implementation by making the object model (including critical built-in types such as 

“dict”) safe against concurrent access [10].  

Parallel Processing is a method that an application can compute or read/write data in an 

application. Specifically, to this research and Python, multi-processing is an application’s ability 



 

20 

 
to use different processors for parallel tasks. Multi-Threading in Python refers to an application’s 

ability to use different threads on the same processor to perform tasks in parallel.   

A library is a compiled piece of code that is used. Python can have expanded 

functionality using packages such as NumPy. The lack of distinction between packages and 

libraries emphasizes that this research focuses away from operating system-level calls.  This 

emphasis looked at the Python code that makes calls to action. The system library calls are 

assumed to be consistent across different operating systems and are not tracked. This research 

focuses on discovery and optimization by assuming that the underlying call to the operating 

system could differ but would not change the research outcome. Pickling is a storage format 

used to write data to the hard drive, which involves some processing as it is not a raw data 

format. It is reasonable to conclude that a package using a system call would have a consistent 

runtime using the same hardware independent of the operating system. 

Pickling is the process whereby a Python object hierarchy is converted into a byte 

stream, and “unpickling” is the inverse operation whereby a byte stream (from a binary file or 

bytes-like object) is converted back into an object hierarchy. 

  



 

21 

 

Chapter 2. Literature Review 

In this chapter, we present the literature review focused on the goals of processing 

byte-code into intermediate languages.  The research outcome was modified as stabilization of 

the process to produce the intermediate languages became necessary.  This research outcome 

supports future research goals of measuring the difference between the 4-gram and 

intermediate language processing of malware. 

2.1 Introduction to Malware 

 

A computer application or script that performs actions against the best interest of 

computer users and computer systems is known as malicious software. Applications may 

be classified as malicious differently by different professionals. For example, software 

that bypasses security controls and forces a computer to stop functioning is malicious 

software. A baseline of what is acceptable for software must be understood to detect and 

classify malware accurately.  

A security researcher created Mimikatz to explore Windows security. Many anti-

virus solutions flag Mimikatz as malicious. Microsoft’s anti-malware solution Windows 

Defender will remove the software immediately [11]. Microsoft’s code hosting platform 

GitHub hosts the code for Mimikatz (https://github.com/gentilkiwi/mimikatz). The 

repository asks that the users “please respect its philosophy and not use it for bad things!” 

Starting as a learning tool for the author Mimikatz is used to increase the security 

communities’ knowledge of Windows operating system internals. Some cyber-attacks use 

Mimikatz as part of post-exploitation. Security tokens and passwords harvested with 

Mimikatz can be used for creating better footholds in an organization or exploiting a new 

target.  The difference in usage is about intent and why the word virus is used instead of 

https://github.com/gentilkiwi/mimikatz


 

22 

 

malware. The defender community has adopted the stance that malware or malicious 

applications are independent of intent.  

As malware became increasingly widespread, software was written to stop the 

malware from functioning as intended. The owner of an anti-malware solution would 

have an employee classify an application as malware. After classification, key identifiers 

are extracted from the application. These identifiers would be added to a virus definition 

file and distributed to clients. This process has several gaps to overcome for anti-malware 

solutions. Before the process can start, the malicious software must be obtained for 

analysis. The malicious software should be analyzed professionally, not through user 

submission or voting. Identifiers that would distinguish malicious software from software 

that is not malicious must be recorded for distribution. Distributed anti-malware systems 

can rely on user submissions who have already run the malware to collect and determine 

if something is malicious. Vendors of anti-malware solutions have agents on the 

customer’s computer submitting potential malware for analysis by the anti-malware staff.  

A file hash or part of a file is a common way to detect malware. A file hash is a 

cryptographic output of an input file that will appear random of a set of characters, 

varying by length depending on the algorithm used. An MD5 algorithm was used in early 

implementations of malware detection and is still commonly used in malware databases 

and anti-malware products. Calculating an MD5 of a file is simple, making it attractive to 

anti-malware implementers and untrained users. However, the increases in the 

computational power caused the MD5 to fall out of favour. When two hash outputs of 

two files match, it is called a collision. The birthday paradox illustrated that finding a 

hash collision between two files is possible when an unguided brute force method fails.   



 

23 

 

Implementation of the birthday paradox showed that MD5 hashes of two binary 

files could be reasonably created within the currently available computing power. 

Malware authors could match MD5 hashes of known good software and fool anti-

malware software that relied on hashes. Applications could exist that bypass anti-

malware checking because of a known good hash. Adversely, creating malicious 

applications to damage the reputation of a hash could cause anti-malware mechanisms to 

block good software. Anti-malware implementers moved on to more robust hash 

algorithms such as SHA1 and SHA256. The increased complexity of hash algorithms 

increased security and computing requirements. Some anti-malware implementations are 

still setting default limits on scan time. An attacker can use huge files to bypass some 

anti-malware products. Malware detection incorporated file size, attributes and metadata 

to increase detection. Malware variants defeat traditional cryptographic hash signatures 

as a change in a single bit of the file produces a very different hash result [12]. Efforts 

have been made to overcome this limitation through fuzzy hashing research. Fuzzy 

hashing is a technique to create hashes equal for files that are the same and significantly 

similar. A driving factor for using hashes is that it is easy to implement, relativity cheaper 

in computational power, and easily reproduced and documented clearly. Detecting 

malware using this method is still used, but additional analysis techniques have been 

developed.  

Executables and some classifications of malware must communicate to the user. 

A simple malware detection method is checking an executable for a specific string. In the 

case of ransomware, checking an executable if the strings “bitcoin” or “must pay” exist is 

an excellent malicious indicator. Malware authors can encrypt or obfuscate their strings 



 

24 

 

to avoid detection. If they use a specific network server with a named domain name, it 

would be advantageous to attackers that defenders can show strings with simple efforts.  

Natural Language Processing (NLP) has been used to detect malware through string 

analysis. NLP has been used on emails to indicate that a message was a phishing attempt 

or contained malware. More recently, research has targeted executables with NLP with 

successful results [13].  Researchers could use NLP on unknown extracted strings from 

an executable to detect unseen malware.   

2.2 Datasets 

Research requires testing data, and machine learning requires training data. 

Malware research datasets are now available because of efforts made by academia and 

industry. VirusTotal is a commercial entity that warehouses viruses. The website 

(https://www.virustotal.com/) offers to check your file or hash at no financial cost. 

VirusTotal will keep submitted files and hashes as their property to build their database. 

Users can also search for viruses using names and other information. VirusTotal has an 

academic program that researchers have utilized [14]. For-profit organizations can 

download viruses for a fee. The Ember dataset was created to aid in research. The 

associated paper cited three challenges for creating malware datasets: legal restrictions, 

labelling challenges, and security liability and precautions [6]. Copyright issues with 

malware are seldom an issue. Datasets for misclassified applications and applications that 

are not malware, sometimes called goodware, have potential copyright issues.  For 

example, testing the strength of a malware detection algorithm requires the dataset to 

have malware and goodware to determine accuracy during testing. Obtaining goodware 

becomes an issue as goodware can be subject to copyrighting and challenging to obtain 

https://www.virustotal.com/


 

25 

 

without purchase. With the availability of goodware being an issue, unbalanced datasets 

may be a problem for researchers. Researchers have found that an imbalanced dataset can 

shift the accuracy of machine-learning algorithms. A random forest implementation was 

recreated from previous works, and researchers found that an imbalanced dataset could 

change the accuracy from 90.38 to 98.94 [7]. While an increase in accuracy is good, the 

change may indicate overfitting of the data. If overfitting occurs, the machine learning 

performance will suffer as the real-world malware shifts away from the malware found in 

the training dataset.  

Finding maintained datasets and maintaining datasets is an issue for researchers. 

The Android Malware Genome Project collected Android malware and goodware. Many 

researchers have used it are part of their datasets [8, 14, 15, 16]. The genome project 

managed access and required potential users to prove their intentions with the files. For 

example, the maintainers required proof of association with an academic institution. The 

maintainers stopped distributing the dataset in 2015, stating that limited resources were 

an issue [11]. The project has been moved to open cloud storage [17], but not officially 

by the original maintainers. The Ember dataset is published on GitHub without download 

protections and has been updated with changes as recently as April 7, 2021[18]. 

2.3 Malware Detection 

The current body of research has separated malware detection and classification 

into three different techniques. The static analysis focuses on determining if an 

executable is malicious without running the executable. Not executing malware is the 

safest and arguably simplest form of malware analysis. Without the need to execute 

malware, there is less need for sandboxing of the malware and less risk to the 



 

26 

 

researcher’s equipment. A sandbox contains and ideally records actions taken in the 

sandbox. When testing malicious software, the sandbox runs an executable file and 

detects the malware by checking its behaviour [13]. The act of running and observing is 

called dynamic analysis. In a sandbox escape, the application escapes the sandbox and 

infects the host of the sandbox. Capturing the information can also be difficult since the 

sandbox used to capture the information may need to allow for many different 

capabilities for capture, such as monitoring memory, network and disk activity. Hybrid 

Analysis is the combination of both techniques.  

Malware detection is less complex if the malware performs actions and changes 

settings that leave artifacts for the researcher. For a piece of malware to function, 

sometimes called an infection of a device, the malware must obtain access to a device. 

After this initial compromise, the device may relinquish access to allow the malware to 

execute further steps. The malware will change settings on that device until it has enough 

access to perform its functions. Part of this elevation of privileges on the device may 

involve a human using the malware to access the device and perform actions to gain more 

privileges or move to other systems in the environment. With few exceptions, malware 

will establish permanence on the device. Without permanence, a device reboot will erase 

the malware from memory limiting its effectiveness, especially for ransomware 

infections.  

2.3.1 Static Analysis   

The proposed research aimed to be operating system agnostic but will only 

investigate malware on the Windows and Android platforms. The Windows operating 

system uses PE files, and Android apk files are used on Android systems. This research 

aims to be platform-independent and targets the top two platforms that receive malware. 



 

27 

 

Most of the research for malware machine learning requires that the file is minimally 

dissected into parts.  The dissection increases the opportunity for more inspection of 

features. The binaries’ structure differs enough that Android applications will not run 

natively on Windows and vice versa.  

The two formats have some commonalities to them. Both formats have header 

information that defines how the executable will work. Operation code or opcode is 

present in both file types. The benefits of examining the opcode sequence lie in the fact 

that it can be analyzed using raw data [19]. Opcodes are the bulk of the instructions the 

application can use to run on an operating system. The compiler transforms source code 

into opcodes during complication and then writes it to the targeted operating system file 

format.  

The Windows operating system runs applications that use the Portable Executable 

File format (WinPE). The file contains size limits for header information. The size of the 

header is constant unless an optional header is used. The WinPE file format is shown in 

Table 1. 

Table 1 

WinPE File Format [20] 

Section Size Purpose 

DOS MZ header 64 bytes Check whether the file is a 

valid PE file or not 

DOS Stub 128 bytes To prompt a warning 

message if the PE file is 



 

28 

 

not compatible with the 

operating system 

PE File Signature 24 bytes Defines an executable file 

as Portable Executable 

PE optional header 224 for 32-bit Contrary to its name, it is 

essential. Contains 

information about file such 

as machine compatibility, 

number of sections etc. 

Data Directories 240 for 64–bit Provides information about 

where to find significant 

portions of file such as 

export, import, debug, etc. 

Section table 8 bytes Contains information about 

the sections present in PE 

files such as virtual size, 

size of raw data, pointer to 

raw data, characteristics 

The header information contains information about the structure of the file and 

information about the file’s compilation. The first 216 bytes of a PE file will be very 

similar to any other PE file. The optional header gives information about the executable, 

such as if it is 32-bit or 64-bit and the locations of code pieces to run. The Section table 

includes .text and .rsrc sections. The .rsrc section can contain resources such as images 



 

29 

 

and information about the application, such as Copyright information, application name, 

and product version. The .text section contains the opcodes that will be used to execute 

the application. The opcode is written in assembly and coded to disk in hex. For example, 

shown below is a random line from the decompilation of calc.exe from Windows XP. 

The assembly example shown in Figure 3 is the “ADD EAX,0x136” assembly instruction 

written in HEX as “05 36 01”. 

Figure 3 Assembly Example 

An Android application is executed from a compressible archive file called an 

Android Package (APK). The APK contains several manifest files, a Dalvid executable 

(dex) file, versioning information and assets files, as shown in Figure 4. 

The dex file contains the byte code executed when an application runs. The file is 

based on Java, but the compiled result differs from Java bytecode. The collection of all 

the opcodes is the bytecode that the application will use during execution. The assets 

directory contains resources for the application to use during execution and can contain 

images for display. Finally, the AndroidManifest.xml contains information about the 

executable and how the executable should run.  

  



 

30 

 

 

Figure 4 Extracted F-Droid Archive  [21] 

 

A common feature that Android machine-learning papers use is permissions [11, 

12, 22, 23, 24], and other research stated that incorporating permissions in future work 

would be worthwhile [25]. Permissions that the application follows are explicitly stated 

in the AndroidManifest.xml file. User prompts are required to accept the permissions for 

the application. The Drebin paper states that a great percentage of current malware sends 

premium SMS messages and thus requests SEND SMS permission [12]. A user may 

know that an application should not have that permission and not install the malware. In 

addition to permissions, the apk contains information on the hardware components that 

the application will use. Malware establishes network connections to infect and 

propagate.  After a device is compromised, the device usually needs to communicate to 

proceed with lateral movement in the network, download dynamic code or exchange 

encryption keys in the case of ransomware.   

Intents are also contained in the AndroidMainifest.xml file. Intents are part of a 

messaging system that communicates to other app components. There are two types of 

intents, explicit intents, which will specify which application will satisfy the intent by 



 

31 

 

supplying either the target app’s package name or a fully-qualified component class name 

and implicit intents, which do not name a specific component, but instead declare a 

general action to perform, which allows a component from another app to handle it [26]. 

Most malware runs as a background service. Thus, monitoring intents would be logical, 

as background services need intents to achieve the application’s purpose [15].  

Using deconstructed files form will allow machine learning to determine the 

maliciousness of an application. Application attributes can include information contained 

in the application and attributes generated from a translation of internal components of 

the application. Application attributes can also include analysis performed externally on 

the file, such as generating a hash of the file and noting the current filename of the file 

and created date. Part of the gathering process for malware datasets contains the 

elimination of duplicates. Creating a file hash of an application is a popular method. It 

allows for mostly unique identification and can verify if a file is malicious through 

services such as VirusTotal. The signature method is reliable and efficient in detecting 

known malware, but the major limitation of this approach is that it cannot identify new 

malware (Zero-day) [11]. Some research has combined application attributes with opcode 

analysis. Other research has also used machine learning to process characteristics of the 

opcode without analysis of the opcode tuples.  

Malware authors adapt to research and anti-malware technologies. The paper 

Performance Maintenance Over Time of Random Forest-based Malware Detection 

Models [27] reviewed known algorithms from other papers. They found that machine 

learning algorithms’ performance decreased significantly over subsequent test subsets, 

representing the performance of the models trained on 2012-2013 data.  The study 



 

32 

 

continued to find decreased performance on decisions between malware and goodware 

for executables in subsequent periods until the end of the training in 2018.  

