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Abstract 
 

This research allows two individuals to speak their language with an application detecting what 

languages are being spoken, allowing automatic translation. Existing relevant Systematic 

Literature Reviews (SLRs) articulated the need for this research. An SLR with quantitative and 

qualitative analysis identified the best algorithm to use, the i-vector algorithm. To integrate it 

onto a mobile platform it had to be completely recreated, referencing Kaldi. A voice database 

was created using Mozilla Common Voice and four (4) models were trained using TensorFlow, 

each showing unique improvements. The final model is deployed in an Android application 

using Chaqoupy for environment translation. Evaluation produced an accuracy of 81% and a 

95.7 on the System Usability Scale. Evaluation data was transformed for normality and analyzed 

using a one-way analysis of variance and a two independent samples t-test. This research can be 

applied to all languages and has no dependency on accents.  

 Keywords: Natural Language Processing, i-vector, Language Identification (LID), 

Automatic Speech Recognition (ASR), Kaldi, Mozilla Common Voice, TensorFlow, Chaqoupy  
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Chapter 1. Introduction 

Motivation and Goal 

One of the greatest barriers in communication is the vast multitude of differing languages that 

humans use. Good communication must be clear and quick. While it is possible to bridge the 

language barrier through body language or use of images, these methods of communication lack 

those two factors. The translation of written communication is a popular alternative form of 

communication which does bring clarity but lacks speed. Verbal communication is both clear 

and quick, but translation is much more difficult as there is no reliable method to identify what 

language is being spoken. Further research into spoken language detection can help overcome 

one of the greatest barriers in clear and quick communication. 

The military can benefit greatly from improving its ability to communicate by automatically 

detecting a spoken language. One of the core tenants of winning in warfare is command and 

control, which is not possible without proper communications [1]. As militaries often wage war 

in countries with differing native tongues, communications can break down when dealing with 

local civilians and foreign friendly forces. A current solution is the use of local translators that 

know all the languages spoken in the region, but they pose a significant security risk, do not 

scale well, and require resources to protect. Research into how to automatically detect a spoken 

language for translation can prove to be an excellent alternate to local translators.  

Communication barriers have been significantly reduced due to technical, automated innovations. 

The internet currently allows 55% of the world’s population to communicate with each other [2]. 

Although most of these users speak different languages, applications exist that can translate 

phrases automatically. Google Translate is a powerful application that can not only translate text, 



AUTOMATED SPOKEN LANGUAGE DETECTION  

2 
 

but also translate entire web pages, images, and even audio [3]. While the tool can automatically 

detect the language of written communication, it cannot automatically detect the language of 

verbal communication despite the translation quality. This requires users to know the language 

they are trying to understand and manually select it, reducing the efficiencies of verbal 

communication. This modern communication issue can be resolved with further research into 

automatic language detection. 

Research Purpose 

The purpose of this research is to solve an existing gap in the technological employment of voice 

translation, the automatic detection of the spoken language. This solution will allow two 

individuals to speak their own language, and with the presence of a device running an app, will 

be able to understand each other. It does not focus on the translation itself, but rather on the 

automated detection of the spoken language to automatically set the required parameters for a 

seamless conversation. Not only is the automatic detection a matter of convenience, it may also 

be a matter of necessity for the conversation to take place, as the speakers may be unable to 

convey to each other what language they are speaking. The purpose of the research is 

accomplished by answering a specific research question and proving the inherit hypotheses.  

The research question is: “Can machine learning algorithms be used to increase the effectiveness 

of spoken language detection?” This question is answered by a combination of two hypotheses, 

one focusing on the technical ability to classify the detected language accurately and the other 

focusing on the degree of usability in its employment. The technical hypothesis is the more 

important hypothesis as the usability hypothesis greatly depends on the classifications being 

accurate. The research question helps identify the two hypotheses that need to be proved in this 

research. 
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The technical hypothesis (HT) to be proven is: “A machine learning algorithm can classify a 

language being spoken in real-world scenarios.” As classifications with complex factors are very 

unlikely to be correct every time, focus is being put on whether it can be correct at all. If it is 

possible, but very unreliable, then this hypothesis will be proven but the usability hypothesis will 

fail. “A language being spoken in real-world scenarios” refers to an individual speaking into a 

device with the background noise of an environment. This hypothesis is the first hypothesis to be 

proven, then focus will be put on optimizing the algorithms for usability. 

The usability hypothesis (HU) to prove is: “The perceived usability toward the application with 

the proposed machine learning algorithm built-in is high.” Users will be presented with the 

language they are speaking. This would then be used to increase the effectiveness of verbal 

translation applications as it means that the user would not have to manually select the languages 

being spoken. This is important because in most cases the user of the verbal translation 

application would not be able to identify the spoken language themselves. This hypothesis is the 

second hypothesis to be proven, which will ultimately answer the research question. 

Thesis Structure 

Chapter 1 introduces the research by explaining the research motivation and goal, the research 

purpose, and the thesis structure. The chapter begins with an explanation of the research 

motivation and goal by giving a brief introduction on verbal communications, current 

technological employments and uses, and current issues. The research purpose follows, defining 

the research questions and underlying hypotheses that must be proven. The chapter concludes 

with this outline structure, outlining each chapter.  The first chapter serves to set up the reader to 

better understand the follow-on research. 
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Chapter 2 explains the systematic literature review (SLR), which selects and critically analyzes 

current literature to answer specific, formulated questions [4]. The chapter begins with an outline 

of existing relevant and similar literature review research on speech recognition and machine 

learning to form a base upon which to conduct the SLR. This is followed by the process taken to 

conduct the SLR, expressing keyword sets, search targets, the process of searching, summary of 

results, and inclusion and exclusion criteria with filtering graphics. The quantitative analysis and 

results with graphics are next which portray what approaches are most likely to succeed. The 

chapter concludes with a qualitative analysis to help explain the quantitative analysis, 

summarizing all that was extracted by the conduct of the SLR. The second chapter pulls together 

the collection of literature that was reviewed and enabled the follow-on research. 

Chapter 3 is on the spoken language detection, outlining the design, algorithm, and test cases. 

The chapter begins with a description of the method used to automatically detect the spoken 

language. This leads into the specific machine learning algorithm that is used to classify what the 

spoken language is. The chapter concludes with the models that were trained and improved upon 

using different test cases, including ones attempting to mimic “real-world scenarios” as 

described in the technical hypothesis. The third chapter outlines how the technical hypothesis is 

proven.  

Chapter 4 describes the prototype of the research and its architecture and workflow, the app and 

use cases, and evaluation plan. The chapter begins with the design of how the research is 

employed, documenting the intended architecture and workflow. The description of how this 

translated into the design of the app follows, noting use cases of its employment. The chapter 

concludes with the plan on how to evaluate the app to answer the research question. The fourth 

chapter specifies how both hypotheses are proven through the use of a prototype app.  
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Chapter 5 conveys the results of the research, assessing the accuracy, usability, and overall 

findings of the evaluations. The chapter begins with a report on the accuracy of the classification 

and usability of the application, proving the technical and usability hypotheses. Proceeding this 

is normality tests on the recorded data as well as their transformations. These transformations are 

required for the follow-on data analysis which observes how different independent variables 

impacted the usability. The chapter concludes with a documentation on the findings and 

discussions of the evaluation, noting key observations. The fifth chapter proves the two 

hypotheses and answers the research question. 

Chapter 6 is the conclusion of the research, summarizing findings and contributions, stating 

limitations, and outlining future works. The chapter begins with a summary that outlines what 

was conducted, what contributions the research has, and what the main findings of the research 

are. It then states the limitations of the research, outlining the areas that the research can be 

improved in. The chapter concludes with theories of future works based on the findings, 

limitations, and recommendations of the research. The sixth and final chapter compiles and 

summarizes all the research that was done in this thesis. 
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Chapter 2. Systematic Literature Review (SLR) 

SLR Process 

The SLR process for this research consists of four steps, outlined in Figure 1. An SLR is 

different from other forms of reviews as it involves a detailed plan and search strategy to 

eliminate biases. The first step functions as the base and goal of the SLR by formulating the 

review question that will be answered. The second step determines what will be analyzed in the 

SLR by defining the exclusion criteria with several factors. The third step outlines how 

publications will be collected for the SLR by developing the search strategy and locating the 

studies that will be used. The fourth and final step is the actual conduct of the SLR utilizing the 

previous steps by selecting the studies [5]. The SLR process is a rigorous review of current 

research that serves as a base for this research.  
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Figure 1 Study Selection Process Followed for the SLR 

Study Selection Process Followed for the SLR 

 

The first step in conducting the SLR is to formulate the review question [5], which is “What 

machine learning algorithms have been used to successfully identify specific spoken languages?” 

This review question is more focused on the technical hypothesis as the technical portion of the 

research can leverage existing research much more than the usability portion. By understanding 

what machine learning algorithms have been used to classify languages, the more accurate ones 

can be chosen for this research. By also understanding what languages these algorithms were 

used with, the ones used with more varied languages can be chosen for this research. This is 

important as this research focuses on the classification of multiple languages, so if an algorithm 

is accurate but only works on two languages, it will not be acceptable. Conversely, if an 

algorithm works with many languages but is largely inaccurate, it will also not be acceptable. 