Extracting human-readable strings text information is a common first task in 

reverse engineering. Many machine-learning techniques do the same thing to establish 

the features they will use in addition to the application attributes already discussed; API 

calls can be extracted from the compiled binary. AMailNet, a deep learning framework, 

identified 32 Android activities relevant to identifying malware [28]. These features 

include permissions, hardware functionality and system utilities such as timers and 

network information.  

The research developed the idea of using a control flow graph to determine if an 

application is malicious. The executable’s assemble portion is processed and fed into 

machine-learning algorithms. Malware Analysis Intermediate Language (MAIL) is an 

intermediate language that attempts to simplify control flow graphs and help malware 

researchers determine the properties of an application.  

2.3.2 Dynamic Analysis   

Dynamic analysis requires the research to run the malware and observe and record 

the behaviour of the executable. The researcher’s equipment is at risk since the malware 

may fully activate and escape control. Researchers use sandboxes to run malware to 

protect their environments. A sandbox is a technology that will limit access to the system 

running the sandbox. The sandbox can be an entire operating system reset to a safe state 

or an application running on top of the base operating system. Virtual machines emulate 

an entire operating system. The malware analyst will create a snapshot of a virtual 

machine. The snapshot contains the information to restore the machine to the time that 

the snapshot was taken. Restoring to a previous state will remove the malware and allow 



 

33 

 

researchers to perform additional tests.  Malware authors have reacted to sandboxes by 

performing checks to confirm internet connectivity and reading of hardware devices.  If 

the checks fail, the malware will not activate to slow researchers’ observations.   

Malicious applications look for human actions, lab settings and the passage of 

time to avoid detection. If the malware detects that it is being researched, it will typically 

not activate. Dynamic analysis can take longer since a researcher must wait for the 

malware’s timer to activate a malicious action. A researcher may run malware for 15 

minutes as part of their process to give the malware time to activate [24]. If the malware 

is in an environment where hardware information can be retrieved, it can check specifics 

about the hardware. Some virtual machines will emulate the CPU of a computer. The 

emulated CPU will report as a virtual CPU, not an Intel or AMD CPU. Malware may not 

run if it detects a virtual CPU. Some malware will not check for this since it creates an 

artifact for malware researchers can check. Most legitimate applications do not concern 

themselves with the CPU type since it does not affect their application.  

Network connectivity is essential for modern computing systems. Malware may 

check for network connectivity. The check could be to see if running in a sandbox and 

then not execute if it is not connected. Network connectivity could be required for the 

malware to function. Dynamic code loading occurs when an application retrieves code by 

decompression, decryption or network download, then uses the code as part of 

application execution.  The malware detection system named DroidClone stated that 

dynamic code loading would prevent correct analysis [25]. This limitation would extend 

to most malware detection systems since analysis is complicated on code that cannot be 

analyzed as part of the initial file.  



 

34 

 

Hybrid analysis improves static and dynamic analysis results by fusing the two 

methods. Zhang used features such as files accessed during runtime and determining the 

API calls during static analysis to produce successful results [22]. The process can cover 

gaps by relying on tools that collect information the researcher may need to learn is 

valuable.  For example, the Android dynamic analysis tool DroidBox does not record 

receivers at runtime [24]. The researchers wanted to use record receivers to monitor 

changes to the registry. The automated static analysis could perform discovery registry 

reads and compile changes. Hybrid analysis can trade effort and resources for higher 

accuracy. The worthiness of the effort is something that researchers and implementers 

must weigh when using analysis techniques.  

2.3.3 Image Analysis 

Visualization for classifying malware started in 2004 when researchers used 

unsupervised neural networks, specifically Self-Organizing Maps (SOM), to identify 

malware [29]. The paper Byte Visualization Method for Malware Classification converts 

the binary into an image. The researchers then use Jaccard distances to classify the 

malware[30]. A Jaccard distance is the coefficient used to gauge similarity between sets. 

In 2017 another paper improved image visualization to identify malware with neural 

networks [31]. However, the 2017 paper does not require the execution nor the 

disassembly of the program to work.  

Creating better ways to understand malware has encouraged advancements in 

intermediate languages for malware visualization and analysis. Visualization is another 

tool that can help researchers. Dynamic analysis can fail when malware detects the anti-

malware software. Pausing the execution of the malware payload is another method of 

evasion. VERA (Visualization of Executables for Reversing and Analysis) architecture 



 

35 

 

allows researchers to view the malware execution at different times during the infection 

process [20]. The researchers noted that the Mebroot trojan prevents itself from being 

analyzed by entering a busy loop for approximately 45 minutes. Image visualizations 

illustrated the changes in actions taken by the executable after the idle waiting time. 

2.4 Machine Learning 

Using machine learning for malware detection has been successful, especially in 

edge cases. Researchers using an Internet of Things dataset achieved 99.99% and 100% 

accuracy for malware detection using Scikit-learn and Weka [32]. DeepXplore is a white 

box Deep Learning testing system [33]. They demonstrated the need for further research 

on how machine-learning algorithms are used. Drebin is an anti-malware application that 

uses machine learning, specifically linear Support Vector Machines [16]. 

Machine learning has three areas: supervised, unsupervised and reinforcement 

learning. Supervised learning uses a dataset to train the specific algorithm to achieve a 

result. Ideally, data from outside the dataset should produce correct results after training. 

The dataset fed to the supervised learning algorithm is labelled or classified. In the 

context of malware detection, the dataset used for training supervised learning will state 

whether a file is malicious. Algorithms used for malware detection for supervised 

learning are K-Nearest Neighbor, random forest, decision tree, linear SVM, logistic 

regression and Gaussian Naive Bayes [19]. Unsupervised learning uses unclassified data 

and aims to allow the algorithm to interpret the results it generates. Classification of 

malware is a typical unsupervised learning technique. Reinforcement machine learning is 

an area that focuses on allowing the algorithm or agent that the algorithm controls to 

adapt and react to an environment. The training of reinforcement machine-learning 



 

36 

 

algorithms allows the algorithm to find solutions, and then those solutions are given 

scores based on criteria. Most of the existing malware research that uses reinforcement 

machine learning is targeting methods to avoid anti-malware detection. Adversarial 

machine learning research aims to help researchers set up better safeguards against 

malware. Practical Black-Box attacks against machine learning suggested that defenders 

can increase the attacker’s cost by training models with higher input dimensionality or 

modelling complexity [19].  Experimental results indicate that these two factors increase 

the number of queries required to train substitutes. 

Different machine-learning algorithms have different strengths when using them 

to identify malware. Anti-malware applications in home and enterprise environments will 

want discrete decision-making when determining if a file is malicious.  The anti-malware 

application is tasked with quarantining, blocking or deleting applications it thinks are 

malicious. Overfitting will reduce the effectiveness of machine learning outside of the 

research space. Machine learning will train to a dataset and produce results based on the 

same dataset. An issue called overfitting arises when the trained dataset and training are 

specific to the dataset. The results are less accurate when testing on new or different 

datasets.  The DeepXplore team stated that overfitting is a cause of poor performance of 

machine learning in edge cases [33]. Checking a hash of a file to determine if a file is 

malicious is not machine-learning; it does demonstrate that having a single feature to 

check is only valid if the dataset contains all current and future malware. Feature 

selection is vital to reduce overfitting. Increasing the number of features to check is 

computationally more expensive. Chih-Ta Lin et al. proposed a methodology to reduce 

feature sets. They found that reducing to 100-1000 selected features was sufficient to 



 

37 

 

maintain equivalent micro-precision. Reducing the feature dimension to less than 1% 

would allow time cost savings of 99% in high-dimensional feature spaces [34]. 

Classification of malware into families or types is an exercise to group malware. 

However, the impact of inconsistent classification naming conventions lessens as the 

machine-learning algorithms will separate applications into groups and not generate 

classifications’ names.  

The order of commands in an executable can determine if an executable is 

malicious. Early static analysis methods would check for a particular sequence of 

opcodes to determine maliciousness. Malware authors adapted and reordered the 

executable so a simple scan would no longer flag an executable. Packing an executable is 

a method to compress and can be used to obfuscate an executable. Attackers packing and 

compressing their application requires that the researcher unpack the executable before 

most static analysis techniques are executed. The prevalence of packing in malicious 

executables leads to many models learning a direct (but unhelpful) equivalence between 

“packed” and “malicious.” [34] Malware authors must choose between packing and not 

packing an executable. Suppose an executable is packed, requiring another file or 

memory to store the unpacked code. Having extra file writes increases the chances of 

detection and gives analysts a better starting point during analysis.  

Control flow graph (CFG) techniques for malware identification and classification 

are of interest as intermediate languages. Techniques described as part of SAIL and 

MAIL [35] use opcodes to create CFGs. Converting to an intermediate language will not 

change the order of function calls. For example, MAIL uses control instructions such as 

JMP, RET and LOOP to preserve how the malware is executed. The application flow is 



 

38 

 

converted to graphs which are used to determine patterns that represent malware. The 

researchers who created MAIL could produce false positives using minimal graphs, and 

large graphs can produce false positives.  The number of opcodes to group is a common 

topic in malware opcode research.  

One method of preparing data to be used for machine learning is to arrange 

opcodes into sets. If a set is kept in the same order, it is called an n-gram. The n in n-

gram can also be replaced with the set size to be more descriptive. Adjusting the n-gram 

size from a 2-gram to a 5-gram is computationally more expensive during the machine-

learning process. Research from 2014 found that the best results were obtained from a 5-

ngram [14]. However, other papers with different feature reductions found that the four-

gram model demonstrated optimal performance regarding the final accuracy compared 

with the five-gram model and high gram [36]. This impact can be lessened if the feature 

size is reduced. Removing opcodes of little value is a technique to reduce the feature size. 

The removed opcodes could be codes that do not occur very rarely or codes that do not 

change the result. The NOP or no operation opcode could be a candidate for removal if 

the machine-learning algorithm concerns itself with only the control flow of the 

executable. The growth of unique opcodes tuples in Android software is manageable. As 

the number of n-grams grows, the number of tuples increases linearly at first and 

gradually becomes stable [37]. Opcode n-gram research is not mutually exclusive with 

other methods. Researchers have found that by using decision tree machine learning and 

then applying the 3-gram, its accuracy is 16.7% higher [36]. 

Opcode research has branched from detecting malware that is new to detecting 

malware from the same family. Malware is said to be from the same family if the code 



 

39 

 

from previous malware is reused and modified to avoid anti-malware detection. As the 

marketization of malware continues, researchers have moved some research to focus on 

detecting if two executables are similar. Matching tuples between new executables and 

known malware has successfully detected new malware. As a counter-detection method, 

simple forms of polymorphic attacks (i.e., malware that mutates at each infection) 

targeting Android platforms have already been seen in the wild [38]. 

2.5 Intermediate Languages 

An intermediate language is another representation of the assembly or bytecode of 

the executable. Intermediate languages vary in size but do not vary by platform. 

Intermediate language research for malware splits into two groups. One group of 

researchers created intermediate languages to help further the analysts’ abilities and 

learning. The Dream++ Framework [39] was proven to aid individuals unfamiliar with 

reverse engineering. An intermediate language aims to convert a binary closer to the 

source code that created it.  

The other primary motivator for intermediate languages is to use them to perform 

a specific task. REIL [40] and MAIL [35] are intermediate languages to support reverse 

engineering efforts. MAIL was explicitly created for malware analysis. Malwise is a 

malware variant detection system. The intermediate language Wire was used to produce 

Malwise [41]. MDIL (Malware Detection using Intermediate Language) is another 

intermediate language that aims at discovering malware. MDIL expands on REIL to extra 

fine-grained features. The intermediate language includes a built-in evaluation system 

that aids in detecting suspicious malware and classifying it [42]. The target focus for 



 

40 

 

intermediate languages can change as well. Bugerya designed an intermediate language 

that follows the flow of data [43]. 

2.6 Evasion Techniques 

Malware source code is rarely available for researchers. Final production malware 

is often stripped of extras that could make decompilation easier. If malware authors left 

debugging symbols in the application, they write it would only aid in reverse engineering 

their malware. Faster reverse engineering would increase the chances of discovery and 

aid anti-malware implementations to detect their malware.  

The more difficult malware is to detect and analyze, the longer the malware will 

be effective. File hash techniques are easily circumvented but are very effective in 

detecting known malware. Once the malware file hash has been released with major anti-

malware solutions, the malware will not effectively compromise new systems. Galen and 

Steel found that various decision tree-based models showed relatively superior 

performance maintenance over time [44]. Not all machine-learning models were as 

successful. Their evaluation of the nearest neighbour algorithm dropped over fifteen 

percent compared to the result from twelve months earlier. Adapting to the new research, 

malware authors have tried increasing their capabilities for evasion. Malware authors 

have transitioned to reusing code again and adapting code from other malware authors. 

This has caused researchers to start grouping malware into families. Families of malware 

can have hundreds of malware samples in each family. The DREBIN paper sourced 925 

examples from the Android Malware Genome Project [16]. 

Permissions are used as a part of machine learning to detect malware. Malware authors 

have pivoted and adjusted their manifests and code to make the applications behave differently 



 

41 

 
to avoid detection. For example, to evade the detection, attackers may manipulate the Android 

Trojan “net.Mwkek” by injecting the permission of BATTERY_STATS, which is frequently used in 

benign apps in the manifest file, instead of removing suspicious permission of “SEND_SMS” [45]. 

2.7 Pre-Processing methods 

The Python language is considered friendly and accessible by researchers and 

programmers due to the limited syntax requirements, lack of boilerplate code and 

complex installs needed to execute Python code.  This accessibility allows everyone to 

write their libraries.  This research was driven by the requirements to run machine 

learning.  There is “no such library which consists of every data pre-processing required 

function in it,” according to the authors of PrePy [46].  This research aimed to avoid 

external libraries to avoid crossing coding boundaries that would be time-consuming for 

processing this type of data.   

If the speed decreases for the crossing coding boundaries are ignored, generalized 

libraries exist but are aimed at other tasks that prevent efficient usage.  For example, the 

DataSist [47] library uses a Jupiter Notebook as part of the library.  Jupiter Notebooks are 

not optimized for opening massive amounts of files.  According to the official 

documentation (https://jupyterlab.readthedocs.io/en/stable/user/file_formats.html) 

documents can be opened using the GUI or rely on Python coding to process the file into 

a Jupiter notebook.  Tools such as Eisen [48] will group dataset access connectors.  These 

tools still tend only to support formally structured data.  Like this research, some papers 

also have a deep focus on specificity.   

 

https://jupyterlab.readthedocs.io/en/stable/user/file_formats.html


 

42 

 

Papers can focus on topics machine learning topics such as outlier analysis and 

missing value imputation [49] or subject matter topics such as bioinformatics [50].  The 

structure of the data in the malware database prevented using existing research that could 

be adapted.  For example, the paper on bioinformatics lists data cleaning, data 

integration, data transformation and data reduction as part of the steps for data pre-

processing.  As the analysis aims at the malware binaries, data cleaning and integration 

concepts can not be revised to translate to this research.  The binary representation of 

malware is perfect, and combining the files into a larger binary is not logical.   

  



 

43 

 

Chapter 3. Malware Detection and Classification 

This chapter also presents the focus topic at the beginning of the current research, 

malware detection and classification.  By exploring the original topic, a flow for future work can 

be completed.  Information must be processed for machine learning consumption.  This chapter 

explores the advantages of re-focusing the original algorithms’ scope.  The pre-processing costs 

for binary analysis are high, and the original methods did not focus on optimizing repetitive runs 

needed for future research and reducing the costs for pre-processing.  Using non-parallel pre-

processing increases costs for duplicating the original topic and limits future research 

opportunities, such as increasing the size of n-grams.   

3.1 Opcode Techniques for Detection and Classification 

Using opcodes for machine learning is a specific implementation of static analysis that 

utilizes machine-learning techniques to classify and detect malware. Previous research has been 

successfully changing the representation of the opcode input to machine-learning algorithms. 

For example, by converting the opcodes to a gray-scale image and then reducing the image, 

researchers have increased accuracy and the number of features needed to perform analysis of 

mobile and IoT malware [51]. The paper, Long short-term memory-based (LSTM) Malware 

classification method for information security, used natural language processing techniques 

called word2vec to perform their research. They stated that the limitations of the proposed 

method in this paper require high computing resources since using all opcodes and API function 

names [52]. Their future investigations will classify malware by selecting meaningful malware 

opcodes and using the same methodology in their previous works.  



 

44 

 

3.2 Augmentation and Collection of Data Inputs 

Augmented analytics makes machine learning and the data involved in machine 

learning more accessible. Ridhawi et al. stated that in addition to the processing and 

memory issues facing today's AI solutions, more important is the excessive amount of 

time needed to select a learning technique, test it, and then reconfigure different learning 

parameters [53]. Augmented analytics aims to reduce the workload for humans by 

engaging AI solutions. The malware datasets vary in what they provide and can contain 

only executables with only the guarantee that the executable is malicious in nature. 

Augmented analytics builds upon existing investments in analytics, which more likely 

than not fall into one of four categories: description, explanation, prediction, and 

prescription [54]. 

This research aimed to evaluate the size of the intermediate language and measure 

the correlation of the size change to the accuracy of existing work. Intermediate 

languages can remove barriers to machine learning. The size of the intermediate language 

will directly affect the size of the feature set. A reduced feature set size will open 

opportunities for less computing power during malware detection and classification. 

Since the feature set size will be reduced, this will eliminate the need for human choices 

for filtering or using an algorithm such as PCA (Principal component analysis) to reduce 

the feature set. In addition, possibilities for evasion will are reduced when using 

intermediate languages. The conversion to an intermediate language will filter out 

evasion techniques such as adding NOP opcodes.  

The ideal length n-gram of opcode machine-learning may increase when the 

instruction set size is reduced. Part of malware research must monitor if overfitting is 

occurring. Changing the n-gram from opcodes to intermediate language codes increases 



 

45 

 

the information in an n-gram. Overfitting causes machine-learning algorithms to perform 

poorly on new data. As the instruction set size decreases, there may be a point where 

overfitting will cause decreased accuracy.  

The availability of datasets has caused some researchers to collect their malware 

and create their datasets. The paper "Familial Classification of Android Malware using 

Hybrid Analysis" used three repositories for their research [23]. The researchers 

combined information from Android Malware Genome Project 

(http://www.malgenomeproject.org/)and related research [15, 23, 24]. Gathering malware 

using honeypots is also an option for gathering malware. Researchers will create a 

resource that looks attractive to attackers and allow the resource to be exploited. The 

damage of the exploit will be limited by using a sandbox or another technique that keeps 

the attacker’s malware confined. Datasets created by these methods must be classified as 

malware or not malware, and classifications must be universal for a single piece of 

research. Third-party services such as VirusTotal could be used to classify and identify 

malware. 

Some researchers have elected to publish their datasets in a processed form. The 

maintainers of the Ember dataset state that a wide breadth of benign samples is difficult 

to include in malware machine-learning datasets. Authors of legitimate software can be 

approached to donate their software to a malware research project. Donations reduce 

dataset creation costs but will increase time commitments to the donators when ensuring 

responsible dataset distribution. Purchasing software is possible for these datasets, but 

that will increase costs and require the publicly available dataset to modify the dataset to 

prevent the software from violating copyright issues or piracy. In addition, the Ember 

http://www.malgenomeproject.org/)


 

46 

 

dataset does not offer the binaries or the assembly generated from the assembly. This 

processing would stop this research from moving forward with the Ember dataset. 

In situations where the original malware dataset is unavailable or the dataset aged 

significantly, several other large datasets could be used. For example, the Microsoft 

Malware Classification Challenge was announced in 2015 and published a vast dataset of 

nearly 0.5 terabytes, consisting of the disassembly and bytecode of more than twenty 

thousand malware samples [9]. An additional option provided by the paper Malware 

Detection Using Gradient Boosting Decision Trees with Customized Log Loss Function 

used the FFRI Dataset from MWS [55]. The 2019 paper used the current dataset, but 

MWS has continued to produce datasets for the consumption of researchers.  

Using available datasets will reduce the work required to research in malware 

analysis. Honeypot collection will favour collecting known viruses, and targeting specific 

malware will be impossible.  Adapting a known dataset convention will allow better 

comparison of results and avoid problems other researchers face. There is no accepted 

standard for malware classification. Therefore, the first challenge is to identify malware 

as malicious. Performance Maintenance Over Time of Random Forest-based Malware 

Detection Models research uses the Brazilian malware dataset. 

(https://github.com/fabriciojoc/brazilian-malware-dataset) The Updroid [24] paper stated 

that “ ’Anti-Virus’ have different standards for naming malware and malware families,” 

the researchers collected 342 family names from the internet. During this research, a data 

warehouse must maintain the differences in the dataset information.  

  

https://github.com/fabriciojoc/brazilian-malware-dataset


 

47 

 

3.3 Limitations of the current pre-processing 

File-targeted malware analysis aided by machine learning requires a vast number 

of files. A dataset cannot change attributes such as the size of the files to accommodate 

better methods. For the malware to be used in machine learning, a binary must be 

processed with other binaries and placed into a dictionary, array or vector. This process 

involves the combination of hard drive access and CPU processing. It was found that the 

relationship between hard drive access and CPU processing is not tightly coupled. A 

faster hard drive may not decrease the processing time consistently. The original topic 

stated that the entire process took two days. As this research required similar processing, 

two days were at the edge of reasonability as troubleshooting and testing would take time 

for the new research. There are only a few intermediate languages to use. Recreating the 

original topic and additional processing needs of a few intermediate languages required a 

two-day processing time. At this time, it appeared unachievable using the current 

hardware. Being unable to run the original code in a timely matter focused this research 

on optimizations to overcome these limitations and aid future research. 

  



 

48 

 

Chapter 4 Methodology 

This research aimed to expand knowledge for pre-processing data using Python for 

malware datasets.  The measure of success for this research varied across environments.  Data 

processing foundations require discussing the code used in this research and the code solutions 

that would typically solve this problem.  Despite Python’s virtual machine abstraction, 

implementations of parallel processing dictionaries run differently using different hardware.  

Section 4.2 reviews the systems used to compare the environments accurately.   

4.1. Machine-learning Data Processing Foundations 

In order to process the malware data using the original topic’s method, the malware 

must be manipulated from a large set of files to objects representing the data.  This research 

focused on a section of code that counts occurrences of 4-gram hex strings that the original 

topic generated from a binary representation of malware in the dataset.  The goal of this 

process is to count every sequential combination of 4-grams that exists in the malware files.   

4.1.1 Pre-Processing Specifics for Malware Machine Learning 
The code from the previous research is representative of the dataset that is used in 

most of the previous research on this topic.  Many of pre-processing goals is to get a data 

structure that can report quickly on number of occurrences of an item.  This research shifted to 

solve this problem as it was apparent that the time taken for pre-processing would hinder 

current research efforts. The source topic used dictionaries to count occurrences of items. There 

are many data structures in Python, but dictionaries are well suited to this task.  A dictionary has 

a key and a value.  There can only be one occurrence of any key.  The lookup time on keys is 

O(1) and performs very fast in Python.  Following the previous research, a large amount of time 

for the pre-processing was spent reading files and putting the information in dictionaries.  The 

time taken is more important when looking at how one counts items.    



 

49 

 
4.1.1.1 Array Implementation 

 
Initial efforts to increase the efficiency of pre-processing involved using arrays.  Binaries 

have limited scope and processing binaries could have reasonable methods of adaptation of 

techniques to increase timing.  Counting occurrences of a 4-gram occurrence was focused on as 

it seemed important to solve the issues with slow execution in general.  A 4-gram in hex can be 

converted to an integer.  Arrays in Python are O(1) for access.  Using an index the value in the 

array can be accessed. Creating an array with a size of 4294967295 was explored as an option.  

This solution proved to be a slower method to count the occurrences of the n-grams.  Significant 

time slowdowns during array creation and mapping.  The data structure was just too large to be 

effective.   

4.1.1.2 Dictionary Properties 

 
Dictionaries allow quick access to a key and slow access to values.  Like a paper 

dictionary there is a key or word that will lead to a value or definition.  When a dictionary is used 

to count occurrences of an item finding the highest one, two or more items involves going 

through every entry in the dictionary.  The advantage of using a dictionary is during the creation 

of the summarized data.  When reading data, the occurrences are likely to be in a random order 

and avoiding searching through a data structure is preferred.  Generally, arrays and linked lists 

are not used as finding an item involves in the worst case a search of the entire data structure.   

4.1.1.3 Malware Machine Learning Specifics 

 
This research was focused on improving the execution of the pre-processing based on 

previous research.  Previous research and other research that includes malware will have certain 

characteristics.  Binary analysis is based on decomposition of binaries.  Binaries tend to be 

smaller files when compared to processing traditional datasets.  Malware databases grow by 

adding more binaries rather than adding a row to a file or database.  This creates a specificity to 



 

50 

 
optimize for this type of research.  Processing binaries switches between CPU and hard drive 

reads.  This structure also prevents traditional methods of improving processing speeds.   When 

loading from a database, table or large text file a large set or all the data can be loaded into 

memory.  The original research’s malware database size exceeded possibilities for this as it is 

500GB.    

4.1.2 Replication Process and Results 
A baseline must be set between using opcodes for the machine learning processing and 

using an intermediate language.  The original topic must be reproduced and measured as part of 

developing a baseline.  As this research was to discover the effects of changing from opcodes to 

an intermediate language, a new baseline must be established without the additional steps.  To 

get the success rate for malware detection, the researchers used image analysis to tune their 

detection method further.  A measurement before this step would be more helpful for this 

research since a bitmap representation of a file is static, and the concepts of opcodes and 

intermediate languages would not change the outcomes.   

Analysis of the processing of the files into usable data that can be fed into a machine-

learning algorithm requires that the input and output be known—the input in the original topic 

consisted of two files for one piece of malware.  The asm file contains a representation of the 

assembly code.  The bytes file contained a HEX representation of the file malware, and its 

processing was the bottleneck for processing in the current research.  Creating temporary files 

can store pre-processing steps.  Temporary files allow the code to check for their existence and 

skip processing if the files exist.  Future runs can skip ahead to the machine-learning part of the 

code to allow for quick execution.   

The reproduction of the original topic faced issues around the discontinuation of Python 

2, the isolation of the research environment, the unknown properties of the cloud server used 



 

51 

 
and the lack of metrics included in the research write-up.  The hardware used for the local 

server reasonably matched the CPU specifications at the time of publishing for the original topic 

[56]. The hardware configuration is listed as a Google compute engine with 104GB of memory 

with 16 CPUs. The hard drive space was listed as 1TB, but the speed was not measured.  The 

server used during this research is a 24-CPU machine with 72GB of memory.  The hard drive 

space consists of hardware RAID 5 and RAID 1 with 4TB and 1TB, respectively.  The server could 

have expanded the memory, but during all testing, the memory was not fully utilized, and the 

swap file was not engaged.  The paper listed Debian as the operating system used and continued 

to state that any operating system could be used as long as the libraries could be supported.   

The run time of the full version was listed as two days, with most of the time spent on 

feature engineering.  As that is a long time for a single process to run, steps were taken to 

obtain checkpoints in the code to resume a previous run and verify that the results of the run 

were successful.  The code changes were made, and it was established that this hardware took 

significantly longer to get the modelling part than two days.  The code was run to completion 

using the best single model.  The result was uploaded to Kaggle for verification.  Kaggle 

truncates scores to prevent some competitive advantages.  A lower score is better, and the 

paper used as the source for this research scored 0.00283.  The reproduction of the original 

topic yielded results of 0.003 and 0.00675 for a small and large test set dataset.  The run was 

successful, but the results took eight days to complete.  The source of the slow results needed 

to be addressed; otherwise, testing of new methods would be significantly hampered. 

4.1.3 Code Changes 
To standardize the research results, the stability needed to be improved.  The original 

code was written in Python 2.7.  A Python virtual environment could easily handle this 

requirement.  The packages in the environment caused issues.  The packages were not 



 

52 

 
backwards compatible and had dependency problems.  Challenges around the upgrades 

appeared as upgraded packages would not be compatible with Python 2.7.  The upgrade tool pip 

would not support the language’s age and refused to function for security reasons.  The public 

repository for pip refused all requests due to the older environment.  A local server was able to 

solve the security issues, but the change introduced issues with versioning, making version 

compatibility a manual process.  An environment was built that could support the original 

topic’s code, but it was a poor fit for changing the code.  If results were produced using 

packages past the end of life would allow for speculation on if the libraries were the issues for 

the results.  Upgrading the code might also provide relief for the execution timing issues. 

There were many versions of a dictionary that were capable of parallel processing 

written as part of this research.  As mentioned in section 4.1.1.1 an array implementation was 

tested.  Overhead consistently created issues for decreases in time to complete the process.  

Section 7.2 shows that the number of messages changes the time to complete.  This 

optimization was used to complete previous versions of the algorithm and the algorithm that is 

described in this paper.  The early iterations of the algorithm exposed that adding more multi-

processing or multi-threading complexity will add overhead, including management overhead 

that will drive times for processing completion higher.  Most iterations of using multi-processing 

on top of multi-threading or vise-versa resulted in times slower than the single-threaded 

method and were deemed uninteresting to furthering this research.  With the other iterations 

improvement was not significantly different from the single-threaded method to be interesting 

for research.  Using coroutines and then multi-processing allowed for more successful results.       

4.1.4 Resolution of topic speed issues 
The long code execution time prompted checks against the original topic’s equipment 

against the local equipment.  The local equipment has equivalent specifications to the google 



 

53 

 
cloud platform at the time.  The google cloud platform at the time of the foundational topic ran 

at 2.67 GHz [56].  The Google Clould Platform(GCP) will use technologies to help code that runs 

single-threaded by facilitating the CPU to run faster than the advertised speed [57]. The higher 

speed is utilized when an application stresses only one CPU and several are available and 

marketed as “turbo”.  The base frequency is the frequency at which the CPU runs.  This 

frequency is what the operating system reports.  The newest C3 machines show a base 

frequency of 1.9 GHz compared to a single-core max turbo frequency of 3.3 GHz.  It is 

reasonable to conclude that without the turbo functionality, there would be a significant change 

in the time it takes to complete a process. The test results include information to confirm 

whether this technology changes the results.   

4.1.5 Standardization for Future Machine-Learning Research Involving Malware 
This research moved focus to provide foundational support for further research on 

optimizing machine learning focused on malware.  This research could be generalized to any 

research with a dataset with a massive amount of small I/O inputs mixed with high CPU usage 

between the inputs.  To advance research for malware-based machine learning, examples of 

measurements are taken of a core piece of the data transformation process.  These 

measurements could be used to evaluate the option to optimize code.  The measurements 

taken were expanded upon and showed the execution time difference between multi-threading, 

multi-processing and the combination of coroutines and multi-processing.   