This review question will determine the best algorithm to use in this research. 
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The second step in conducting the SLR is to define the exclusion criteria [5], which is based on 

the research’s publication year (i.e., its age, older than five years), non-focus on spoken 

languages, and classification accuracy (less than 80%). The age of the literature being somewhat 

recent is important to leverage the most current technology available. The program regulations of 

Athabasca University’s Master or Science in Information Systems, the program this research is 

being conducted under, has a time limit of five years to complete the degree due to the ever 

changing volatility of the subject matter. Fortunately, five years ago is 2015 which was a 

landmark year for machine learning [6] [7] [8]. For these reasons, a five-year limit will be 

enforced (E-1).  

The machine learning algorithms being used on languages specifically is important to understand 

how they will perform with the dataset that this research will be processing. If a machine 

learning algorithm performed excellently at determining something red from something blue, it 

may not be ideal for this research. In this example, this is because the machine learning 

algorithm was only used to make a classification based on one factor, whereas the dataset in this 

research will have many factors. While this exclusion might seem redundant, it will be required 

as keywords are not a reliable way of filtering. By excluding literature that is focused on 

classifying things other than spoken languages, more relevant machine learning algorithms will 

be reviewed (E-2).  

The accuracy of the classification being high is important to prove the technical hypothesis. It is 

however even more important that it be high for the usability hypothesis, as it will greatly 

negatively impact the user’s perception of the research if the wrong classification is ever made. 

Given most users would only deal with a handful of languages and those languages would likely 

be contained in a small, common subset of all languages, the accuracy does not need to be 
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incredibly high to reduce the chances the wrong classification is given once. As algorithms will 

perform with very different accuracies based on the dataset being classified, a high, hard-coded 

value would miss highly accurate algorithms that were used on difficult datasets. Authors that 

wrote up the research are then relied upon to decide whether the algorithm accuracy is 

considered high depending on the dataset it was used for. While the authors would be biased 

towards reporting the algorithms as performing with a high accuracy, the accuracy will be 

examined during the SLR analysis to counter this bias. For the application of this research, 

machine learning algorithms that the author does not consider to be high will be excluded (E-3). 

These exclusion criteria will ensure a review of recent, relevant, and accurate machine learning 

algorithms. 

The third step in conducting the SLR is to develop the search strategy and locate studies [5], 

which starts with methods to intelligently identify the literature sources as is shown in Figure 2. 

There are two methods used to select the literature sources: the first being well-cited, high-

quality publications relating to the subject field; and the second being high-quality publications 

that well-cited researchers in the subject field published their work in. The use of two methods to 

locate studies reduces the chance of an inherit bias eliminating the consideration of relevant, 

useful publications. Figure 2 illustrates how the publications were collected and filtrated. By 

using only the most well-cited and high-quality publications in the subject field, the SLR is much 

more efficient. 
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Figure 2 Collection and Filtration of SLR Sources 

Collection and Filtration of SLR Sources 

 

To find well-cited, high-quality publications, Google Scholar’s top publications along with 

filtration criteria was used. The top publications listed in Google Scholar was used to find well-

cited publications, which lists publications in order of their h-index. This metric, the h-index, 

was created by Google Scholar and represents “the largest number h such that at least h articles 

in that publication were cited at least h times each” [9]. The publications within Google Scholar 

are also sorted by category, with the category most relevant to the subject field being 

“Engineering and Computer Science.” The subcategories most relevant to the subject field are 

“Computational Linguistics,” “Computer Vision and Pattern Recognition,” and “Signal 

Processing.” As Google Scholar lists 20 publications in each sub-category, this creates a list of 

60 well-cited publications with 56 unique listings.  
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To determine which of these well-cited publications are high-quality, the filtration criteria need 

to be defined. Many of the publications are workshops and conferences, which have less detailed 

research due to length limitations and face less review and value scrutiny due to the fiscal 

incentive to have as large an audience as possible. The first filter (F-1) of the publication being a 

journal eliminates 27 publications, with 29 publications remaining. Since none of the sub-

categories directly fits the subject field, there remains some journals that are not relevant to the 

research. The second filter (F-2) of the publication being relevant to the research eliminates 12 

publications, with 17 publications remaining.  

Table 1 contains the list of well-cited, high-quality publications relating to the subject field and 

the filtration used. Publications in red were filtered out with F-1 and publications in orange were 

filtered out with F-2, leaving the well-cited, high-quality publications in green. Through the use 

of Google Scholar’s amalgamation of well-cited publications and some filter criteria, 17 

publications were located to act as the basis for the SLR. 

Table 1 Filtration of Well-Cited, High-Quality Publications Related to Subject Field 

Filtration of Well-Cited, High-Quality Publications Related to Subject Field 

Publication h5-index Excluded by 
IEEE/CVF Conference on Computer Vision and Pattern Recognition 299 F-1 
IEEE/CVF International Conference on Computer Vision 176 F-1 
European Conference on Computer Vision 144 F-1 
Meeting of the Association for Computational Linguistics (ACL) 135 F-1 
IEEE Transactions on Pattern Analysis and Machine Intelligence 131  
IEEE Transactions on Image Processing 113 F-2 
Conference on Empirical Methods in Natural Language Processing (EMNLP) 112 F-1 
IEEE Transactions on Wireless Communications 110 F-2 
IEEE Transactions on Signal Processing 97  
Conference of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies (HLT-NAACL) 90 F-1 

IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP) 86 F-1 

Pattern Recognition 85  

https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=Y3UjV9bSCxMJ.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=LqrQjvOguiMJ.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=ORSK3meVbY4J.2020
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Publication h5-index Excluded by 
Conference of the International Speech Communication Association 
(INTERSPEECH) 81 F-1 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition 
Workshops 73 F-1 

IEEE Transactions on Circuits and Systems for Video Technology 71  
International Journal of Computer Vision 70 F-2 
Medical Image Analysis 67 F-2 
IEEE Signal Processing Letters 66  
Signal Processing 62  
IEEE Signal Processing Magazine 60  
Pattern Recognition Letters 59  
British Machine Vision Conference (BMVC) 57 F-1 
IEEE/ACM Transactions on Audio, Speech, and Language Processing 57  
IEEE Journal of Selected Topics in Signal Processing 57  
IEEE Wireless Communications Letters 55 F-2 
Workshop on Applications of Computer Vision (WACV) 54 F-1 
Transactions of the Association for Computational Linguistics 53  
IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) 51 F-1 
International Workshop on Semantic Evaluation 50 F-1 
Computer Vision and Image Understanding 50 F-2 
International Conference on Computational Linguistics (COLING) 49 F-1 
IEEE Vehicular Technology Conference, VTC 46 F-1 
Conference of the European Chapter of the Association for Computational 
Linguistics (EACL) 45 F-1 

Journal of Visual Communication and Image Representation 45 F-2 
IEEE International Conference on Automatic Face & Gesture Recognition 41 F-1 
SIAM Journal on Imaging Sciences 40 F-2 
Digital Signal Processing 40  
Conference on Computational Natural Language Learning (CoNLL) 39 F-1 
Applied and Computational Harmonic Analysis 39  
Signal Processing: Image Communication 39 F-2 
International Conference on Language Resources and Evaluation (LREC) 38 F-1 
International Conference on 3D Vision 37 F-1 
IEEE Transactions on Computational Imaging 37 F-2 
Image and Vision Computing 36 F-2 
Workshop on Machine Translation 35 F-1 
International Conference on Pattern Recognition 35 F-1 
Computer Speech & Language 33  
Annual Meeting of the Special Interest Group on Discourse and Dialogue 
(SIGDIAL) 29 F-1 

Computational Linguistics 26  
IEEE Spoken Language Technology Workshop (SLT) 25 F-1 
International Joint Conference on Natural Language Processing (IJCNLP) 24 F-1 
Natural Language Engineering 23  
IEEE International Conference on Semantic Computing 23 F-1 
Language Resources and Evaluation 22  
Biomedical Natural Language Processing 22 F-2 
Workshop on Representation Learning for NLP 20 F-1 

F-1. Not a Journal F-2. Unrelated SLR Publication 

https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=NCymNpPEF_cJ.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=nnrJuCTuhnwJ.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=6AfzgED5a7MJ.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=JnFTLT-D1FUJ.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=H7TUtVM_vm4J.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=qf6JB6yXg1UJ.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=wNGM6_RkxKgJ.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=BcW1rCwF3nQJ.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=9-0ktENZUpkJ.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=A3Kjv-9fVZMJ.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=RLg5p-2vdE4J.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=ChOJoaYoBoAJ.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=b5B_Ql6KiOUJ.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=xo4pTqxCvn8J.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=7kKeQjWqTJIJ.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=bqfBSlsBKcgJ.2020
https://scholar.google.ca/citations?hl=en&vq=eng_computationallinguistics&view_op=list_hcore&venue=lLZTJJ6HYMkJ.2020
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To find high-quality publications that well-cited researchers in the subject field published their 

work in, Guide2Research’s listing of top researchers was used to cross-correlate publications 

along with filtration criteria. Fortunately, Guide2Research, which lists the top researchers based 

on Google Scholar’s h-index in a certain field, has a category specifically for computer science 

in speech recognition. The top 20 researchers across all countries are used to cross-correlate 

publications that leaders in the subject field would look to publish their work in. The researchers 

are not limited to being in North America nor English-speaking countries only as this would 

prevent considering valuable research across the world. However, publications that are not 

available in English are not considered. As some of these researchers have published works in 

over 150 venues, only their top 10 venues will be considered.  

Figure 3 illustrates the link analysis between the top 20 researchers and their publication venues. 

Similar to how Google Scholar focused on the top 20 publications per category, only the top 20 

cross-correlated publications are considered. The first and second filters (F-1 and F-2) are also 

applied to this dataset along with a third filter (F-3) which eliminates publications already being 

considered by the first method of selecting publication sources.  
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Figure 3 Link Analysis of Well-Cited Researchers and Their Publication Venues  

Link Analysis of Well-Cited Researchers and Their Publication Venues 

 

To better see the correlation between the correlated publications and the publications in Google 

Scholar, the third filter (F-3) will be conducted first. This helps understand if there is any 

discrepancy between top researchers and top publications. Given the amount of publications that 

were filtered this way, the much faster and seemingly less accurate Google Scholar method is 

proven to be a good method to gather publications that well-cited researchers in the subject field 

published their work in.  

The third filter (F-3) of the publication already being considered through the Google Scholar 

method eliminates eight publications, with 12 publications remaining. As most research that is 

published in a journal is also published in a conference, and most research that is published in a 
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conference is not published in a journal, it makes sense that the most common publication 

avenues for leading researchers in the subject field would be conferences. The first filter (F-1) of 

the publication being a journal eliminates 9 publications, with 3 publications remaining.  Since 

the subject field is more of a secondary or tertiary form of research specialization, it also makes 

sense that these well-cited researchers in the subject field would also commonly publish research 

in unrelated publications. The second filter (F-2) of the publication being relevant to the research 

eliminates one publications, with two publications remaining.  

Table 2 contains the list of high-quality publications that well-cited researchers in the subject 

field published their work in. Publications in blue were filtered out with F-3, publications in red 

were filtered out with F-1, and publications in orange were filtered out with F-2, leaving the 

high-quality publications that well-cited researchers in the subject field published their work 

through in green. Through the use of Guide2Research’s amalgamation of well-cited researchers 

in the subject field with some cross-correlation and filter criteria, 2 publications were added to 

act as the basis for the SLR, totalling 19 publications. 

Table 2 Filtration of High-Quality Publications of Well-Cited Researchers in Subject Field 

Filtration of High-Quality Publications of Well-Cited Researchers in Subject Field 

Publication Weighted Degree Excluded by 
Computing Research Repository (CoRR) 1765 F-1 
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 380 F-3 
Neural Information Processing Systems (NIPS) 375 F-1 
IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP) 235 F-3 

IEEE Transactions on Pattern Analysis and Machine Intelligence 221 F-3 
IEEE International Conference on Computer Vision (ICCV) 162 F-3 
International Journal of Bifurcation and Chaos 159  
IEEE Transactions on Signal Processing 155 F-3 
Knowledge Discovery and Data Mining (KDD) 151 F-1 
International Conference on Machine Learning (ICML) 145 F-1 
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Publication Weighted Degree Excluded by 
International Conference on Pattern Recognition (ICPR) 136 F-3 
IEEE Transactions on Knowledge and Data Engineering 136  
IEEE International Conference on Data Mining (ICDM) 126 F-1 
European Conference on Computer Vision (ECCV) 117 F-3 
IEEE International Conference on Data Engineering (ICDE) 115 F-1 
IEEE International Conference on Image Processing (ICIP) 108 F-1 
SIAM International Conference on Data Mining (SDM) 104 F-1 
British Machine Vision Conference (BMVC) 103 F-3 
International Conference on Information and Knowledge Management (CIKM) 102 F-1 
Neural Computation  95 F-2 

F-3. Duplicate F-1. Not a Journal F-2. Unrelated SLR Publication 

With the literature sources identified, all that remains to complete the search strategy is to 

identify the keywords, which consists of both general and specific keywords combining two 

different areas of research. The two concepts that are being jointly searched for are 

classifications and language. The two concepts are joined by an “and” statement as they are only 

useful if combined, and keywords among both concepts are joined by an “or” statement as there 

are many ways to describe those concepts.  

The general keywords are words that describe the subject field in an obvious way, terms that 

anyone unfamiliar with the subject field would logically think of. For general keywords on 

classifications, “machine learning,” “supervised learning,” “artificial intelligence,” and 

“detection” were identified. For general keywords on language, “speech,” “verbal,” “linguistic,” 

and “translation” were identified.  

The specific keywords are words that better describe the subject field but would only be known 

to those with experience within the field. For specific keywords on classifications, no specific 

keywords were identified. For specific keywords on language, “LID,” short for Language 

Identification, and “ASR”, short for automatic speech recognition, were identified. The 
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identification of the general and specific keywords completes the search strategy, the third step 

of the SLR. 

The fourth step (see Figure 1) in conducting the SLR is to select studies [5], which used the 

previously identified sources, keywords, and exclusion criteria. Access was confirmed for the 19 

publications that were identified for the SLR. Queries were made in each repository using their 

custom advanced search options, achieving the “or” and “and” links criteria of the identified 

keywords. For databases that had a limit on the number of Boolean connectors, “or” keywords 

were dropped and a separate search was done to cross-correlate differences and logically 

assemble the intended data set. This returned X papers which then needed to be filtered down 

using the identified exclusion criteria. After completing the filtering based on the titles and 

abstract, the number of papers was reduced by 9,599, leaving 63 papers to be fully read for more 

filtering. Further filtering reduced the number of papers by 54, leaving nine papers for analysis. 

Table 3 contains the list of nine (9) papers that were selected for the SLR. 

Table 3 Selected Studies of the SLR 

Selected Studies of the SLR 

Paper Title Author Journal Reference 
Advanced Data Exploitation in Speech Analysis: An 
overview 

Zhang et al. IEEE Signal 
Processing Magazine [10] 

Speech Processing for Digital Home Assistants: 
Combining Signal Processing With Deep-Learning 
Techniques 

Haeb-Umbach 
et al.  

IEEE Signal 
Processing Magazine [11] 

Efficient estimation and model generalization for the 
totalvariability model 

Travadi and 
Narayanan  

Computer Speech & 
Language [12] 

Supervised i-vector modeling for language and accent 
recognition 

Ramoji and 
Ganapathy  

Computer Speech & 
Language [13] 

Residual convolutional neural network with attentive 
feature pooling for end-to-end language identification 
from short-duration speech 

Monteiro et al.  Computer Speech & 
Language [14] 

On the use of deep feedforward neural networks for 
automatic language identification 

Lopez-Moreno 
et al.  

Computer Speech & 
Language [15] 

Parametric representation of excitation source information 
for language identification 

Nandi et al.  Computer Speech & 
Language [16] 
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Paper Title Author Journal Reference 
Implicit processing of LP residual for language 
identification 

Nandi et al.  Computer Speech & 
Language [17] 

Regularization of neural network model with distance 
metric learning for i-vector based spoken language 
identification 

Lu et al.  Computer Speech & 
Language [18] 

The languages and datasets for the papers selected for the SLR are displayed in Table 4. The first 

two (2) papers focused on algorithms used to identify languages but presented no experimental 

results, meaning no specific languages or databases were given. While the other seven (7) papers 

did provide the datasets the algorithms were trained with, none of them are publicly available. 

Most of the papers used datasets created by the United States Government which require 

approval processes to access. Others used databases that can be purchased for a large cost, with 

the data being delivered on a purchased hard drive. In total, 86 unique languages were 

considered by the SLR papers. While the SLR papers did not provide accessible datasets, they 

did show that their algorithms work on a very wide array of languages. 

Table 4 Languages and Datasets Captured in the SLR 

Languages and Datasets Captured in the SLR 

Reference Languages Dataset 
[10] No specific language given No specific dataset given 
[11] No specific language given No specific dataset given 

[12] 
Arabic, Dari, Farsi, Pashto, and Urdu Defense Advanced Research Projects Agency 

(DARPA) Robust Automatic Transcription of 
Speech (RATS) database [19] 

[13] 

Arabic – Egyptian Arabic, Iraqi Arabic, Levantine 
Arabic, and Maghrebi Arabic 
Chinese – Mandarin and Min Nan 
English – British English and General American 
English 
Slavic – Polish and Russian 
Iberian – Caribbean Spanish, European Spanish, 
Latin American Spanish, and Brazilian Portuguese 

National Institute of Standards and Technology 
(NIST) Language Recognition Evaluation (LRE) 
2017 [20] 

[14] 
Cantonese, Mandarin, Indonesian, Japanese, 
Russian, Korean, Vietnamese, Kazakh, Tibetan, 
and Uyghur  

Oriental Language Recognition (OLR) 2018 
Challenge [21] 
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Reference Languages Dataset 

[15] 

Amharic, Bosnian, Cantonese, Creole (Haitian), 
Croatian, Dari, English (American), English 
(Indian), Farsi, French, Georgian, Hausa, Hindi, 
Korean, Mandarin, Pashto, Portuguese, Russian, 
Spanish, Turkish, Ukrainian, Urdu, and 
Vietnamese 

NIST LRE 2009 [20] 

[16] 

Arunachali, Assamese, Bengali, Bho-jpuri, 
Chhattisgarhi, Dogri, Gojri, Gujrati, Hindi, Indian 
English, Kannada, Kashmiri, Konkani, Manipuri, 
Mizo,Malayalam, Marathi, Nagamese, Nepali, 
Oriya, Punjabi,Rajasthani, Sanskrit, Sindhi, Tamil, 
Telugu, Urdu, English, Farsi, French, German, 
Japanese, Korean, Mandarin Chinese, Spanish, 
Vietnamese, Arabic Iraqi, Russian, Arabic 
Levantine,  Slovak, Arabic Maghrebi, Hindi, 
Spanish, Arabic MSA, Lao, Bengali, Thai, Czech, 
Panjabi, Turkish, Dari, Pashto, Ukrainian, and 
Polish 