Statuses given by the operating system are used as reference points but can not be 

trusted.  The conditions for activating a turbo CPU core can not be safely assumed.  Measuring 

the difference between the CPU speeds is difficult as profilers are also part of the ecosystem 

and may cause conditions that stop single CPUs from activating the turbo.  Chapter 4 explains 

the measurements used to describe the systems and Google Cloud Platform’s turbo.  Chapter 4 



 

54 

 
continues to describe the measured differences between the systems.  Chapter 7 demonstrates 

the disconnect between the expected results from system to system and make 

recommendations for parallel processing, including reasons to exclude results that represent the 

best that a system can complete a task. 

4.1.6 Task Selection 
The pre-processing is necessary to feed into the random forest algorithm in the source 

topic and vary on what was to be generated.  The source topic used an image-based input to the 

algorithm and frequency analysis.  The code selection to monitor and optimize was based upon 

the high-CPU usage of this section of code and the need to flip between hard drive activity and 

CPU activities.  It would be possible for any data pre-processing to combine data into a large file 

or database and then process the larger file at once.  The code selection aimed to avoid 

monolithic data processing as it reduces the opportunity for optimization and changes the focus 

from processing data to data warehousing. 

4.2 Systems Measurement  

 

 

4.2.1 Goals of Environmental Measurement  
The time to complete a task is the success metric used for this optimization. The system 

test used has incorporated several tasks that would cause difficulty for a simple solution. Using 

code from the winner of the Microsoft Malware Classification Challenge (BIG 2015) [9] and the 

source data [58] from Kaggle, who hosted the machine-learning competition. The code and the 

dataset are ideal for this testing since it exposes issues with using Python to complete tasks 

concurrently. As part of data preparation, the code reads from files, performs a CPU-intensive 

operation and combines the result into a single object.   

A complex process was desired to test the dictionary processing solution to introduce 

pitfalls that would occur when machine-learning practitioners used it. Many machine-learning 



 

55 

 
preprocessing tasks will involve a data reading step, data processing and then combination into 

a final data structure for future usage. This activity will require I/O from a data source and CPU-

intensive operations. Multi-threading and multi-processing have different strengths and 

weaknesses in Python. Multi-threading is better suited for I/O, and multi-processing is better 

suited for resource-intensive operations. 

During data preparation for a machine learning task, counting occurrences are common.  

In many machine learning applications, the processed data may not be defined until further into 

the research process.  Many malware machine learning researchers will filter low occurrence 

data but only know what that data is once the data is processed into data structures.  A Python 

dictionary takes two inputs, a key and a value.  The underlying code for a Python dictionary uses 

a hash table [59].  Dictionaries are tuned to retrieve keys efficiently.  Finding a specific value in a 

dictionary may require checking every key.  The keys of a dictionary are unique.  This data 

structure allows for efficient totaling of random objects in a random order but relatively high 

costs to find the highest total.  

4.2.2 Python Implementations of parallel processing 
Python implements three different kinds of parallel processing.  The two types of 

parallel processing match the capabilities of CPUs.  Modern CPUs have multiple cores and 

multiple threads inside each core.  Cloud infrastructure can create machines with multiple cores 

and modify the number of threads per core.  Decisions on how to structure the execution of the 

code in Python need to address these different configurations.  By measuring multi-threading 

and multi-processing under different situations, this research demonstrates the differences in 

execution time to provide the pre-processing needed for efficient execution.   

  



 

56 

 
4.2.2.1 Muti-threading 

 
Multi-threading uses one CPU and allows for several executions to be completed at the 

same time. The limit on threads is total CPU power minus the cost of task switches and 

synchronization overhead [60]. As requirements for more complex CPU-bound applications 

increase, Python threading becomes more suited for specific tasks with delays that are 

hardware based.  User interfaces such as keyboards and hard drive reading are often 

encouraged when opportunities for threading are being evaluated. Tasks in different threads are 

scheduled. Scheduling allows processing to continue when unknown delays in execution, such as 

waiting for a hard drive arm to spin to the correct location.   

All processes running in parallel using multi-threading must be delayed or put to sleep at 

some point since a single CPU can only execute one instruction at a time. Python will choose the 

thread that is running through cooperative and preemptive scheduling. Cooperative scheduling 

occurs if a thread knows it will be waiting or idle and signals to the scheduler to give another 

thread a chance to execute. Preemptive scheduling occurs when the scheduler forces a thread 

to sleep. Periodically Python will force a thread to allow for another thread to run [61]. As 

Python does support cooperative scheduling, the implementation shown in this paper uses 

threading for socket connections for its parallel operations.    

Threading allows for shared access to instances of objects.  An instance of a dictionary in 

Python has challenges that a concurrent dictionary has in any language and challenges 

associated with the Python language.  A concurrent dictionary must ensure that locking prevents 

adding keys until the dictionary can report that the key has been created.  Counting occurrences 

of a string in the files is the goal of the testing methodology.  The update action can use mutexes 

to avoid issues of lost data.  High-level languages tend not to allow the locking of data structures 

by row or key.  A custom data structure would be needed to ensure thread safety, or the 



 

57 

 
language would handle the locking, and the transaction would be transparent to the 

programmer.  Assuming a dictionary contains a key of “A” and a value of 2, Figure 5 shows the 

process for a safe update.  The code using mutex would check for a value in the dictionary and 

lock all changes that involve the key “A.”  After locking the value, a thread would be allowed to 

process the update to the dictionary.  Upon completion, the thread would signal to the mutex 

mechanism that it is done, and then the update on thread two could occur.  An update becomes 

an addition if the key is not already present.    

 

Figure 5 Dictionary Update Using Full Dictionary Locking 

 

Adding a new dictionary key will force a lock for the entire dictionary without an outside 

data structure.  In the example in Figure 5, the key already existed.  If the key does not exist, 

then values can be corrupted in the dictionary depending on the mutex implementation.  If the 



 

58 

 
access is not concurrent, only one value can be checked at a time.  Having only one value 

available effectively locks the entire dictionary.  Storing the active key in the locking mechanism 

will lock the entire dictionary.  The Big O notation for key retrieval in a Python dictionary is O(1).   

Checking for a value in the locking mechanism could not beat the O notation of checking for the 

value in the dictionary itself.  There are some real-world issues with dictionaries becoming too 

large.  The target dictionary will be slower than keeping a separate list, but it is unlikely to 

become significant.  If the mutex is not used, the dictionary determines if an add or update 

should occur, as shown in Figure 6. 

 

 
Figure 6 Dictionary Update Using Single Value Locking  

 

Python has locking mechanisms and mutex for programmers to implement their 

concurrency solutions.  The mechanisms are unable to lock part of an object.  If a dictionary 

wishes to lock a key, then the entire dictionary must be locked.  Other data structures, such as 



 

59 

 
arrays, have the same requirement.  The mechanism to ensure thread safety in Python is called 

the Global Interpreter Lock (GIL).  

The GIL locks on all threads can quickly cause significant runtime increases compared to 

a version that does not have multi-threading.  Python the Global Interpreter Lock (GIL) to ensure 

that only one thread at a time makes forward progress [62]. The GIL does not activate when 

multi-processing is used.  The GIL locks on threads are limited to Python code.  There are 

countless activities that Python code initiates that would not run in Python.  System calls in 

Python get changed in the byte code to C.  These calls continue independently from the GIL.  For 

example, reading from a file and other I/O activities do well in threads since each thread can 

start an I/O operation and continue until completion, independent of GIL locking.     

The GIL has been a discussion topic for Python developers due to the speed issues 

observed in some implementations.  Jesse Jiryu Davis has demonstrated that the GIL’s pre-

emptive locking is not perfectly thread-safe without correct coding [63]. Removing the GIL from 

Python has been attempted several times.  Larry Hastings, a core Python developer, proposed 

removing the GIL in 2015 with his project Gilectomy [64]. This project does not have recent 

updates.  Larry stated that he needed to explore new ideas in 2018.  There continues to be 

attempts to remove the GIL.  The nogil project first started in 2021 [64]. The project has recent 

updates but has not been merged into the core Python development stream [65]. 

4.2.2.2 Muti-Processing 

 
Multi-processing is another method of execution concurrency in Python.  Mulit-

processing will execute independently of other processes and the main Python thread of an 

application.  Being independent, the newly created processes will not cause activation and 

issues related to the GIL.  If the newly dependent process starts multi-threading, the GIL will 

activate because of the multithreading.  Since processes can not share objects between 



 

60 

 
processes, there is no risk of collisions due to multi-processing.  If data needs to be returned 

from a process, a queue must be used.    

Queues are used to store and transfer data in Python.  Python has a specific 

implementation of a multiprocessing queue that allows information to flow from one process to 

another.  The queues are bi-directional.  In a situation where there are three processes with a 

shared queue, two of the processes can read from the queue at the same time.  If the remaining 

process sends something through the queue, there is no guarantee that which process will grab 

the information.  If the remaining process decides to read from the queue, no error will be 

detected.  In a system that pushes information back and forth on the queue, there is no method 

to ensure that the same information isn’t taken off the queue again by the same process that 

put the information on the queue.   

4.2.2.3 Coroutines 

 
Using coroutines is another method of concurrent execution available in Python.  It is a 

relatively new feature that was introduced in Python 3.5.  Coroutines are considered a separate 

technology independent of multi-processing or multi-threading.  The GIL would typically protect 

an object from multiple unsafe accesses to an object.  Coroutines are not supervised by the GIL 

and are considered not thread-safe.    

4.2.3 Evaluation Tools 
The core measure of success for this paper is the time to complete the creation of the 

dictionary and return it to the calling function. The timing is measured using the timeit library 

available by default in Python.  When the timer is started, the loader function runs the specific 

code package, which returns the dictionary, and then the timer is stopped.  The times reported 

by this method can differ significantly from those reported by the profiling tools.  The profiling 

times were often double the recorded execution time. The profiling tools showing the 



 

61 

 
percentage of the time taken allowed prototypes to be quickly discarded as the effects of the 

changes were clearly shown. As a check, the sections marked with high execution time were 

timed using the timeit library.  The percentage of time taken from the timeit trials was found to 

be similar to the percentage taken from the profiling tools. To summarize, the profiling tools 

would increase the execution time uniformly.  The profiling tools could accurately show the 

issues with the code, which aided the development of the multi-threaded dictionary.    

Scalene was created to profile Python code.  The profiler includes functionality to 

perform accounting for Python and C separately.  Scalene introduced a metric called copy 

volume.  The copy volume metric allows analysts to identify inadvertent copying, including silent 

coercion or crossing the Python/library boundary [66].  During Berger’s talk at Strange Loop, he 

discussed the issues between transferring between Python code and native code [67]. When 

Python code moves data between Python and C code the data will be forcefully recreated.  The 

recreation can get expensive for loops that have high amounts of iterations.    

4.2.4 Description of Task 
The single-threaded process to gather a dictionary for this code has three core steps. 

Load specific pieces of a file, create a sliding window of the data from the file and then create a 

dictionary based on that file.  The original code referred to sets of files, and each set would 

create a different dictionary.  The dictionaries would be added to a list and then returned.    

The ASCII file used for the data source requires processing.  The file is a HEX 

representation of malware.  The files in the dataset vary in length and have the same structure.  

The file header shown in Figure 7 shows the first five lines of a sample file. The first numeric 

portion is the addressing information and is removed from future processing.  The rest of the 

line is stripped of whitespaces and used for processing.    

  



 

62 

 
00401000 33 C0 C2 10 00 CC CC CC CC CC CC CC CC CC CC CC  

00401010 8B 4C 24 04 B8 27 EE 07 3F F7 E1 C1 EA 1D 53 8B  

00401020 DA B8 7B A3 80 0E F7 E1 8B C1 2B C2 D1 E8 03 C2  

00401030 56 C1 E8 1F 23 D8 57 8B D1 F7 D2 8D 79 FF 23 FA  

00401040 B8 25 F6 84 6D F7 E1 8B F1 81 F6 B6 01 87 F8 C1  

 

Figure 7 File Header of file 125y4VsArzkCNOGZfu6o.bytes  
 

The sliding window operations that the original code causes high CPU usage and 

significant time.  The code generates all sequential combinations of four grams by iterating over 

the file set and then iterating over the file using two loops.  Using the file in Figure 7, the first 

four values entered into the dictionary are 33C0C210, C0C21000, C21000CC and 1000CCCC.  

Figure 8 shows the scalene output for the original code from the BIG 2015 winner performing 

this task.    

 

Figure 8 Scalene Output for a control run for 20 files 

 
Building the dictionary using the single-threaded method has 89% of the execution 

reading the file and performing the sliding window to generate values.  Outside of this section is 

the combination of the smaller dictionary generated here into a larger dictionary.  The 

combination of the dictionaries, not shown in Figure 8, takes 10% of the total time.   

There are several summary operations as part of this process.  The provided dataset was 

divided into nine different classes.  Each class holds a different number of files.  The classes 

correspond to a specific malware family.  As part of the inputs to the machine learning, the 4-

grams are added to a container that represents all 4-grams in a file.  The container is added to a 

dictionary that will total the occurrences of all 4-grams across a class.  Each dictionary is added 



 

63 

 
to a dictionary that contains all class information.  This research compared the output of the 

original code to the new code to confirm that the same results were achieved.   

4.2.4.1 Research Adaptations of Single-Threaded Process 

 
The single-threaded version of the original topic performed a frequency analysis.  This 

research replaces the mechanism to add or update a dictionary by implementing tuned 

optimizations for a certain data set.  The pseudocode shown in Figure 9 shows the entire 

process.  Line 21 and 22 have been optimized for Python and was not part of the original topic.  

In Python, strings are immutable.  Any operations that require adding to a string in a loop will 

often be more efficient to use an array or avoid using a data structure that requires recreation.  

This research aims to show optimizations to create summarized data that requires high CPU and 

file reading.  The original topic handled this processing using a single-threaded process which is 

inefficient, especially when considering the sunk cost of the machines that are typically used 

during machine learning.   Mutli-threading handles high CPU workloads well.  Multi-processing 

handles high I/O tasks well. When a process requires both high CPU and I/O, the choice to mix 

multi-processing and multi-threading is available.   

The code in the parallel and non-parallel implementations contain the same core 

concepts and do not differ when focusing on how the file is read.  In this implementation 

processing one file is atomic and does not focus on better file processing techniques.  The file 

reading process was optimized and then assumed to be ideal.  The differences in execution 

focus on the summarization that occurs after the file is read.  It is easy to use parallel execution 

to read multiple files simultaneously.  As discussed in section 5.2, parallel access to the 

dictionary is difficult.  Figure 9 shows the execution of the single-threaded process.  As an 

attempt to reduce boilerplate code, the figure does not show the addition of the collective 

dictionary into the larger final dictionary. 



 

64 

 

Figure 9 Core code example for entire execution for single threading  



 

65 

 
Using multi-processing will result in the highest optimization for this specific dataset. 

The issue is that this method is not universally transferable to other applications.  Figure 10 

shows the pseudocode for the multi-processing version of the code.  The “arg_list” variable is 

used to split up the files into separate tasks and allows the code to be run in parallel.  The time 

to create the dictionary is generally faster than anything found in this research.  This version 

does limit options when looking to optimize when using dictionaries across other datasets.  The 

code processes the files in parallel and then sequentially enters all data into the dictionary.  Only 

the file read is parallel using this code.  This method will not be viable if there are requirements 

to enter values into the dictionary during the file processing.  This requirement may be present 

during file processing, where information is streamed to the client, such as processing a live 

video stream.   This method may also fall short should the entries into the dictionary become 

large enough that the small nature of the entries does not offer significant gains in time.   



 

66 

 
 

Figure 10 Pseudocode for entire execution for multi-processing without a queue 

 
Using multi-threading would allow the dictionary to be added to at any time without 

needing a queue but would activate the GIL if it was attempted.  The code from the multi-

processing example was re-executed using the multi-processing dummy import.  This import will 

map all multi-processing calls to multi-threading calls.  This change allowed the code and the 

Python interpreter to access the function with shared resources simultaneously.  This code 

change demonstrated the effects of the GIL.  Some testing scenarios showed an increase in 



 

67 

 
execution time for the multi-threaded version, while other environments showed marginal 

decreases in execution time.     

Queues are a way for multi-processing to access a shared resource.  Data can be put in 

the queue and then processed as it arrives.  Using queues can eliminate the issues around 

isolation around multi-processing; unfortunately there is a cost to use a queue.  The cost of 

initialization and serialization of the queue are significant enough that care must be taken to 

avoid code that will slow down the process rather than help it.  Initial testing using a queue was 

performed during this research.  The prototype failed integrity checks against the single-

threaded method that were not investigated as the time to complete was not going to exceed 

the times for the single-threaded method.  The error rate was less than 1% over more than nine 

hundred thousand dictionary entries.  Altering the decreasing object’s size that will be put in the 

queue, there is a decrease in time to complete.  The chart in Table 2 shows the results for a run 

using ten files.   The dictionary produced 2112591 entries.  This prototype aimed to explore the 

effects of putting large amounts of data through the queue compared to many small amounts of 

data.  The queue serialization is based on Python pickling 

(https://docs.python.org/3/library/pickle.html).  The prototype would load a variable number of 

values in the dictionary, send the values through the queue and then reassemble the values on 

the other end of the queue.  Using only ten values at a time involved a significant initialization 

and showed that sending large pieces of data through a queue was not optimal.  By sending ten 

large items through a queue, the time to complete the same process was increased almost thirty 

times over an equal amount of total data transfer.  The times were still dependent on locking 

the dictionary as the core process must reassemble the dictionary from the queue into the in-

memory dictionary.  Using a simple queue system for parallel processing only adds overhead if 

the target dictionary can only handle one change at the same time.  The difference between 

https://docs.python.org/3/library/pickle.html


 

68 

 
passing ten thousand entries and one hundred thousand entries is assumed to be due to 

environmental variance, and the high number of entries shows a plateau for timing increases.   

Table 2 

Dictionary Creation Times Varied by Queue Size 

  Size of Array In Queue 

 
Single-

Threaded 
10 100 1000 10000 100000 

Time to Complete 

in Seconds 
6.19 182.20 65.03 20.85 14.66 14.84 

 

4.2.5 Research Design  

 

4.2.5.1 Data Input 

 
The time taken for the dictionary to process entries is related to the input that the 

dictionary receives.  The testing results are generated using the same file set for each type of 

method used.  A test run is defined by size and references the number of files processed when 

assigning data to a dictionary set.  For example, a run of “5” will create two dictionaries which 

will process ten files.  Table 3 lists the statistics for the file sets and the dictionaries it produces.  

The statistics for the dataset used for the BIG 2015 challenge are included for a measure of 

scope but were only processed once in this research due to resource constraints.  The entire 

dataset is 35 times larger than the largest dataset fully tested.    

Table 3 

Dataset Characteristics 

Dataset Designation 

(Files Used per 

dictionary) 

5 10 20 25 50 100 200 
Total 

Dataset 

Total Line Count  

(In Thousands) 
478 1217 3092 3475 6330 11631 24714 876680 

Total Byte Count  

(in MegaBytes) 
27 68 172 196 351 644 1433 50847 

Dictionary 1 Size  

(In Thousands) 
928 2022 3678 5346 8320 1475 27709  

Dictionary 2 Size  

(In Thousands) 
1184 2034 2660 4285 6241 11415 17696  

  



 

69 

 
4.2.5.2 Environment  

 
This research for a multi-threaded dictionary was performed in a virtual machine using 

QEMU on a dedicated server.  The server is a Dell PowerEdge R710 Server.  The CPU runs at a 

speed of 2.67 GHz.  The virtual machine used in this research has been assigned 21 cores broken 

apart using a configuration of seven threads and three cores.  Memory for the virtual machine is 

set to 64 gigabytes out of a possible 72 gigabytes.   Memory was monitored in all testing and 

found not to be a factor in execution time.  As protection, the server was put behind an internal 

firewall with allow listing by IP address for services needed for the server.  The server is a 

security risk as it contains thousands of pieces of malware and does not have anti-malware 

protection that would automatically remove malware.  As a further precaution the libraries used 

by Python were sourced internally.   Python will gain new functionality by pulling in libraries 

using the pip command.  Configuration changes changed the target of pip downloads to another 

server internally.  The other internal server running devpi (https://github.com/devpi/devpi) 

would act as a proxy and allow for downloads that were otherwise blocked.   

To better understand the speed differences between the original topic and the current 

implementation of the single-threaded model, the equipment and environments additional 

environments were used.  Three machines were used to form nine environments to test upon.  

A virtual machine was deployed in the Google Cloud and modified in three different ways.  The 

CPU was changed between the Google Machine standard and compute family.  The original 

topic cites using the Google Compute family.  Currently the CPUs of standard and compute 

deployment are 2.2 GHz and 3.1 GHz.  At the time of the original research the google compute 

speed was advertised as 2.6GHz according to archived GCP documentation 

(https://web.archive.org/web/20150114113051/https://cloud.google.com/compute/docs/mach

ine-types#highcpu)  Two different hard drive types were used for testing.  The base operating 

https://github.com/devpi/devpi
https://web.archive.org/web/20150114113051/https:/cloud.google.com/compute/docs/machine-types#highcpu
https://web.archive.org/web/20150114113051/https:/cloud.google.com/compute/docs/machine-types#highcpu


 

70 

 
system uses the balanced persistent disk (pd-balanced).  The base operating system disk was not 

changed during any time during this research.  The second drive containing the test data was 

swapped during the different testing.  For the test data a standard persistent disk was used (pd-

standard) and the performance (SSD) persistent disk (pd-ssd) were created and attached to the 

cloud virtual machine as needed.  The testing methodology recommended by google 

(https://cloud.google.com/compute/docs/disks/benchmarking-pd-performance) calls for sixteen 

ten gigabyte files which exceeds the limits of the provided for the base operating system.  To 

match the original environment as much as possible Ubuntu was used.  The kernel in use was 

version 5.15.0.   

The third consumer environment was added for testing to allow for the inclusion of a 

SSD.  The code and data are for malware analysis and contain malware.  As discussed above the 

datasets for the tests only included ascii files which avoids the risk of infection.  The consumer 

system has a CPU speed of 3.475GHz.  The operating system is Gentoo and runs a custom kernel 

version 5.15.80.  The consumer system has a Seagate BarraCuda drive running at 7200 RPM.  

The SSD in this system is a with an advertised sequential read of 560 MB/s.  The first 

environment’s, the Dell server, primary drive is a RAID 5 and uses a RAID 1 for the test data.  The 

server is running using PERC6/I with all drives being 7200 RPM Seagate drives.   

For consistency the systems have had common names assigned to them during this 

research.  The Dell Server contains the host operating system and the virtualized operating 

system.  The two environments will be referred to as Server Host machine and Server Virtual 

machine.  The GCP cloud environments had different configurations.  The primary operating 

system was placed on a HDD.  This drive is common throughout all the GCP configurations.  The 

CPU (and memory) were changed as well as the secondary drive.  While it is the same system 

this equates to four different environments.  The name convention for these environments is 

https://cloud.google.com/compute/docs/disks/benchmarking-pd-performance


 

71 

 
“Google Cloud” or “GCP” followed by the CPU package used, followed by the hard drive used.  If 

the CPU or hard drive is not important in the current topic it was removed from the name.  For 

example, Google Cloud standard hard drive does not include the standard or compute CPU in 

the hard drive testing since CPU type does not change the speed a hard drive reads.   

The operating system for the server class host machine uses Arch Linux and the guest 

machine uses Ubuntu.  These operating systems use Linux kernel version 5.18.15 and 5.13.0-44 

respectively.  Overhead for the virtual machine and host were lowered as much as possible.  The 

host is headless and has no running X server.  The machines are network isolated in testing 

primarily due to the concerns about using this dataset with a secondary side effect of updates 

and other automatic processes not being able to activate during a test cycle.   Just before the 

cloud server testing the network connection is removed from the server and restored after the 

testing.   

The Python version from the BIG 2015 source code was 2.6 and was upgraded to Python 

version 3.8.10 used in the final testing.  Minor functional modifications to the code were made 

to allow the code to run.  The final code required that the range command be used instead of 

the legacy Python 2 equivalent.  For uniformity the original Python virtual environment was 

created and then copied and then sourced to the other environments.   

4.2.5.2 Virtualization using QEMU 

 
QEMU options for the virtual machine include optimizations were made to increase the 

execution of the code.  Intel processors can utilize Non-Uniform Memory Access (NUMA) while 

running virtual machines.  NUMA is a share memory architecture that describes the placement 

of main memory modules with respect to processors in a multiprocessor system.  This allows all 

memory requests to have nominally the same latency [68]. Tests were completed to compare 

results using NUMA by using the numactl as part of the startup command for QEMU.  There 



 

72 

 
were no changes to results when using NUMA and not using NUMA.  After testing with sysbench 

and a forty-file file dataset for dictionary operations there was no difference between the times 

produced.  All the final results were completed without the NUMA option. 

CPU pinning was implemented and reversed to gain increased execution time.  Figure 11  

shows the output of the lstopo command on the Server System.  The output shows that the 

CPUs are in different sockets.  Online recommendations to pin the socket to the virtual machine 

were completed.  The pinned socket would reduce management needed by the kernel.  The 

pinned socket in the virtual machine showed no significant change in execution times.  As the 

system would lock the entire socket to the virtual machine it limited the number of CPUs 

available.  The host system required at least one CPU.  This would leave only one socket 

available to the guest and halved the number of CPUs.  Virtual sockets were also tested with no 

increase in performance found.  Brief operating system performance slowdowns were observed 

using configurations with high socket counts, such as 7 sockets and 3 CPU cores, but this was not 

observed during testing. As the socket pinning for the virtual machine did not increase 

performance a single socket with many CPUs was used in the virtual machine.  The final 

configuration of the virtual machine is shown in Figure 12. 



 

73 

 

 

Figure 11 Output of lstopo command for Server System 

 
The virtual machine uses the enable-kvm flag with the option to use l3-cache.  These 

switch and flags will allow the virtual machine hypervisor level 1 access to the CPU.  The L3 

cache variable was set for the virtual machine at different amounts, but the guest system would 

not recognize the changes.  L3 cache flag was tested and found marginally faster than not using 

the L3 cache flag.  Using different amounts for the L3 cache including matching the host L3 

cache of 1 did not display any differences in performance during benchmark tests.   



 

74 

 

 

Figure 12 Output of lstopo command for virtual system 

 
Linux virtio drivers are used for network, video and hard drive devices. This allows for 

better performance as it avoids the need to emulate physical devices.  

(https://wiki.libvirt.org/page/Virtio)  Instead of using VNC inside the virtual machine, the spice 

client is used to offload processing for remote control on the host and not the guest.  Hard 

drives use the flag aio=threads for the attached hard drives.  The flag forces host user-mode-

based threads.  (https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-

virtualization_tuning_optimization_guide-blockio-io_mode)  Setup testing found that hard drive 

performance was higher than using the default “native” method.  The larger drive on the virtual 

machine uses direct mounting from the host system partition.  The main drive on the virtual 

https://wiki.libvirt.org/page/Virtio
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-blockio-io_mode
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-blockio-io_mode
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-blockio-io_mode


 

75 

 
machine uses a QEMU image in the raw format.  Snapshots of the drives were avoided to reduce 

the possibilities for additional time for I/O and testing required.  Memory available in the virtual 

machine was set high enough that the limits for the memory were never exceeded.   

4.2.5.3 Monitoring and Gathering Results 

 
Full assessment of machines used for data feature creation must be measured to 

accurately determine the cause for slowdowns of the running code.  There has been 

developments that aid developers improve efficiency in their existing code.  Tools such as PySpy 

and Scalene were used to analyze a solution for a multi-threaded dictionary.  As research is 

focused on starting a solution and reproducing results, mid-pipeline tools for solving speed 

issues would not produce the results needed for evaluation.  The Linux tools hdparm and fio 

were used for evaluation of the hard drives.  CPU speed was tested using the sysbench tool.  For 

CPU evaluation the tool will calculate primes and measure the execution time.   

  



 

76 

 

Chapter 5. Environment Measurements and Evaluation 

Since the execution of the complete code from the Big 2015 research was not 

consistently running in a timely manner, tests were designed to identify the nature of the 

execution of the code and how to get future code to run consistently and reliably.  The original 

code contains a hard drive read, a high CPU activity and an output.  To compare execution fairly, 

an understanding of the hardware’s capabilities must be established.  Once the hardware is 

evaluated, then factors then the code can be evaluated further for further opportunities for 

faster execution.  It was found that timed results from running the code did not contain a linear 

relationship to the hardware used.  Evaluation of these results can allow for more realistic 

expectations when running future code and reporting on times for completion of execution.   

5.1 Results from Testing Environments 

 

5.1.1 Hard Drive Results 

 
Hard drives were tested using multiple types of read testing using fio 

(https://fio.readthedocs.io/) and hdparm (https://sourceforge.net/projects/hdparm/).  The set 

of commands was executed in eight different scenarios.  Hard drive testing tested the host and 

virtual machine on the local server.  The systems were tested using the hard drive running the 

operating system and a hard drive that did not run the operating system.  The primary drive 

refers to the partition that holds the operating system.  The secondary drive refers to the drive 

that holds the dataset.   

 The server class host system is the only system that holds multiple partitions on one 

drive.  A host system test on the operating system hard drive is referred to as the server-class 

virtual machine primary drive, and a test of the second drive is referred to as the server-class 

virtual machine secondary drive.  The server class host primary drive contained a raw file for the 

https://fio.readthedocs.io/
https://sourceforge.net/projects/hdparm/


 

77 

 
virtual machine.  The secondary hard drive is mounted in the virtual machine directly.  Testing 

for the server-class host physical secondary drive requires the shutdown of the virtual machine, 

as the drive will corrupt if anything is written to the secondary drive from the host while it is 

mounted in the virtual machine.  The remainder of the hard drive tests were performed in the 

environment native to the environment.  The consumer system does not have a virtual machine, 

resulting in tests completed on the physical hardware.  The cloud system does not have physical 

machine access, so all tests were completed on the virtual machine.  The cloud system uses a 

non-operating system drive in all tests.   