Indian Institute of Technology Kharagpur-Multi 
Lingual Indian Language Speech Corpus 
(IITKGP-MLILSC) [22], Oregon Graduate 
Institute Multi-Language Telephone-based 
Speech (OGI-MLTS) [23], and NIST LRE 2011 
[20] 

[17] 

Arunachali, Assamese, Bengali, Bho-jpuri, 
Chhattisgarhi, Dogri, Gojri, Gujrati, Hindi, Indian 
English, Kannada, Kashmiri, Konkani, Manipuri, 
Mizo,Malayalam, Marathi, Nagamese, Nepali, 
Oriya, Punjabi,Rajasthani, Sanskrit, Sindhi, Tamil, 
Telugu, Urdu, English, Farsi, French, German, 
Japanese, Korean, Mandarin Chinese, Spanish, and 
Vietnamese 

IITKGP-MLILSC [22] and OGI-MLTS [23] 

[18] 

Arabic – Egyptian Arabic, Iraqi Arabic, Levantine 
Arabic, Maghrebi Arabic, and Modern Standard 
Chinese – Cantonese, Mandarin, Min Nan, and Wu 
English – British English, General American 
English, and Indian English 
French – West African French and Haitian Creole 
Slavic – Polish and Russian 
Iberian – Caribbean Spanish, European Spanish, 
Latin American Spanish, and Brazilian Portuguese 

NIST LRE 2015 [20] 

A breakdown on the papers collected from each publication as well as the filtration reduction is 

in Figure 4. This visualization illustrates how the final papers came from only a select few 

journals. It also shows how some journals did not have any publications that even made it 

through the first exclusion criteria of age.  
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Figure 4 Breakdown of Papers From Publications and Filtration 

Breakdown of Papers From Publications and Filtration 

 

The exclusion process and results of the SLR are in Figure 5. This displays how each exclusion 

criteria impacted the large initial number of potential relevant papers in both filtering stages. The 

SLR returned nine papers for analysis to answer the review question, “What machine learning 

algorithms have been used to successfully identify specific spoken languages?” 
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Figure 5 Process and Results of the SLR Execution 

Process and Results of the SLR Execution 

 

The set of initial papers before filtration was so large because the keywords caught nine (9) 

different concepts, four (4) of which were beneficial to fully read but were ultimately filtered out 

for being out of the research scope.  

• The most beneficial group of papers that were read fully but were filtered out of the SLR 

were on separating speech from noise, or Voice Activity Detection (VAD) [24] [25]. As 

the technical hypothesis requires classification be done in “real-world scenarios,” 

understanding current methodologies to separate speech from noise is beneficial. Many of 
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these papers also listed resources of large audio files of varying languages in real-world 

scenarios [26] [27] .  

• The second beneficial group of papers was on identifying speakers based on audio [28]. 

Understanding how to differentiate who is talking is useful for preventing an individual 

from having their language classified twice or someone speaking in the background have 

their voice used for the classification.  

• The third beneficial group of papers was on detecting emotions or diseases through audio 

[29] [30]. These papers focused on classifying audio into groups of different diseases 

similar to classifying audio into groups of different languages, which would have been 

good to consider if no papers on language identification existed.  

• The fourth beneficial group of papers was on translation of spoken language techniques, 

or Spoken Language Understanding (SLU) using machine learning [31] [32]. These 

papers highlighted the value of this research as they always required the input language to 

be identified.  

Most search criteria will have the phenomenon of returning unavoidable less relevant papers due 

to a variety of foreseen and unforeseen reasons, such as these five concepts in this SLR. 

• The first less relevant group of papers was on the translation of data in general. This 

group was the largest group of papers in the initial set, as the word “translation,” in the 

context of manipulating data, is very often used when papers discuss machine learning.  

• The second less relevant group of papers was on improving speech performance [33]. 

While these papers detail using machine learning on audio samples, the goal is very 

different and aims to manipulate the data rather than classify it.  
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• The third less relevant group of papers was on keyword detection. Although many of the 

papers in this subset did use audio samples, and although it might often work, proper 

language identification should not rely on an individual saying a keyword.  

• The fourth less relevant group of papers was on correcting speech for an individual 

learning how to speak a certain language. While this does focus on classifying audio into 

good or bad categories, the classification is centered around a starting vector of a correct 

way to pronounce a word, whereas classifying audio into different languages has no 

starting vector.  

• The fifth less relevant group of papers were papers that stated how machine learning is 

used to implement things like ASR in the introduction section. The paper would then go 

on to talk about an entirely different application of machine learning, but because it 

mentioned ASR just once as a potential use case as background information, it was 

among the search results.  

The mix of unintended relevant and less relevant groups of papers discovered by the SLR helped 

acquire some solutions to relevant potential future problems, as well as understand the impact of 

the keyword selection. 

Quantitative Analysis 

From executing the SLR, the review question can be answered quantitatively by identifying the 

most common algorithm used to successfully identify a spoken language, which is i-vector. The 

SLR returned 12 different algorithms with a large mix of accuracies depending on its application. 

Figure 6 displays the tally of each algorithm.  
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Figure 6 Count of Identified Algorithms Through the SLR 

Count of Identified Algorithms Through the SLR 

 

 

Table 5 contains a breakdown of the quantitative analysis, detailing which papers of the SLR 

contained which algorithm. Some algorithms appeared in multiple papers which allows for 

comparison. The comparisons of algorithms using the same data is extremely helpful as their 

accuracies can vary widely based on the data and application.  
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Table 5 Algorithms and Their Accuracies 

Algorithms and Their Accuracies 

Paper 

Algorithm 
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Zhang et al. [10] Unk*                   
Haeb-Umbach et al. [11]   Unk*                 
Travadi and Narayanan [12]    82.2 83.6               
Ramoji and Ganapathy [13]       85.7 85.4           
Monteiro et al. [14]        94.58     95.2 95.26 97.24   
Lopez-Moreno et al. [15]       99.79           99.82 
Nandi et al. [16]   66**   68**       
Nandi et al. [17]   63.7**       65**         
Lu et al. [18]       94.9             

* Application of algorithm was deemed sufficient; accuracy was not given but is high 
** Accuracy is on classifying different Indian languages that are incredibly similar, would perform much better on 

different languages 
 

• Shared-Hidden-Layer Multilingual DNN (SHL-MDNN) was seen once and is an 

algorithm that has languages share layers before using independent layers, allowing 

jointly optimized training sets. An accuracy was not stated but deemed to be of high-

performance [10].  

• Gaussian Mixture Models (GMM) was seen four times and is an algorithm that captures 

language specific excitation source information, maximized using the Expectation 

Maximization (EM) algorithm. In the first case, no accuracy was given but it was deemed 

to be successful in its implementation which was in running recognition systems for each 

language in parallel and selecting the one returning the highest score [11]. In the next 

three cases, GMM was used as a benchmark as an established LID algorithm, which all 

performed slightly worse than the comparing algorithms [12] [16] [17].  
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• Randomized Singular Value Decomposition (RSVD) was seen once and is an algorithm 

that reduces the computational complexity of parameter estimation through the use of 

randomized algorithms. Through a test-case, it performed slightly better than GMM [12].  

• i-vector was seen five times and is an algorithm which uses an unsupervised learning 

paradigm to convert variable length speech utterances into a fixed dimensional feature 

vector. In the first three cases, it was used as a benchmark as an established LID 

algorithm, performing slightly worse than the comparing algorithms [13] [14] [15]. In the 

fourth case, i-vector performed slightly better than the established GMM with EM 

algorithm, proving it is the superior benchmark of the two benchmark algorithms [16]. In 

the fifth case, the i-vector algorithm was implemented with a pair-wise distance metric 

learning regularization to improve its performance [18].  

• S-vector was seen once and is an algorithm that is simply a supervised version of the 

unsupervised i-vector algorithm. Through a test-case, it performed slightly better than i-

vector in some scenarios but had a lower highest accuracy [13].   

• Maximum Entropy (ME) was seen once and is an algorithm that uses evidence based 

discrete modeling to automatically learn the conditional probabilities. Through a difficult 

test-case, it performed slightly better than GMM [17].  

• Tandem was seen once and is an algorithm that transforms data using dimension 

reduction, then uses cluster analysis. Through a test-case, it performed slightly better than 

i-vectors [14].  
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• Long Short-Term Memory (LSTM) was seen once and is a type of Recurrent Neural 

Network (RNN) that also identifies long-term dependencies. Through a test-case, it 

performed slightly better than tandem and i-vectors [14].  

• Residual Convolutional Neural Networks (RCNN) was seen once and focuses on 

understanding the contextual segments of input data. Through a test-case, it performed 

better than LSTM, tandem, and i-vectors [14].  

• i-vector + bottleneck (BN) was seen once and is and algorithm than combines i-vector 

with BN, a Deep Neural Network (DNN) where inputs are bottleneck features. Through a 

test-case, the combination of the two algorithms outperformed either individually.  