The first test was to determine the general properties of hard drive activity.  The 

systems have optimizations for hard drive reads.  One common optimization that systems will 

have is to cache data that has been seen before.  The hdparm test was run in the environments 

to determine the difference between cache speed and the random read speed.  If the drive uses 

caching, the results would not be consistent and lead to unfair hardware comparisons.  Most 

datasets will exceed the limits of hard drive caching.  The results from the virtual server class 

machine were thirty times or faster; this increase prompted the removal from the result set.  

The elimination of the data was justified as it was clear that more favourable results resulted 

from caching. 

  



 

78 

 

Table 4 

HDParm Hard Drive Speed Results 

 

 

5.1.2 Fio IO Engine 

The fio tool can utilize the psync engine or the libaio engine.  The fio tool can run drive 

tests measuring sequential reads or random reads.  The base command for these tests was: 

fio --name=read_iops --directory=$TEST_DIR --size=10G  --time_based --runtime=60s --

ramp_time=2s --direct=1 --verify=0 --bs=4K --iodepth=256  --group_reporting=1 

These settings are based on Google compute’s recommendations for testing hard drive speed 

(https://cloud.google.com/compute/docs/disks/benchmarking-pd-performance). The GCP 

recommendation uses the libaio engine.  The psync engine was run in addition to the libaio 

engine.  During the research, it was important to confirm the effects of the hard drives while 

using virtualization. Reading using psync will use synchronous reads that will block further reads 

to the hard drive.  Reading using libaio will use asynchronous reads that will not block further 

reads.  The results of these tests are shown in Table 5. 

  

https://cloud.google.com/compute/docs/disks/benchmarking-pd-performance


 

79 

 

Table 5 

Fio Read Speed Results  

 
Asynchronous reads will result in better performance.  The changes in performance 

between physical and virtual are listed in Table 5.  The table demonstrates the differences 

between the systems.  The physical server location for GCP machines was chosen based on low 

usage.  Over the two tests on each server, the results for the SSD were more consistent than the 



 

80 

 
standard drive.   The standard drive’s performance was significantly variable compared with all 

the machines.  Sequential read tests were also more prone to higher variability during the tests.  

The file format of the virtual machines on the server class machine was the “raw” type provided 

by the QEMU image command.  The host system can not read this format until it is mounted 

using an offset.  The secondary drive was mounted in the virtual system as an entire partition 

using the aio=threads flag.  Mounting the second drive in the virtual machine can be 

accomplished by creating a local file on the secondary host drive or mounting the partition 

straight into the underlying virtual machine.  The secondary drive in the virtual machine running 

faster than the secondary drive on the host shows that the aio=threads flag with the direct 

mounting is the best choice. 

Using a secondary drive for the data was based upon more favourable results when 

using random reads.  The data sets used in malware analysis tend to be large numbers of small 

files rather than processing data from large databases or clean summarized data.  Table 6 shows 

the hard drive read differences between the different drives.    The GCP platform does not allow 

for easy transfer of the operating system partition between the standard drive and the SSD.  The 

systems could use a secondary drive to have the same dataset on two drives.  The GCP virtual 

machine could be shut down, swapped the secondary drive, and rebooted.  This process failed 

to automount the secondary drive.  Using a command to mount the drive after reboot was the 

only change to the system that occurred between the different environments. 

  



 

81 

 

Table 6 
Hard drive read comparison 

 

5.2 CPU Comparison 

There are four sets of CPU configurations used to produce the results.  With the use of 

QEMU, the server system’s host and virtual CPU speed of the host matched the speed and 



 

82 

 
capabilities of the virtual guests.  The speed of the processors is listed in Table 7.  The table lists 

the speeds reported by the operating system.  Google Cloud Compute instance states that the 

reported speed from the operating system may be lower than the actual speed.  The operating 

system does not depend on the reported speed, and incorrect reporting does not affect the 

machine’s functionality.   

Table 7 

CPU Speeds  

Machine Speed 

Percent Difference 

Compared with 

Server Class 

Machine 

Processors 

Available 

Server Class 

Machine 

2.67 MHz 0% 21 Virtual/24 Host 

Consumer Machine 3.475 Mhz 23% Faster 16 

GCP C2 (Compute 

Instance) 

3.1 MHz 14% Faster 4 

GCP E2/E4 

(Standard Instances) 

2.2 MHz 17% Decrease 2/4 

 

5.2.1 GCP Compute Variable Speed 
The investigation into the differences in execution time of the original research and this 

research was prompted due to the significant differences in the execution time of the code 

provided and the time stated to finish by the original researchers.  One goal of the mk13 

algorithm is to standardize the execution times of code for research.  The GCP Compute 

overperformed related to the results for the published speed of the server.  Google states that 

virtual machines using the compute instance may increase utilize other processors as they are 

available.  This optimizes non-parallel code to run faster than on a physical machine.  Execution 

times using the same SSD for the single-threaded process were 18.76 and 29.51 seconds.  This is 

a 36% speed increase which is reasonable when the difference between the computing speed is 

40%.  The times for the single process standard drive are 21.7 and 29.51.  This increase of 37%, 



 

83 

 
when matched with the SSD results, shows that the speed increase was not occurring for these 

machines.     

  



 

84 

 

Chapter 6. Parallel Processing Results and Recommendations 

Using different methods of concurrency is encouraged for high-volume datasets.  The 

tools provided by Python for multi-processing and multi-threading can be made more time 

efficient by avoiding queues and creating custom socket functionality. For a solution that 

requires heavy CPU usage, system calls, and data sharing between objects, choosing a 

technology to support parallel operations may not be apparent.  This research designed an 

algorithm that performs reliably across large datasets using local resources.  The algorithm 

performed second best in local environments and performed with high variability in cloud 

environments.  The variability produced for best results across all methods tested in two 

environments.  The complexity of a custom solution requires more demanding coding work 

involving more Python knowledge may deter researchers from attempting optimization. In 

addition, the added complexity of a concurrent dictionary will increase the number of lines of 

code significantly.  This complexity adds overhead that may cause an increase in runtime for 

small tasks.   

The bottleneck of process-to-process communication must be mitigated to achieve 

faster times than a comparable non-concurrency method. Splitting the incoming data without 

overwhelming the new process or thread must be balanced with the workload of splitting the 

data into smaller pieces. Processing the incoming workload required the payload to split into 

five different processors. Splitting the payload into less than five pieces would cause queues or 

socket congestion.  The congestion would cause delays causing results higher than the single-

threaded method.  The congestion was not an issue for the memory in testing, but system 

monitoring showed a spike in memory and CPU usage.  

The size and type of the queue's payload need to be balanced to achieve better 

execution times. The solution demonstrated splits the incoming files into five different 



 

85 

 
dictionaries and combines the different dictionaries into one dictionary to be returned to the 

primary process. Passing a large payload to the individual processors resulted in a slower time. 

Immediately splitting the payload into smaller pieces also caused slower times. The faster time 

was achieved by processing smaller batches, which were split into different processing 

processes.   

6.1 Implementation of Parallel Processing Method’s Code 

The code source used in this research has either been altered from the original topic or 

written.  Besides code from the original topic code, some code was from Raymond Hettinger's 

PyBay 2017 keynote talk (https://pybay.com/site_media/slides/raymond2017-

keynote/async_examples.html) that included coroutines.  The single-threaded example used 

and documented in Figure 9 is very close to the original code.  Updates for the new version of 

Python and optimizations for string addition were tested as part of the conversion.  The 

optimizations were not significant when compared to the original code.  Despite the changes, 

this code functions as the original code did.   

A loading and testing system was developed to run the tests involved with this research.  

The loading system includes function tagging that allows imports and related outputs to state 

the algorithm's version.  In all, the code base contains twenty-two different attempts for 

optimization and nine different versions of code matched with these attempts.  Five of these 

attempts are documented in this research.  The four versions are code for single-threading, 

multi-processing, multi-threading and the method tagged as mk13.  The last attempt was to 

code to document the effects of queue size, and not expected to be successful.  The rewrite of 

the single-threaded method has fifty-three lines.  The multi-processing and multi-threading have 

83 and 120 lines of code, respectively.  The mk13 code has 768 lines of code in the client portion 

and 1437 in the server portion.  The client and server were tested on the same process and, 

https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html


 

86 

 
therefore, the same server.  The idea behind client and server is one for understanding rather 

than a statement of infrastructure.   

The code base for this project shows 22456 lines of code, while the original code has 

5116 lines, and the source from the PyBay talk has 142 lines of code.  There was significant work 

developing the mk13 code, but the single-threading, multi-processing, and multi-threading code 

goals were aimed to stay as close to the original code as possible.  The research wanted a 

baseline to understand the difference between single-thread and multi-processing or multi-

threading methods.  With that baseline, the results of the mk13 code could be better analyzed, 

and understandings with recommendations for the effectiveness of these methods could be 

created.  

6.2 Data Size Effects on Execution Times 

While object instantiation makes this solution inappropriate for small datasets, the size 

of the object created is a more significant factor for the time taken. Socket communication 

between processes performed poorly when the information passed through the socket was too 

large or very small. The smaller batches used for processing helped solve bottlenecks but also 

solved issues with queues processing data slowly. Pickling of information takes time, and a 

queue can cause time loss when using tiny pieces of information, such as an eight-character 

string.  While results varied, testing using the virtual server showed that the new code was 

shifting in success direction using twenty files.  As the number of files increased, the methods 

for processing hit a consistent state.  Table 8 lists the results of the different methods.  Unless 

stated, all average times of execution were at least 7 test runs.  For example, in the table below, 

a dataset of 10 indicates that the number of files were processed at least 70.  The new piece of 

code named mk13 is slower than the single-threaded method with small amounts of processing 



 

87 

 
but increases in efficiency as the dataset grows.  Refer to Table 3 for size information about the 

processing.   

Table 8 
Virtual Server Dataset Size Runtimes  

The method using threading performs the worst.  The mk13 method starts with 

threading and then uses parallel execution to perform the hard drive reads and the CPU 

processing.  The data indicates a startup cost for this method that must be overcome before 

results are faster than single-threaded execution. The queues to communicate back and forth 

between processes are a source of delay.  Tests were run to determine the effects of queue size 

on this process.  Over a five-file run, different queue sizes were tested.  The data size stayed the 

same, but the size of the message across the queue changed.  The results shown in Table 9 

demonstrate why mk13 prefers reducing the size of messages for communication between 



 

88 

 
processes. As the message size to the internal queue increases, the activity of converting a 

message to bytes and pickling the data for serialization increases non-linearly.  

Table 9 

Multi-processing Queue Message Size Comparison 

Number of Messages Time Taken 

10 64.81 

100 65.03 

1000 20.85 

10000 14.66 

100000 14.84 

 

The code produced in this research optimizes the processing of raw information to feed 

into larger data structures.  The data structures needed must return to the main process for 

further writing.  Utilizing disk writing to avoid inter-process communication was not a viable 

solution.  The mk13 code functions like a server/client model using coroutines and sockets as 

the initial communication between the concurrent processes.   

6.3 Explanation of the mk13 Algorithm 

The mk13 algorithm mixes the different types of parallel processing available in Python.  

The typical implementation favours multi-processing and then multi-threading.  Implementing 

multi-processing can reduce GIL activation as it creates a boundary that the GIL will not cross. In 

many scenarios, if remediations aren’t taken, a shared object could lock the GIL and block the 

entire application from further actions until the object is available.  The results presented in the 

next section show that multi-threading delays are favourably reduced with processor speed 

upgrades.   

Multi-processing is used to start the file load process in the mk13 algorithm.  The 

multiprocessing can set up queues and attach them to sockets for communications with other 

processes.  Mk13 follows a client/server structure.  The server portion of the code set up Linux-

based sockets for communication between the client and server processes.  The data being 



 

89 

 
transferred is primarily ASCII strings representing HEX.  The communication between processes 

also uses ASCII to control flow.  A socket of 256 bytes was be opened between the client and 

server.  The client sends a command string that lists what is being sent, including the size and 

then wait for a response.  The grams are sent as small dictionaries to the server.  The sockets are 

simple and cannot communicate in virtual channels in two directions at once.  If two ends of the 

socket send communications without either side receiving, the socket breaks with no way to 

recover.  The management overhead is on the client as it controls the data flow.  The server will 

indicate that it is done with a request.  The client limits the number of requests to the server.  

The server communicates that tasks are complete, and the client process will send new tasks.  

This management is done through separate queues and sockets than what is required for the 

data transfer.  This management is a part of the overhead observed when this algorithm uses 

smaller datasets.   

The client process reads the file, obtain the grams from the file and place the grams in a 

dictionary.  At this point, the mk13 diverges from the multi-processing method.  The multi-

processing method would lock the entire dictionary to add the grams processed by the file read.  

It is impossible to add to the dictionary simultaneously while reading a file, as that would 

require a dictionary that can take values without locking.  There was a requirement for 

additional code in the mk13 implementation to limit the client from sending data, as the client 

could overwhelm the server process.  Earlier implementations attempted a simple queue system 

in which the client read the file and put data in the queue.  The server process would add values 

to the dictionary that it received.  The server process became quickly overwhelmed as the 

amount of data it received wasn’t based on slower hard drive reads but also the sliding window 

generation that quadrupled the data per file.  The client would send all the grams to the server 

and then wait for the finished dictionary.  The queues and sockets are quickly shut down and left 



 

90 

 
to garbage collection for cleanup.  Flow control was stable on the server class machine and the 

consumer machine.  Stability issues arose on some slower GCP platforms as the code relies on 

some activities to finish before others.  For the GCP E4 standard hard drive test, an average of 

47.03 seconds was paired with a standard deviation of 29.18 seconds.  This variability caused 

some lockups during the execution of the algorithm.  Data would be put onto a socket, and then 

execution would loop faster for either the server or client and then the server would read the 

data off the socket, leaving the client waiting forever.   

On startup, the server process communication spawns a connection broker that uses 

asyncio.  Asyncio allows coroutines (https://docs.python.org/3/library/asyncio-task.html) to 

start separate tasks for each message received.  The messages in this part of the code are to 

start the conversation between the client and server.  The server process uses coroutines to 

wait for messages and then creates sockets for data communication.  Since coroutines are being 

utilized, the server process and receive grams from other client requests.  After the data is 

transferred, the data is placed on an idle queue attached to a process responsible for combining 

the incoming data into the larger dictionary. This part of the code allows the client to input into 

the dictionary without locking the process.   

Besides the connection broker, the server process starts five collector processes and five 

sorter queues.  These are created for moving grams into the combined dictionary.  Five 

processes are created to wait for incoming data through the collector and sorter queues.  There 

is a dictionary for each process.  The data from the communication broker must be cleared as 

quickly as possible to avoid bottlenecks.  A separate process is spawned to take data from the 

connection broker and then distribute the data.  This allows the connection broker to continue 

accepting more connections.  The data is then distributed to the five sorter queues.  Each sorter 

queue receives the entire communication without filtering to avoid bottlenecks in the 

https://docs.python.org/3/library/asyncio-task.html


 

91 

 
processing.  Each of the sorter queues is processed by a matching process.  Each sorter is 

responsible for one dictionary.  The dictionary only contains a set of allowed entries.   

Each dictionary was to represent a specific piece of the final dictionary.  Since the 

incoming data was known, each dictionary was assigned a grouping of letters representing one-

fifth of the total data.  This could be accomplished more generally using hashes, but it was faster 

to assign number and letter ranges manually to each dictionary.  For example, dictionary “a” 

would contain values starting with 0, 1 or 2.  Dictionary “b” would contain values starting with 

3,4, or 5.  Each sorting process receives a copy of the incoming grams.  This results in every 

incoming gram being processed five times.  This is a trade of CPU resources for speed.  The 

multi-processing is wastefully repeating the same task but allows for eliminating bottlenecks 

that would slow the process. 