The algorithms discovered through the SLR helped understand that i-vectors is the most popular 

and best algorithm to detect a spoken language. The i-vector algorithm was used the most and is 

clearly recognized as a benchmark for more experimental and proof of concept algorithms. It 

also sometimes even performed better than the algorithm the paper was publishing. It was also 

shown it could be combined or melded with other concepts to improve its performance, showing 

that it is customizable and adaptable. The quantitative analysis done in the SLR shows that i-

vectors is the best algorithm to select for this research. 

Existing Relevant SLRs  

An existing relevant SLR on sign language recognition has a similar goal of collecting all current 

research on language recognition, but focusing on the movement of hands rather than the sound 

of speech [34]. This SLR also has similar challenges as sign language varies based on regions 

just like spoken languages. There are seven research questions that all require quantitative 

analysis, either being answered with a pie chart or a number. The structure of the SLR is broken 
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into the 12 languages it considers, giving a description of collected papers recognizing that 

specific language before presenting pie charts and numbers to answer each research question. 

This would have made the SLR very easy to divide between researchers and is very easy to 

consume. Only one keyword is used to search for papers and the papers are collected from the 

four large sources of IEEE, ACM, Elsevier, and Springer. The only exclusion criteria given is the 

age of the paper, though the papers are filtered further by unstated criteria. No recommendations 

or application of results are given at the end of the SLR. There is also no mentioning of how to 

recognize sign languages apart from each other is given, demonstrating that there is an 

expectation in language detection that the language is already known. This inherent expectation 

that languages are manually selected for recognitions is a phenomenon that expands even to sign 

language, demonstrating the problem of automatic language detection. 

A second existing relevant SLR on Automatic Speech Recognition (ASR) shares the same goal 

of collecting all current research on spoken language recognition, but also focuses on concepts 

other than recognizing the actual spoken languages [35]. Interestingly, no research questions 

were given in this SLR. The structure of the SLR first describes the models within the 

architecture of speech recognition systems before briefly discussing some papers on ASR in 

different languages, finishing with papers that consider interesting advancements in ASR. These 

advancements are using deep learning for ASR, recognizing emotions using ASR, using robust 

methods to generate ASR systems, and developing high performance ASR. A very brief 

qualitative analysis is given to identify the contributions of some of the papers discussed. Neither 

the keywords to select the papers is given, nor is the sources of the paper, nor exclusion criteria, 

nor a description of the SLR process. It also does not have any recommendations of how this 

information could be applied. The section on ASR in different languages avoids the language 
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recognition problem by using separately designed algorithms. This again shows the inherent 

expectation that the language is given before being used.  

As these were the only SLRs related to detecting languages, there is a justification of the need of 

this research and the SLR. Both existing SLRs incorporates various languages, but neither has a 

solution on how to detect which language was being communicated. The papers also 

demonstrated the need to properly describe the SLR process as they leave the readers with many 

questions on what was actually conducted and why. The research question must be given and it 

must be useful so that the results can be applied. Exclusion criteria must be stated and well 

defined. The search strategy, detailing the databases used and why, as well as the keywords must 

be given. Finally, a description of how the search was done with graphics on visualizing the 

filtration must be given. With the papers, both quantitative and qualitative analysis should be 

done to give a full understanding of what the papers of the SLR have to offer. The SLR should 

also have a clear application for why it is being conducted. These two SLRs justified the need for 

this SLR and research and also demonstrated what SLRs need to be effective.   

Qualitative Analysis 

The qualitative analysis is done using a weighted decision matrix [36]. This matrix allows the 

different qualitative factors of the algorithms to be compared to each other. By first outlining the 

qualities that are most important and applying a weight to them based on the requirements of the 

best algorithm, biases can be removed. Using a constructed scale to evaluate each quality allows 

each algorithm to be scored against each other. By multiplying that scale based on the weight 

given to each quality, algorithms that score higher with qualities that are more important will 

have a higher total score. The total scores can then be compared, with the highest score 

belonging to the algorithm that has the highest score in the highest valued qualities.  
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From executing the SLR, the review question can be further informed qualitatively by 

considering the following qualities of the algorithms: accuracy, establishment in the field, ability 

to handle low resource languages. These qualities are broken into the three categories of low, 

medium, and high. Accuracy is an important component to the algorithm for the same reason it 

was set as a filtration criteria. Being an established algorithm in the field, vice being a proof-of-

concept, means that there are more resources and tools available to make efficient use of it. It is 

also important that algorithms used for detecting languages can overcome the challenge of 

handling low-resource languages, languages where there is difficulty in finding suitable data to 

train the models, such as Urdu [37]. These qualities can help to better contextualize the 

quantitative results. 

Table 4 contains a breakdown of the qualitative analysis, detailing the important factors of the 

best algorithms from the SLR to select. A weighted scoring was used, giving more points for 

more important factors. 
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Table 6 Qualitative Results of the SLR 

Qualitative Results of the SLR 

Algorithm Accuracy (1x Weight) Establishment in  
Field (3x Weight) 

Handle Low Resource 
Languages (2x Weight) Total 

SHL-MDNN 2 (2) 2 (6) 3 (6) 14 

GMM 2 (2) 3 (9) 3 (6) 17 

RSVD 3 (3) 1 (3) 1 (2) 8 

i-vector 2 (2) 3 (9) 3 (6) 17 

s-vector 1 (1) 1 (3) 2 (4) 8 

ME 1 (1) 1 (3) 3 (6) 10 

Tandem 2 (2) 2 (6) 2 (4) 12 

LTSM 3 (3) 2 (6) 2 (4) 13 

RCNN 3 (3) 1 (3) 2 (4) 10 
i-vector + BN 3 (3) 2 (6) 2 (4) 13 

Low Medium High 

• For accuracy, since a filtration was already set for the algorithms to be high, the relative 

difference between the scores are small, and a low score still represents an absolute high 

accuracy. This makes accuracy be the least important factor. The accuracy score is not 

simply setting cut-offs for the given accuracies given in the papers, but a blend of 

understanding how the algorithms did compared to others on the same data sets, and how 

hard the data sets were to classify. For example, ME has the second lowest reported 

classification in the SLR but was tasked to classify between five closely related 

languages spoken in India. However, while it did slightly outperform GMM, the data set 

that GMM was tasked with was 27 closely related languages spoken in India.  

• For establishment in the field, the difference between score is high as some algorithms 

are established benchmarks that have been used and optimized for decades, while others 

are proof-of-concepts that would have no tools. This makes establishment in the field be 

the most important factor. Algorithms that were used as benchmarks and created long ago 

scored higher, and those that were repeatedly used as benchmarks scored even higher.  
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• For being able to handle low resource languages, the relative differences are high but the 

value of the concept is low due to this research relying on translation services that will 

not work on low resource languages, though over time they might. This makes the ability 

to handle low resources languages a semi-important factor. Algorithms that can share 

layers between similar languages score higher as they can be trained without needing 

more of the correct language. Test cases in the SLR that used smaller data sets, yet scored 

higher in accuracy, also score higher.  

The qualitative factors of the algorithms discovered through the SLR helped strengthen the 

confidence that that the i-vectors algorithm is the best algorithm to detect a spoken language. The 

i-vector algorithm was shown to have an adequate level of accuracy needed for this research. It 

was also shown to be extremely well established in the field. Finally, it was shown to be able to 

handle low resource languages extremely well. Although the i-vector algorithm was tied with 

GMM as scoring the highest, i-vector is slightly more established and has specifically 

outperformed GMM on the same dataset.  

Both the quantitative and qualitative analysis show the i-vector algorithm is the best algorithm 

for this research. Quantitatively, the i-vector algorithm was used the most and had a reliably high 

accuracy. It is a popular algorithm because of its age, first created in 2006 [39] with significant 

optimizations with joint factor analysis in 2011 [40] and hybridized with competing theories in 

2014 [41]. The algorithm also performs with high accuracy as it is able to represent acoustic 

variations of speech utterances of varying durations as a fixed-length feature vector [18]. 

Qualitatively, the i-vector algorithm showed an adequate level of accuracy, high establishment in 

the field, and a high capability to handle low-resource languages. Results from LID competitions 

run every few years by NIST showed how the i-vector algorithm was reliably accurate compared 
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to many other algorithms using the same dataset [13] [15] [16]. This algorithm is also defined as 

“state-of-the-art” [14] [15] [18] by the papers in the SLR. Finally, the i-vector algorithm was 

able to retain a high accuracy even with languages with only an hour or less of speech data [13] 

[14] [15] [16]. The research findings of the SLR have clearly identified the i-vector algorithm to 

be the best algorithm for the thesis. 
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Chapter 3. Spoken Language Detection 

Method 

The steps required to automatically detect a spoken language consisted of finding a database of 

spoken languages, using the i-vector algorithm to extract features from each data point, training a 

neural network on the features, and finally using the generated model to detect a spoken 

language. The database, Mozilla Common Voice1, was discovered through the papers that were 

read as part of the SLR. The i-vector algorithm, implemented with inspiration from Kaldi [42], 

that was proven through the SLR to be the best algorithm for this use case was first used with the 

Kaldi platform before being converted into a more manual method within the environment. The 

neural network, Tensorflow2, was used to train the model as well as evaluate what language is 

being spoken. Figure 7 shows the high-level process.  