The server start releases queues after the client sends all the data.  When the smaller 

dictionaries on the server contain all the data, the five dictionaries are combined into one 

extensive dictionary.  The Python implementation of dictionary combinations is extremely fast.  

Analysis of the algorithm showed that high-cost activities, compared with the multi-processing 

method, are the serialization of data and related picking for communication.  The last 

communication between the server and client is notable but does not increase rapidly as the 

dataset size increases.   If queue and sockets costs were lower, this algorithm could likely exceed 

the performance of the multi-processing method.   

6.4 Time Results for Pre-Processing Data 

Multi-threading was typically a poor performer for this activity.  The GIL was activating 

during the processing, causing locks which delayed the execution.  This was expected as threads 

are suitable for I/O, but the heavy CPU activity would cause blocking.  The advantage this 

method has for I/O did not show any advantages in the results.  This indicates that the CPU 



 

92 

 
portion of the processing is higher than the requirements for I/O.  The GCP E2 Standard Drive 

showed a high standard deviation for all processing methods.  Only five tests were performed 

for the single-threaded method.  Compared with the single-threaded method, the times are 

worse or marginally better.  Changing the CPU speed or number of processors influences timing.  

The faster processors can overcome the GIL issues and have the ability to beat the times of the 

single-threaded method.  Hard drive speed appears to be not a significant factor in determining 

the success of this method.  The over 2200% speed difference shown in the libaio random read 

test is not reflected in the results between the consumer hard drive and the consumer SSD tests. 

Table 10 
Single Vs Multi-Thread Execution Times    

Environment 

Single 

Thread 

Average 

Single 

Thread 

Standard 

Deviation 

Multi-Thread 

Average 

Multi-Thread 

Standard 

Deviation 

Server Class Host 36.36 0.5064 59.98 0.3048 

Server Class 

Virtual 

34.36 1.958 56.48 0.9836 

Consumer Hard 

Drive 

23.79 0.1774 23.75 0.194 

Consumer SSD 24.13 1.343 23.98 0.3841 

GCP E2 Standard 

Drive 

26.7 1.102 40.91 14.56 

GCP E4 Standard 

Drive 

26.36 0.9693 28.24 0.2134 

GCP E4 SSD 29.51 1.269 31.74 0.6108 

GCP Compute 

Standard Drive 

21.7 3.13 21.52 1.076 

GCP Compute SSD 18.76 0.1403 19.39 0.1135 

 

The mk13 algorithm and the multi-processing method are the most viable options when 

choosing how to process this type of data.  The mk13 shows it can perform better under edge 

cases in the cloud.  This would exploit a lucky condition the cloud platform produces and 



 

93 

 
shouldn’t be relied upon.  The average indicates that the mk13 algorithm had issues performing 

on the cloud platform.  The tests from the server class virtual machine indicated that the 

number of processors did not significantly alter the results of the timing of the resources on the 

server that remained available.  The server class virtual machine was tested with a three CPU 

architecture with no significant change in performance.  There may be a difference between 

GCP’s implementation of virtual systems and this research’s implementation.  While the server 

class virtual machine had more processors assigned to it, all systems exceeded the number of 

processors available for the algorithm. The number of parallel processes varies due to the 

connection broker attempting to run as few processes as possible to increase availability.  With 

the mk13 algorithm’s management, the number of processes required to handle different queue 

paths, and the multi-processing of the client’s file processing, the number of concurrent 

activities will exceed most systems.  This overallocation could cause poor performance in the 

cloud and superior performance occasionally seen in the GCP E2 standard drive and GCP E4 

standard drive tests.  Another reason for the poor performance could be the cloud platform not 

being tuned to handle local virtual sockets needed for communication between the client and 

server process.  The mk13 algorithm outperformed the single-thread and multi-thread methods 

outside the cloud environment.  The host and virtual machine operating systems variably 

consume resources.  The variance in the mk13 results compared to other environments showed 

that the algorithm did take advantage of available resources better than other methods.  

  



 

94 

 

Table 11 
Multi-Process Vs mk13 Execution Times    

Environment 

Multi-

Process 

Multi-

Process 

Standard 

Deviation 

mk13 

Average 

mk13 

Standard 

Deviation 
mk13 Best 

Server Class Host 13.01 0.1959 29.2 0.2423 28.92 

Server Class 

Virtual 

12.55 0.2243 28.27 0.1288 28.04 

Consumer Hard 

Drive 

8.828 0.07998 18.84 0.1168 8.717 

Consumer SSD 9.034 0.3948 18.89 65.82 18.64 

GCP E2 Standard 

Drive 

77.43 65.82 77 36.38 13.73 

GCP E4 Standard 

Drive 

18.38 0.1738 47.03 29.18 13.73 

GCP E4 SSD 21.55 0.5469 45.83 0.8538 44.3 

GCP Compute 

Standard Drive 

14.46 0.5952 29 0.671 28.28 

GCP Compute 

SSD 

13.16 0.03502 26.47 0.3397 26.092 

 

6.5 Hard Drive Effects on parallel pre-processing 

The data shows that using the same CPU but a different hard drive will not significantly 

change the time taken for execution.  This value stability is shown in the results between the 

two consumer drive tests and suggested by the GCP compute tests.  The speed of the hard 

drives on the local virtual host was consistent, while the speed on the consumer test system was 

drastically different.  If a speed requirement for CPU speed is met, it will negate the speed 

difference between a slower hard drive and a faster SSD drive.  The line charts shown in Figure 

12 and Figure 13 break up the data between the system with slower hard drives and the system 

with faster hard drives.  All methods of executing this task were the best at some point when 

observing all systems.  Notably, in mid to high-range CPU speed increased, multi-threading went 

from the worst performer to the second-best performer for a faster hard drive, and the results 



 

95 

 
on the slower hard drive showed increased time compared to the other methods.  The other 

methods showed more expected results by matching changes in performance consistently 

across the different hard drives.  In contrast, the times with methods other than multi-threading 

were changed in scale and not in direction.  For example, the multi-processing method changed 

from performing better to performing worse to then performing better with both the slower 

and faster hard drive.   

 

Figure 132 Execution Times Using Slower Hard Drives 



 

96 

 

 

 

Figure 13 Execution Times Using Faster Hard Drives 

 
 

 

 

 

  



 

97 

 

Chapter 7. Conclusion 

The environment to produce results for malware machine learning resources must be 

specific for optimal results.  This research found that virtualization with QEMU using local 

machines could allow researchers to separate their environments without having significant 

losses to production.  Using a secondary drive does not cause overhead running processes and 

allows researchers to swap environments quickly.  Additionally, the second drive allows 

machines to take the malware offline while updating.  This research used a local server to 

upgrade the required Python components. Still, any workflow that involves upgrading Python 

libraries benefits from having the ability to remove malware from a system quickly.   

The mk13 algorithm presented superior results in execution time in particular instances, 

but runs slower in more modern environments.  As the pre-processing of the files would not be 

repeated, and implementers of a system would rather have the average time be superior to the 

best time.  This research shows that system implementers with existing slow code using multi-

threading can have significant gains and loses depending on the environment.  This could allow 

implementers to make cost-benefit decisions between hardware and code re-writing.  Hard 

drive speeds were also evaluated and showed the cost-benefits of increasing hard drive speeds 

may not show returns for pre-processing large amounts of small files that require high CPU 

loads.   

The choice of parallel processing technology must be weighed against the hardware 

used despite any assumptions based on the isolation provided by the Python virtual machine.  

The results show that increased CPU and hard drive speed will only sometimes decrease 

execution times for parallel processing.  Python internal scheduling of parallel processes is a 

prime suspect for causing the drift in expected time results with the timing for all the algorithm 

executions.  The Python core developer team flagged the internal scheduling algorithms for 



 

98 

 
improvement, and there has been some success.  As part of this improvement, the process 

scheduler has code to address the locking after a thread is forced to give up on execution.  The 

complaint targeted at the scheduler was that it would not check if a thread were becoming 

active just after the thread was forced not to be active.     

Scalene was used as part of this research to identify issues with the design of the mk13 

algorithm.  The tool showed that a viable solution for processing this dataset was focused on the 

high CPU usage during processing.  Unfortunately, it is challenging to measure some Python 

internals.   Hooking into some internal Python structures changes the internal structure and 

changes the result.  When using Scalene, the timing results were much higher than without the 

tool, which prompted using a simple timer for the results.  With the aid of Scalene, the mk13 

algorithm beat the single-threaded method for execution.  As this research aims to help future 

research, this is a success.   

To better understand the difference in timing results between the original topic 

statements and the current research, different environments were used to verify the new 

algorithm, and other methods were used as part of benchmarking.  The research's due diligence 

shows that this dataset and processing can react negatively to increased CPU and hard drive 

speeds.  This discovery can alert future researchers to test their environment as a cheaper cloud 

environment may perform better depending on the code used by the next researcher.  This 

research aimed to understand how to process data for input into machine-learning algorithms.  

When processing varied files with high CPU requirements, the results support that a simple 

multiprocessing method will reliably increase performance.  If an external security company has 

a requirement to stream files, the structures in mk13 could provide the best performance.  This 

research showed that hardware and environment changes could change results significantly 

enough to justify code changes.  With large, small file datasets, the initial urge to prioritize hard 



 

99 

 
drive resources needs to be corrected, and prioritization of CPU resources will show a greater 

return.   

 

  



 

100 

 

References   

[1] C. C. for C. Security, “Canadian Centre for Cyber Security,” Canadian Centre 

for Cyber Security, Aug. 15, 2018. 

https://cyber.gc.ca/en/guidance/ransomware-how-prevent-and-recover-

itsap00099 (accessed Aug. 09, 2021). 

[2] “Cybersecurity News and Events | Mass.gov.” https://www.mass.gov/info-

details/cybersecurity-news-and-events (accessed Aug. 09, 2021). 

[3] “CPU platforms | Compute Engine Documentation,” Google Cloud. 
https://cloud.google.com/compute/docs/cpu-platforms (accessed May 17, 

2023). 

[4] D. Cassel, “Guido van Rossum’s Ambitious Plans for Improving Python 
Performance,” The New Stack, May 23, 2021. https://thenewstack.io/guido-

van-rossums-ambitious-plans-for-improving-python-performance/ (accessed 

Nov. 30, 2022). 

[5] “python/Objects/dictobject.c.” Python, Nov. 30, 2022. Accessed: Nov. 30, 
2022. [Online]. Available: 

https://github.com/python/cpython/blob/e0f91deb5930ecb02e7f8ced9bd82609

e6889fb0/Objects/dictobject.c 

[6] H. S. Anderson and P. Roth, “EMBER: An Open Dataset for Training Static 
PE Malware Machine Learning Models,” ArXiv180404637 Cs, Apr. 2018, 
Accessed: Jul. 13, 2021. [Online]. Available: http://arxiv.org/abs/1804.04637 

[7] M. Goyal and R. Kumar, “Machine Learning for Malware Detection on 
Balanced and Imbalanced Datasets,” in 2020 International Conference on 
Decision Aid Sciences and Application (DASA), Nov. 2020, pp. 867–871. 

doi: 10.1109/DASA51403.2020.9317206. 

[8] W. Aslam, M. M. Fraz, S. K. Rizvi, and S. Saleem, “Cross-validation of 

machine learning algorithms for malware detection using static features of 

Windows portable executables: A Comparative Study,” in 2020 IEEE 17th 
International Conference on Smart Communities: Improving Quality of Life 

Using ICT, IoT and AI (HONET), Dec. 2020, pp. 73–76. doi: 

10.1109/HONET50430.2020.9322809. 

[9] X. Wang, J. Liu, and X. Chen, “Microsoft Malware Classification Challenge 

(BIG 2015): First Place Team: Say No to Overfitting,”  
[10] “Glossary — Python 3.11.0 documentation.” 

https://docs.python.org/3/glossary.html#term-global-interpreter-lock (accessed 

Dec. 01, 2022). 

[11] M. Dhalaria and E. Gandotra, “A Framework for Detection of Android 

Malware using Static Features,” in 2020 IEEE 17th India Council 
International Conference (INDICON), Dec. 2020, pp. 1–7. doi: 

10.1109/INDICON49873.2020.9342511. 

[12] I. Shiel and S. O’Shaughnessy, “Improving file-level fuzzy hashes for 

malware variant classification,” Digit. Investig., vol. 28, pp. S88–S94, Apr. 

2019, doi: 10.1016/j.diin.2019.01.018. 

 

https://cyber.gc.ca/en/guidance/ransomware-how-prevent-and-recover-itsap00099
https://cyber.gc.ca/en/guidance/ransomware-how-prevent-and-recover-itsap00099
https://www.mass.gov/info-details/cybersecurity-news-and-events
https://www.mass.gov/info-details/cybersecurity-news-and-events
https://cloud.google.com/compute/docs/cpu-platforms
https://thenewstack.io/guido-van-rossums-ambitious-plans-for-improving-python-performance/
https://thenewstack.io/guido-van-rossums-ambitious-plans-for-improving-python-performance/
https://github.com/python/cpython/blob/e0f91deb5930ecb02e7f8ced9bd82609e6889fb0/Objects/dictobject.c
https://github.com/python/cpython/blob/e0f91deb5930ecb02e7f8ced9bd82609e6889fb0/Objects/dictobject.c
http://arxiv.org/abs/1804.04637
https://docs.python.org/3/glossary.html%23term-global-interpreter-lock


 

101 

 

[13] R. Ito and M. Mimura, “Detecting Unknown Malware from ASCII Strings 
with Natural Language Processing Techniques,” in 2019 14th Asia Joint 
Conference on Information Security (AsiaJCIS), Aug. 2019, pp. 1–8. doi: 

10.1109/AsiaJCIS.2019.00-12. 

[14] Q. Jerome, K. Allix, R. State, and T. Engel, “Using opcode-sequences to 

detect malicious Android applications,” in 2014 IEEE International 

Conference on Communications (ICC), Jun. 2014, pp. 914–919. doi: 

10.1109/ICC.2014.6883436. 

[15] P. Agrawal and B. Trivedi, “A Survey on Android Malware and their 
Detection Techniques,” in 2019 IEEE International Conference on Electrical, 

Computer and Communication Technologies (ICECCT), Feb. 2019, pp. 1–6. 

doi: 10.1109/ICECCT.2019.8868951. 

[16] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, “DREBIN: 
Effective and Explainable Detection of Android Malware in Your Pocket,” 
presented at the Symposium on Network and Distributed System Security 

(NDSS), Feb. 2014. doi: 10.14722/ndss.2014.23247. 

[17] “Android malware dataset for machine learning 1.” figshare, Feb. 05, 2018. 
doi: 10.6084/m9.figshare.5854590.v1. 

[18] “Elastic Malware Benchmark for Empowering Researchers.” elastic, Aug. 01, 
2021. Accessed: Aug. 02, 2021. [Online]. Available: 

https://github.com/elastic/ember 

[19] P. Agrawal and B. Trivedi, “Evaluating Machine Learning Classifiers to detect 

Android Malware,” in 2020 IEEE International Conference for Innovation in 
Technology (INOCON), Nov. 2020, pp. 1–6. 

doi:10.1109/INOCON50539.2020.9298290. 

[20] D. A. Quist and L. M. Liebrock, “Visualizing compiled executables for 
malware analysis,” in 2009 6th International Workshop on Visualization for 
Cyber Security, Oct. 2009, pp. 27–32. doi: 10.1109/VIZSEC.2009.5375539. 

[21] “F-Droid / Client,” GitLab. https://gitlab.com/fdroid/fdroidclient (accessed 

Aug. 01, 2021). 

[22] N. Zhang, Y. Tan, C. Yang, and Y. Li, “Deep learning feature exploration for 
Android malware detection,” Appl. Soft Comput., vol. 102, p. 107069, Apr. 
2021, doi: 10.1016/j.asoc.2020.107069. 

[23] O. F. T. Cavli and S. Sen, “Familial Classification of Android Malware using 
Hybrid Analysis,” in 2020 International Conference on Information Security 
and Cryptology (ISCTURKEY), Dec. 2020, pp. 62–67. doi: 

10.1109/ISCTURKEY51113.2020.9308003.  

[24] K. Aktas and S. Sen, “UpDroid: Updated Android Malware and Its Familial 
Classification,” 2018, pp. 352–368. doi: 10.1007/978-3-030-03638-6_22. 

[25] S. Alam and I. Sogukpinar, “DroidClone: Attack of the Android Malware 
Clones - A Step Towards Stopping Them,” Comput. Sci. Inf. Syst., vol. 18, 

no. 1, pp. 67–91, Aug. 2020, doi: 10.2298/CSIS200330035A. 

 

 

 

https://github.com/elastic/ember
https://gitlab.com/fdroid/fdroidclient


 

102 

 

[27] C. Galen and R. Steele, “Performance Maintenance Over Time of Random 
Forest-based Malware Detection Models,” in 2020 11th IEEE Annual 
Ubiquitous Computing, Electronics Mobile Communication Conference 

(UEMCON), Oct. 2020, pp. 0536–0541. doi: 

10.1109/UEMCON51285.2020.9298068. 

[28] X. Pei, L. Yu, and S. Tian, “AMalNet: A deep learning framework based on 
graph convolutional networks for malware detection,” Comput. Secur., vol. 

93, p. 101792, Jun. 2020, doi: 10.1016/j.cose.2020.101792. 

[29] I. Yoo, “Visualizing windows executable viruses using self-organizing maps,” 
in Proceedings of the 2004 ACM workshop on Visualization and data mining 

for computer security  - VizSEC/DMSEC ’04, Washington DC, USA: ACM 
Press, 2004, p. 82. doi: 10.1145/1029208.1029222. 

[30] Z. Ren, G. Chen, and W. Lu, “Byte Visualization Method for Malware 
Classification,” in Proceedings of the 2020 5th International Conference on 
Machine Learning Technologies, Beijing China: ACM, Jun. 2020, pp. 136–
140. doi: 10.1145/3409073.3409093. 

[31] T. M. Kebede, O. Djaneye-Boundjou, B. N. Narayanan, A. Ralescu, and D. 

Kapp, “Classification of Malware programs using autoencoders based deep 
learning architecture and its application to the microsoft malware 

Classification challenge (BIG 2015) dataset,” in 2017 IEEE National 
Aerospace and Electronics Conference (NAECON), Jun. 2017, pp. 70–75. doi: 

10.1109/NAECON.2017.8268747. 

[32] Susanto, D. Stiawan, M. A. S. Arifin, M. Y. Idris, and R. Budiarto, “IoT 
Botnet Malware Classification Using Weka Tool and Scikit-learn Machine 

Learning,” in 2020 7th International Conference on Electrical Engineering, 
Computer Sciences and Informatics (EECSI), Oct. 2020, pp. 15–20. doi: 

10.23919/EECSI50503.2020.9251304. 

[33] Pei Kexin, Cao Yinzhi, Yang Junfeng, and Jana Suman, “DeepXplore: 
automated whitebox testing of deep learning systems,” GetMobile Mob. 
Comput. Commun., Jan. 2019, doi: 10.1145/3308755.3308767. 

[34] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas, 

“Malware Detection by Eating a Whole EXE,” ArXiv171009435 Cs Stat, Oct. 
2017, Accessed: May 06, 2021. [Online]. Available: 

http://arxiv.org/abs/1710.09435 

[35] S. Alam, R. N. Horspool, and I. Traore, “MAIL: Malware Analysis 
Intermediate Language - A Step Towards Automating and Optimizing 

Malware Detection,” Novemb. 2013, p. 9, Nov. 2013. 
[36] L. Liu, B. Wang, B. Yu, and Q. Zhong, “Automatic malware classification and 

new malware detection using machine learning,” Front. Inf. Technol. Electron. 
Eng. 

[37]     B. Kang, S. Y. Yerima, K. Mclaughlin, and S. Sezer, “N-opcode analysis for 

android malware classification and categorization,” in 2016 International 
Conference On Cyber Security And Protection Of Digital Services (Cyber 

Security), Jun. 2016, pp. 1–7. doi: 10.1109/CyberSecPODS.2016.7502343. 

 

http://arxiv.org/abs/1710.09435


 

103 

 

[38] G. Canfora, A. De Lorenzo, E. Medvet, F. Mercaldo, and C. A. Visaggio, 

“Effectiveness of Opcode ngrams for Detection of Multi Family Android 
Malware,” in 2015 10th International Conference on Availability, Reliability 

and Security, Aug. 2015, pp. 333–340. doi: 10.1109/ARES.2015.57. 

[39] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith, “Helping Johnny 
to Analyze Malware: A Usability-Optimized Decompiler and Malware 

Analysis User Study,” in 2016 IEEE Symposium on Security and Privacy 
(SP), May 2016, pp. 158–177. doi: 10.1109/SP.2016.18. 

[40] T. Dullien and S. Porst, “REIL: A platform-independent intermediate 

representation of disassembled code for static code analysis,” Jan. 2009. 
[41] S. Cesare and Y. Xiang, “Wire – A Formal Intermediate Language for Binary 

Analysis,” in 2012 IEEE 11th International Conference on Trust, Security and 
Privacy in Computing and Communications, Jun. 2012, pp. 515–524. doi: 

10.1109/TrustCom.2012.301. 

[42] B. Zhao, J. Han, and X. Meng, “A malware detection system based on 

intermediate language,” in 2017 4th International Conference on Systems and 

Informatics (ICSAI), Nov. 2017, pp. 824–830. doi: 

10.1109/ICSAI.2017.8248399. 

[43] A. B. Bugerya, I. I. Kulagin, V. A. Padaryan, M. A. Solovev, and A. Y. 

Tikhonov, “Recovery of High-Level Intermediate Representations of 

Algorithms from Binary Code,” in 2019 Ivannikov Memorial Workshop 
(IVMEM), Sep. 2019, pp. 57–63. doi: 10.1109/IVMEM.2019.00015. 

[44] C. Galen and R. Steele, “Evaluating Performance Maintenance and 
Deterioration Over Time of Machine Learning-based Malware Detection 

Models on the EMBER PE Dataset,” in 2020 Seventh International 
Conference on Social Networks Analysis, Management and Security 

(SNAMS), Dec. 2020, pp. 1–7. doi: 10.1109/SNAMS52053.2020.9336538. 

[45] L. Chen, S. Hou, and Y. Ye, “SecureDroid: Enhancing Security of Machine 
Learning-based Detection against Adversarial Android Malware Attacks,” in 
Proceedings of the 33rd Annual Computer Security Applications Conference, 

Orlando FL USA: ACM, Dec. 2017, pp. 362–372. doi: 

10.1145/3134600.3134636. 

[46] Z. Mundargi, S. Bhatti, A. Chandra, A. Kamble, B. Jiby, and R. Arole, “PrePy 
- A Customize Library for Data Preprocessing in Python,” in 2023 
International Conference for Advancement in Technology (ICONAT), Jan. 

2023, pp. 1–5. doi: 10.1109/ICONAT57137.2023.10080134. 

[47] R. O. Odegua and F. O. Ikpotokin, “DataSist: A Python-based library for easy 

data analysis, visualization and modeling”. 
[48] F. Mancolo, “Eisen: a python package for solid deep learning.” arXiv, Mar. 

18, 2020. Accessed: Aug. 03, 2023. [Online]. Available: 

http://arxiv.org/abs/2004.02747  

[49] O. Çelik, M. Hasanbaşoğlu, M. S. Aktaş, O. Kalıpsız, and A. N. Kanli, 
“Implementation of Data Preprocessing Techniques on Distributed Big Data 

Platforms,” in 2019 4th International Conference on Computer Science and 
Engineering (UBMK), Sep. 2019, pp. 73–78. doi: 

10.1109/UBMK.2019.8907230. 

http://arxiv.org/abs/2004.02747


 

104 

 

[50] A. Sivakumar and R. Gunasundari, “A Survey on Data Preprocessing 
Techniques for Bioinformatics and Web Usage Mining”.  

[51]     A. Karimi and M. H. Moattar, “Android ransomware detection using reduced 
opcode sequence and image similarity,” in 2017 7th International Conference 

on Computer and Knowledge Engineering (ICCKE), Oct. 2017, pp. 229–234. 

doi: 10.1109/ICCKE.2017.8167881. 

[52] J. Kang, S. Jang, S. Li, Y.-S. Jeong, and Y. Sung, “Long short-term memory-

based Malware classification method for information security,” Comput. 
Electr. Eng., vol. 77, pp. 366–375, Jul. 2019, doi: 

10.1016/j.compeleceng.2019.06.014. 

[53] I. A. Ridhawi, S. Otoum, M. Aloqaily, and A. Boukerche, “Generalizing AI: 
Challenges and Opportunities for Plug and Play AI Solutions,” IEEE Netw., 

vol. 35, no. 1, pp. 372–379, Jan. 2021, doi: 10.1109/MNET.011.2000371. 

[54] S. J. Andriole, “Artificial Intelligence, Machine Learning, and Augmented 
Analytics [Life in C-Suite],” IT Prof., vol. 21, no. 6, pp. 56–59, Nov. 2019, 

doi: 10.1109/MITP.2019.2941668. 

[55] Y. Gao, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “Malware Detection 
Using Gradient Boosting Decision Trees with Customized Log Loss 

Function,” in 2021 International Conference on Information Networking 
(ICOIN), Jan. 2021, pp. 273–278. doi: 10.1109/ICOIN50884.2021.9333999. 

[56] “Machine Types - Google Compute Engine — Google Cloud Platform.” 
https://web.archive.org/web/20150114113051/https://cloud.google.com/comp

ute/docs/machine-types#highcpu (accessed Apr. 03, 2023). 

[57] “CPU platforms | Compute Engine Documentation,” Google Cloud. 
https://cloud.google.com/compute/docs/cpu-platforms (accessed May 17, 

2023). 

[58] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi, “Microsoft 
Malware Classification Challenge.” arXiv, Feb. 22, 2018. doi: 

10.48550/arXiv.1802.10135. 

[59] “cpython/Objects/dictobject.c.” Python, Jun. 29, 2023. Accessed: Jun. 28, 
2023. [Online]. Available: 

https://github.com/python/cpython/blob/3fb7c608e5764559a718ce8cb81350d

7a3df0356/Objects/dictobject.c 

[60] “Introduction — PyBay 2017 Keynote documentation.” 
https://pybay.com/site_media/slides/raymond2017-

keynote/intro.html#martelli-model-of-scaleability (accessed Dec. 02, 2022). 

[61] “This is Python version 3.12.0 alpha 2 - ceval.c.” Python, Dec. 04, 2022. 
Accessed: Dec. 04, 2022. [Online]. Available: 

https://github.com/python/cpython/blob/854a878e4f09cd961ba5135567f7a5b5

f86d7be9/Python/ceval.c 

[62] T. G. Mattson, T. A. Anderson, and G. Georgakoudis, “PyOMP: 
Multithreaded Parallel Programming in Python,” Comput. Sci. Eng., vol. 23, 

no. 6, pp. 77–80, Nov. 2021, doi: 10.1109/MCSE.2021.3128806 

[63] A Jesse Jiryu Davis Grok the GIL Write Fast And Thread Safe Python PyCon 

2017, (Mar. 18, 2018). Accessed: Dec. 04, 2022. [Online Video]. Available: 

https://www.youtube.com/watch?v=nUxzopuxWhk 

https://web.archive.org/web/20150114113051/https:/cloud.google.com/compute/docs/machine-types%23highcpu
https://web.archive.org/web/20150114113051/https:/cloud.google.com/compute/docs/machine-types%23highcpu
https://cloud.google.com/compute/docs/cpu-platforms
https://github.com/python/cpython/blob/3fb7c608e5764559a718ce8cb81350d7a3df0356/Objects/dictobject.c
https://github.com/python/cpython/blob/3fb7c608e5764559a718ce8cb81350d7a3df0356/Objects/dictobject.c
https://pybay.com/site_media/slides/raymond2017-keynote/intro.html%23martelli-model-of-scaleability
https://pybay.com/site_media/slides/raymond2017-keynote/intro.html%23martelli-model-of-scaleability
https://github.com/python/cpython/blob/854a878e4f09cd961ba5135567f7a5b5f86d7be9/Python/ceval.c
https://github.com/python/cpython/blob/854a878e4f09cd961ba5135567f7a5b5f86d7be9/Python/ceval.c
https://www.youtube.com/watch?v=nUxzopuxWhk


 

105 

 

[64] larryhastings, “larryhastings/gilectomy.” Nov. 30, 2022. Accessed: Dec. 04, 
2022. [Online]. Available: https://github.com/larryhastings/gilectomy 

[65] “Mailman 3 Python multithreading without the GIL - Python-Dev - 

python.org.” https://mail.python.org/archives/list/python-

dev@python.org/thread/ABR2L6BENNA6UPSPKV474HCS4LWT26GY/ 

(accessed Dec. 04, 2022). 

[66] S. Gross, “Python Multithreading without GIL.” Dec. 04, 2022. Accessed: 
Dec. 04, 2022. [Online]. Available: https://github.com/colesbury/nogil 

[67] E. D. Berger, “Scalene: Scripting-Language Aware Profiling for Python.” 
arXiv, Jul. 25, 2020. doi: 10.48550/arXiv.2006.03879. 

[68] “Python Performance Matters” by Emery Berger (Strange Loop 2022), (Oct. 
06, 2022). Accessed: Dec. 04, 2022. [Online Video]. Available: 

https://www.youtube.com/watch?v=vVUnCXKuNOg 

[69] B. Jacob, S. W. Ng, and D. T. Wang, “CHAPTER 2 - Logical Organization,” 
in Memory Systems, B. Jacob, S. W. Ng, and D. T. Wang, Eds., San Francisco: 

Morgan Kaufmann, 2008, pp. 79–115. doi: 10.1016/B978-012379751-

3.50004-7. 

 

https://github.com/larryhastings/gilectomy
https://mail.python.org/archives/list/python-dev@python.org/thread/ABR2L6BENNA6UPSPKV474HCS4LWT26GY/
https://mail.python.org/archives/list/python-dev@python.org/thread/ABR2L6BENNA6UPSPKV474HCS4LWT26GY/
https://github.com/colesbury/nogil
https://www.youtube.com/watch?v=vVUnCXKuNOg