 

 
1 Mozilla, “Common Voice.” https://commonvoice.mozilla.org/ (accessed Dec. 18, 2020). 

2 TensorFlow, “TensorFlow Core | Machine Learning for Beginners and Experts,” Google. 
https://www.tensorflow.org/overview (accessed Dec. 18, 2020). 

https://commonvoice.mozilla.org/
https://www.tensorflow.org/overview
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Figure 7 Method to Automatically Detect Spoken Language 

Method to Automatically Detect Spoken Language 

 

The dataset used (see Step 1 in Figure 7) in this research was discovered from papers read while 

conducting the SLR. Databases containing thousands of hours of speech from a variety of 

speakers were used for the algorithms that were considered as part of the SLR. While some of 

these databases were either not available to the public or had a significant cost, some were 

completely available to the public with no cost. Databases with only one speaker recording 

themselves were not used regardless of how many hours of speech were recorded due to the 

importance of training the algorithm in this research is to not rely on any characteristics a single 

speaker has for the entire language classification. This is especially difficult for low-resource 

languages, though the i-vector algorithm was identified also to work well even with smaller 

datasets as the qualitative analysis in the SLR found. Due to being unable to account for every 

type of accents due to the very large combinations of languages needed, the decision was made 

to not account for any specific accents and instead rely on the algorithm to identify the specifics 
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of speaking a language, regardless of the accent. The SLR provided a large list of publicly 

available databases of many speakers speaking many languages. 

The selected database, Mozilla Common Voice, is the perfect database for this research. At the 

time the database was assembled, 9,300 hours of speech data was available, 7,400 of which were 

validated, for 60 different languages. This incredibly large database is also available to the public 

with no associated cost. The database also has a large amount of speakers for each language, 

with English for example having 66,151 unique speakers3. These speakers have many different 

accents to eliminate any pronunciation bias from determining the language, with English for 

example having over 17 accents. The database also consists of low-resource languages, even 

having the previously identified low-resource language of Urdu4 [37]. 

The assembled database contains seven (7) languages due to feasibility of testing in a Canadian 

military environment as well as training time. The languages are English, French, Russian, 

Chinese (China), Arabic, Persian, and German. English and French are obvious choices for 

testing purposes as almost all Canadians can speak either or both of Canada’s official languages. 

Linguists working on a military base would be trained in the language of Canada’s adversaries, 

meaning there will be linguists who speak Russian, Chinese (China), Arabic, and Persian. Finally, 

German was selected as a language to represent a European language, which is also a popular 

secondary language to learn. Table 7 contains the statistics for each language in the database. 

 

 
3 Mozilla, “Datasets,” Mozilla, Dec. 11, 2020. https://commonvoice.mozilla.org/en/datasets (accessed Dec. 18, 
2020). 

4 Mozilla, “Languages,” Mozilla. https://commonvoice.mozilla.org/en/languages (accessed Dec. 18, 2020) 

https://commonvoice.mozilla.org/en/datasets
https://commonvoice.mozilla.org/en/languages
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Table 7 Statistics of Each Language Selected in the Assembled Database in This Research 

Statistics of Each Language Selected in the Assembled Database in This Research 

Language Size (GB) Validated Hours Number of voices Number of clips 
English 56 1,688 66,151 1,226,615 
French 18 621 12,950 459,109 
Russian 3 130 1,410 74,370 

Chinese (China) 2 56 3,501 36,472 
Arabic 2 45 659 39,953 
Persian 8 284 3,654 253,592 
German 22 777 12,655 565,087 

Total 111 3,601 100,980 2,655,198 

As this research was fortunate to have such a large dataset, down-sampling is used to account for 

the imbalances in data availability. The simplest solution for data imbalance is in resampling 

strategies, as is shown in Figure 8. The largest imbalance of data is between Chinese (China) and 

English, having 36,472 and 1,226,615 clips, respectively. As having 36,472 was observed to be 

an acceptable amount of data based on testing and training time, each language could be down-

sampled to that many clips. Had this not been enough, more advanced techniques than up-

sampling could be employed to make up for this fundamental problem of dealing with 

imbalanced data in data science5. By employing down-sampling, 36,472 clips from each 

language were assembled to create the database for this research. 

 

 
5 TensorFlow, “Classification on imbalanced data | TensorFlow Core,” Google. 
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data (accessed Dec. 21, 2020). 

https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
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Figure 8 Data Resampling Strategies 

Data Resampling Strategies 

 

To ensure the database has the correct file formats, FFmpeg6 was used to convert the mp3 files 

into wav files. Kaldi’s implementation of i-vector extraction requires data to be in the wav 

format7, which is a costly format for storage. The dataset provided by Mozilla uses two methods 

to reduce the amount of storage required, by compressing the language sets into tar files, and 

more importantly, storing the voice clips as mp3s. As the original data is an mp3, a file format 

that is compressed, converting it back to a wav file does not add any new information, instead 

just holding it in a larger container. FFmpeg does an excellent job at quickly converting mp3 

files to wav files, however each file converted is around 10 times larger. This means the database 

of 111 GB is now 1.11 TB if all files are to be converted.  

As down-sampling is being used, the first approach to handle this storage issue was to only 

convert the clips that were identified to be used for training and testing, which brings the storage 

 

 
6 FFmpeg, “FFmpeg,” telepoint. https://ffmpeg.org/ (accessed Dec. 22, 2020). 

7 Kaldi, “Kaldi: Data preparation,” doxygen. https://kaldi-asr.org/doc/data_prep.html (accessed Dec. 22, 2020). 

https://ffmpeg.org/
https://kaldi-asr.org/doc/data_prep.html
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requirements of the converted clips to be 2 GB per language multiplied by seven (7) languages 

multiplied by 10 to be 140 GB, which is close to the original database storage requirements. This 

approach was optimized further when it was decided to implement Kaldi’s i-vector extraction 

into the python environment, which allowed file conversions to only be done through FFmpeg 

when used. While this did lower the storage requirement down to 14 GB, it has the cost of 

increasing the processing time as files will be converted multiple times instead of just once. This 

processing time cost, when compared to the processing time of training the neural network, was 

deemed to not be significant. FFmpeg is able to efficiently convert the mp3 files in the dataset 

into wav files for i-vector feature extractions. 

With the database assembled, a method to extract i-vectors (i.e., Step 2 in Figure 7) was required 

which was first implemented with Kaldi [42]. While other tools exist for i-vector feature 

extraction, such as bob8, Kaldi has extremely in-depth documentation and is a very popular tool 

for signal processing. It also hosts a GitHub with many different examples and applications9. As 

it is hosted on GitHub, it is by nature an open-source toolkit which allows one to inspect and 

tweak the code to run as efficiently as possible. While Kaldi is written primarily in C++, it is 

wrapped with Python and bash scripts to make the required calls. Due to its documentation and 

popularity, as well as it being open-source with many examples and flexible in its programming 

languages, Kaldi was the selected method to extract i-vectors from the assembled database. 

 

 
8 Idiap Research Institute, “Bob — bob 8.0.0 documentation,” Idiap Research Institute. 
https://www.idiap.ch/software/bob/docs/bob/docs/stable/index.html (accessed Jan. 12, 2021). 

9 kaldi-asr, “kaldi,” GitHub, Jan. 13, 2021. https://github.com/kaldi-asr/kaldi (accessed Jan. 12, 2021). 

https://www.idiap.ch/software/bob/docs/bob/docs/stable/index.html
https://github.com/kaldi-asr/kaldi
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The biggest limitation of Kaldi that needs to be accounted for is that it is only supported on 

Linux. This is an issue as the environment so far has been on Windows. While there is 

documentation for how to implement Kaldi in Windows, it is a very inferior version10. As the 

process for this research is broken down into the steps shown in Figure 7, the solution for this 

issue was to simply pipe the database into a virtual machine running Linux, extract the i-vector 

features, then pipe the features back to the Windows environment for training. For detecting the 

language, the recorded voice clip would again have to be piped into the virtual machine to have 

the i-vector feature extracted before having the features be used in the classification model. By 

sending data between virtual machines, Kaldi’s limitation of only being available on Linux could 

be averted.  

While implementing a virtual machine to use Kaldi was functional, it was deemed to not be an 

acceptable solution when considering the research holistically. Piping data between the operating 

systems allowed the system to function, and some scripting allowed the process to be automated 

by utilizing a shared folder that both operating systems had access to. However, the end result of 

this research is to be deployed on an application running on a phone. Implementing this design of 

using two different operating systems is not a feasible option. Although the training could be 

done using this method to generate the model that would be deployed on the phone, the phone 

would still require Linux to extract the i-vectors of what is being spoken for the classification. 

Due to needing the algorithm to run in a single environment, the working algorithm using Kaldi 

was deemed unfit for this research. 

 

 
10 kaldi-asr, “kaldi/windows/INSTALL.md,” GitHub, Apr. 08, 2020. https://github.com/kaldi-asr/kaldi (accessed Jan. 
12, 2021). 

https://github.com/kaldi-asr/kaldi
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A potential solution to continue to use Kaldi for i-vector relied on online access. The Kaldi 

toolkit has an implementation that extracts i-vector features online11. While this component still 

requires a Linux operating system, it could be wrapped in python so that it could be called in any 

environment. There are however three large issues with this solution. The first is that one of the 

intended applications of this research is for military communications, which should be robust. 

The requirement for the phone to be connected to the internet is deemed to not be acceptable, as 

internet is not always available in combat scenarios. The second issue is another dependency 

issue, which relies on Kaldi to continue their online services indefinitely. The third and final 

issue is that this implementation creates a privacy issue, as now voice clips are being sent online 

to a server outside of the research’s control. The dependency and privacy issues of implementing 

Kaldi online deemed it an unfit solution for i-vector extraction. 

Although the toolkit Kaldi could not be used itself in this research, it could be implemented into 

the working environment. As the toolkit is open-source, all of the code to extract the i-vector 

features is available. By looking through the C++ code, an implementation could be rewritten in 

any other language. Kaldi’s i-vector extraction method was re-written in Python, leveraging 

some powerful python packages to take care of some of the more difficult steps. Creating an 

algorithm that is an implementation of Kaldi into a python environment was the solution to 

extract i-vector features. 

With the i-vector feature extraction method completed, a model can be trained on them using 

TensorFlow (i.e., Step 3 in Figure 7). This machine learning framework is an open-source library 

 

 
11 “Kaldi: online2/online-ivector-feature.h File Reference,” doxygen. https://kaldi-asr.org/doc/online-ivector-
feature_8h.html#details (accessed Jan. 12, 2021). 

https://kaldi-asr.org/doc/online-ivector-feature_8h.html#details
https://kaldi-asr.org/doc/online-ivector-feature_8h.html#details
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created by the Google Brain team for internal Google use [43], with plenty of documentation and 

examples available12. It is available exclusively on Python and has many of the packages 

required to conduct machine learning training and classification. The rest of the environment for 

this research is based on the implementation of TensorFlow.  

The environment for the algorithm part of this research that utilizes TensorFlow is built using 

two systems, Visual Studio Code and Anaconda. Visual Studio Code13 is a highly customizable 

Integrated Development Environment (IDE) that has many useful extensions. A key extension 

used in this research was its Bitbucket extension14, which allows the work to continually be 

synchronized at an online repository. While this IDE can be used to program in many different 

languages, Python is used as it is the language used for interacting with TensorFlow. To set up 

the Python environment inside of the IDE, Anaconda was used. Anaconda15 is a data science 

platform that not only provides popular data science packages, but aids greatly in the 

configuration of them. This is very beneficial as TensorFlow was incredibly hard to install and 

optimally configure manually. By utilizing the IDE Visual Studio Code and the data science 

platform Anaconda, TensorFlow was easy to set up and use. 

 

 
12 TensorFlow, “Guide | TensorFlow Core,” Google. https://www.tensorflow.org/guide (accessed Jan. 13, 2021). 

13 Microsoft, “Visual Studio Code - Code Editing. Redefined,” Microsoft. https://code.visualstudio.com/ (accessed 
Jan. 13, 2021). 

14 Visual Studio Marketplace, “Visual Studio Bitbucket Extension,” Microsoft. 
https://marketplace.visualstudio.com/items?itemName=MistyK.VisualStudioBitbucketExtension (accessed Jan. 13, 
2021). 
15 Anaconda, “Anaconda | The World’s Most Popular Data Science Platform,” Anaconda. 
https://www.anaconda.com/ (accessed Jan. 13, 2021). 

https://www.tensorflow.org/guide
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=MistyK.VisualStudioBitbucketExtension
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One of the key steps to effectively using TensorFlow was to ensure it was using the graphics 

card instead of the processor that the IDE would normally use. While using the Central 

Processing Unit (CPU) is possible with TensorFlow, training is much faster when using the 

dedicated Graphics Processing Unit (GPU). The computer that conducted the training in this 

research used an Operating System of Windows 10 and had 8GB of RAM, a 1TB hard drive, and 

most importantly an i5-3750 3.40 GHz CPU and a GTX 970 GPU. Switching TensorFlow 

training from this CPU to this GPU decreased the training time by over 80%. It is much faster as 

TensorFlow can use Compute Unified Device Architecture (CUDA), which is a parallel 

computing platform developed by NVIDIA16. The GTX 970 was specifically purchased for this 

research, as it has a CUDA computing capability of 5.217 which is just over the minimum 

requirement, as well as having 1,664 CUDA cores18. After installing all the required software 

and manually setting environment path variables, provided in Table 8, TensorFlow is able to 

automatically use the GPU instead of the CPU. By utilizing the GPU instead of the CPU, 

TensorFlow can train models over five times (5x) faster. 

 

 
16 NVIDIA, “CUDA Zone,” NVIDIA Developer, Jul. 18, 2017. https://developer.nvidia.com/cuda-zone (accessed 
Jan. 13, 2021). 

17 NVIDIA, “CUDA GPUs,” NVIDIA Developer, 2021. https://developer.nvidia.com/cuda-gpus (accessed Jan. 13, 
2021). 

18 A. Kuznetsov, “Nvidia GPUs sorted by CUDA cores,” GitHub. 
https://gist.github.com/cavinsmith/ed92fee35d44ef91e09eaa8775e3284e (accessed Feb. 14, 2021). 

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-gpus
https://gist.github.com/cavinsmith/ed92fee35d44ef91e09eaa8775e3284e
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Table 8 Required Software and Environment Variables to Have TensorFlow Utilize the GPU 

Required Software and Environment Variables to Have TensorFlow Utilize the GPU 

Required Software Environment Variable 
NVIDIA GPU Drivers N/A 

CUDA Toolkit 

SET PATH=[installed path of]\NVIDIA GPU Computing 
Toolkit\CUDA\v11.0\bin;%PATH% 
SET PATH=C:\Program Files\NVIDIA GPU Computing 
Toolkit\CUDA\v11.0\include;%PATH% 

CUPTI SET PATH=[installed path of]\NVIDIA GPU Computing 
Toolkit\CUDA\v11.0\extras\CUPTI\lib64;%PATH% 

cuDNN SDK SET PATH=[installed path of]\cuda\bin;%PATH% 
TensorRT N/A 

tensorflow-gpu N/A 

With TensorFlow functioning correctly, the model architecture could be created for training. The 

model used in this research is called a Convolutional Neural Network (CNN) and its kernel 

layers are detailed in Figure 9. A CNN is typically used for training on images, as the stated in 

the documentation for the first layer of the model, Conv2D19. The reason an image processing 

layer is used is because the output of the audio features are spectrograms which are an image. 

The convolution layer summarizes the features present in the image.  

The three (3) convolution layers are interchanged with three (3) pooling layers, specifically 

AveragePooling2D20. Pooling is an essential part of the model to help prevent model overfitting. 

By down-sampling the image between each layer, the features learned in the convolutional layers 

will be more focused on general features instead of specific oddities that might exist [44]. This 

pooling layer in particular reduces the dimensions of the image by half, using an average value 

for each patch of the map.  

 

 
19 TensorFlow, “tf.keras.layers.Conv2D | TensorFlow Core v2.4.0,” Google. 
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D (accessed Jan. 13, 2021). 

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
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These six (6) layers are followed with a layer to create an output of the model, the dense layer21. 

This final layer computes the dot product between the input and the kernel, giving it a single 

value. One final layer is used to ensure this aligns with the expected classifications, the reshape 

layer22. By shaping the final layer of the output to consider the different languages that are 

classified, the model can compare the final dense layer output to give the language spoken. 

TensorFlow was used to generate a CNN model with three convolution layers, three pooling 

layers, a dense layer, and a reshape layer. 

Figure 9 Model Kernel Layers 

Model Kernel Layers 

 

The method in which TensorFlow trains a model is in batches and epochs. The batch size 

denotes how many data training samples are observed before updating the weights [45]. Training 

 

 
20 TensorFlow, “tf.keras.layers.AveragePooling2D | TensorFlow Core v2.4.0,” Google. 
https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling2D (accessed Jan. 13, 2021). 

21 TensorFlow, “tf.keras.layers.Dense | TensorFlow Core v2.4.0,” Google. 
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense (accessed Jan. 13, 2021). 

22 TensorFlow, “tf.keras.layers.Reshape | TensorFlow Core v2.4.0,” Google. 
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Reshape (accessed Jan. 13, 2021). 

https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Reshape
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samples per batch has been set to 128. This strikes a balance between speed and accuracy, while 

also statistically ensuring that no batch is missing one of the seven (7) languages being 

considered. Each batch is also a random selection of the training data, so that the model is 

statistically never trained on a single language.  

An epoch represents a single pass through all training data that is contained in those batches. For 

this dataset, 1,595 batches of 128 are used for training data. This means that one epoch considers 

204,160 training data samples. After completing each batch, the current accuracy of the model 

can be given. To do this, the data needs to be split into training and testing data. A split is done 

during the batch allocation so that 80% of the data is used for training, and 20% of the data is 

used for testing. This allows the model to learn from misclassifications as well as the ability to 

generate a plot showing how the model becomes more accurate as it continues to be trained. 

With the model architecture completed, it can now be trained and used to detect the spoken 

language (see Step 4 in Figure 7). After training, the model and its assets can be saved and 

loaded with ease. Voice clips are recorded and placed in a directory to be read and classified. 

Once the voice clip is read, it has its i-vector features extracted using the same method the 

database uses. The features are then given to the model, and a classification is given. By using a 

similar method to how the voice clips in the database were formatted for training, new voice 

clips can be classified using the trained model to deliver the classification of the language being 

spoken. 

Algorithm 

The algorithm to extract i-vector features from voice clips was implemented from Kaldi [42]. 

Many of the examples hosted by Kaldi, referred to as recipes, contain their own implementation 
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of an i-vector extractor, such as extract_ivectors.sh23 in the recipe wsj, which aimed to detect 

words being spoken from sentences being read from the Wall Street Journal. These extractors 

typically contain significantly more functions and lines of code than required, as they are derived 

from the extremely large Kaldi file ivector-extract.cc24. By using the files created by Kaldi as 

well as the recipes they have provided, an implementation of an i-vector feature extractor is 

possible. 

To load and manipulate audio files, the package librosa is used [46]. This tool can use the 

previously mentioned FFmpeg to load any type of audio file. Audio clips are loaded in with a 

sampling rate of 16,000 Hz. This rate is double for what is considered adequate for human 

speech, is the optimal sampling rate for capturing human language [47], and is the default 

sampling rate in Kaldi examples. The number of frames for the samples is set to 25 ms and the 

frame step is set to 10 ms as recommended by Kaldi25. At the sample rate of 16,000 Hz, this 

creates 400 samples. The frame step is however 160 samples, meaning that after sample 160, the 

next 400 samples being to overlap. This is illustrated in Figure 10. Audio files can be loaded and 

split into samples using the package librosa along with FFmpeg. 

 

 
23 Kaldi, “kaldi/egs/wsj/s5/steps/nnet/ivector/extract_ivectors.sh,” GitHub. https://github.com/kaldi-asr/kaldi 
(accessed Jan. 14, 2021). 

24 Kaldi, “Kaldi: ivectorbin/ivector-extract.cc File Reference,” doxygen. https://kaldi-asr.org/doc/ivector-
extract_8cc.html (accessed Jan. 14, 2021). 

25 Kaldi, “Kaldi: Feature extraction,” doxygen. https://kaldi-asr.org/doc/feat.html (accessed Jan. 14, 2021). 

https://github.com/kaldi-asr/kaldi
https://kaldi-asr.org/doc/ivector-extract_8cc.html
https://kaldi-asr.org/doc/ivector-extract_8cc.html
https://kaldi-asr.org/doc/feat.html
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Figure 10 Frame Layout of Audio Samples 

Frame Layout of Audio Samples 

 

The librosa package can also be used as a feature extractor by generating Mel Frequency 

Cepstral Coefficients (MFCC). Although MFCC was developed over 30 years ago [48], it is still 

one of the best performing methods to shape sounds. This is because it represents the audio in a 

way that humans understand it, rather than simply in terms of pure frequency. As psychophysical 

studies have proven that humans perceive sound a way that does not follow a linear scale, each 

tone with a subjective pitch is measured on a scale called the Mel Scale [49]. This subjective 

pitch attempts to mimic the human cochlea which vibrates at different spots depending on the 

frequency, using the calculation of the power spectrum of each frame. Frequencies can be 

converted into the Mel Scale with the following formula: m = 2595log10 (1 + f/100) [49]. Using 

the layout of samples librosa loads, 40 MFCCs are created per audio file for a low frequency 

sample rate as recommended by Kaldi. Each MFCC considers 1,001 utterances, which has been 

shown to be ideal in testing by other researchers [50] [51]. By understanding how to change 
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audio into data that represents how humans hear audio, librosa can generate MFCCs to start the 

process of training a model. 

With each audio file converted into MFCCs, the i-vector feature extraction can be combined with 

TensorFlow to start training the model. In addition to CUDA GPUs being significantly quicker at 

training models as previously discussed, CUDA GPUs can also extract i-vectors. In 2020, 

NVIDIA implemented a feature in its CUDA platform to extract i-vectors from MFCCs, based 

specifically on Kaldi [52]. This also allows i-vectors to be extracted quicker, as by using the 

GPUs, many extractions can be done in parallel. Batches of audio files can then be converted 

into MFCCs and be sent to TensorFlow for training, which will use CUDA to not only train 

faster, but also extract i-vectors before training.  

Test Cases and Improvements 

Utilizing the design and algorithms previously mentioned, a model (m1) was trained to detect a 

spoken language. The model was trained with seven (7) epochs, with each epoch taking on 

average 27 hours to complete. After completing the final epoch, the model reported an accuracy 

of 80% using the randomly selected testing data from the training database. To contextualize this 

accuracy, a random classification between seven (7) languages would have an accuracy of 14%. 

This shows that the model has been able to learn the differences between languages and can 

classify them.  

Figure 11 shows the training results of the model (m1). Epochs are represented by each marker, 

with the seventh epoch achieving a 80% accuracy over around 200 hours of training time. A 

curve first occurs after the first epoch, which continues until the second last epoch. Interestingly, 

the slope increases on the last epoch, showing a sudden increase in the accuracy momentum. As 
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the model continues to increase by a fair amount after each epoch, there is little risk that over-

fitting is being done and more training epochs can be done to increase the accuracy even more.  

Figure 11 Model (m1) Accuracy Over Time, at Each Epoch 

Model (m1) Accuracy Over Time, at Each Epoch 

 

The cost of using the incredibly powerful TensorFlow and CUDA platforms is volatility. 

Although the model (m1) should have only required around 200 hours, or just under eight (8) 

days to complete, in practice it took over a month. This is because the model (m1) had frozen, 

crashed, or become corrupted numerous times. Fortunately, TensorFlow has a checkpoint 

functionality26, which allowed the model (m1) to continue training after an interrupt. The 

checkpoints were however not reliable, often requiring the model to restart at the last epoch that 

was completed. As the training utilized nearly 100% of the GPU, interacting with the machine 

was very risky. Using a program such as Google Chrome, which can use the GPU for some 

resource intensive webpages, was observed to create a busy loop as the model would not move 

onto another batch, yet continue to use 100% of the GPU indefinitely.  

 

 
26 TensorFlow, “Training checkpoints  |  TensorFlow Core,” Google. https://www.tensorflow.org/guide/checkpoint  
(accessed Jan. 16, 2021). 
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Training would also often be interrupted with an error stating “ValueError: frames must be 

specified for non-seekable files.” This would imply that a file is corrupted. By having the model 

print what file was being read while training, these files that caused errors were seemingly 

random and were valid files. This was proven by it being possible for a full epoch to be trained, 

so this error message was not accurately stating the issue. A solution was to use a try and catch 

method around the batch, which would work for all cases except the last batch. Unfortunately, 

this error often occurred on the last batch of the epoch and would also corrupt the TensorFlow 

checkpoint, causing around 27 hours of training to be wasted. While using TensorFlow and 

CUDA for big datasets, the process needs to be continually monitored to reduce the amount of 

wasted time. 

Although the model (m1) reports an accuracy of 80%, this value does not denote the true 

accuracy of the model and requires a separate testing database. There is an inherent bias to using 

the same database to produce training and testing data. The importance of the given accuracy is 

that is shows that the model is progressing. A much better measurement of the accuracy needs 

data that has no relation to the data that was used for training purposes. Although an accuracy of 

80% is well above randomness, a separate testing database is needed. 

A separate testing database was created to denote the true accuracy of the model (m1), which is 

shown in Appendix A. For each language, 10 voice clips were created, with English and French 

clips having 15 more clips so that the database has 100 clips. Different languages had a different 

number of users in each clip, such as German having most of the voice clips from one individual, 

and Arabic having all unique speakers. The complexity of what is said differs as well, Chinese 

(China) had more complex sentences, while Persian had very basic questions consisting of a 

small number of words. Some of the voice clips also have background noise, speaking mistakes, 
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and displays of different emotions. The testing database created independently from the training 

database will give a truer accuracy of the model’s ability to detect a spoken language. 

The accuracy of the model (m1) on the testing database is 38% (see Table 9). While this number 

is much lower than the 80% accuracy seen with the testing data from the training database, the 

38% accuracy gives a better idea of how it will classify the more realistic audio it will be 

classifying. While this value is low, it remains higher than the 14% accuracy that random 

classifications would give, which indicates the model did at least learn something about the 

differences between languages.  

Table 9 Accuracy and Time-Spent Recognizing a Spoken Language With Model (m1) 

Accuracy and Time-Spent Recognizing a Spoken Language With Model (m1) 

Language Accuracy Average Time-Spent 
English 28% 0.44s 
French 24% 0.44s 
Russian 40% 0.44s 

Chinese (China) 100% 0.44s 
Arabic 60% 0.44s 
Persian 40% 0.44s 
German 10% 0.44s 
Overall 38% 44s 

It is also interesting to note that the model (m1) had an accuracy of 100% when classifying 

Chinese (China). While this could be attributed to the voice clips being longer and more complex, 

the accuracy was not high for English and French which were also longer and complex according 

to the results Table 9 lists. There must therefore be a significant difference between Chinese 

(China), and the other languages. The accuracy of the model (m1) using testing data from a 

separate database than the training database displays that the true accuracy is much lower. 

The average time spent contained in Table 9 is based on the voice clip being tested 100 times 

after warming up the model. The times are all very similar as, although the voice clips will 
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contain different data for each language, the data is captured in the exact same container for 

processing. Unlike a language such as C, Python sacrifices code optimization for greater user 

functionality. This causes the first few classifications to take significantly more time as Python 

begins to optimize systems calls and memory management for repeated functions. Figure 12 

shows how the time to classify a voice clip shrinks as the same code snippet is repeatedly called. 

To account for this behaviour, the times captured in Table 9 were averaged after warming up the 

model with five (5) classifications. 

Figure 12 Python Calls for Model Classification Hasten After Repeated Calls 

Python Calls for Model Classification Hasten After Repeated Calls 

 

The accuracy of the model (m1) must be improved by observing the three characteristics of a 

good model, amount of data, amount of training data, and quality of data. Having a good amount 

of data means that the training will consider many permutations of the thing it is trying to 

classify, reducing the chance a new classification has no elements it has seen in training. The 

amount of training time is important for the model to confirm assumptions being made. Training 

for too long has the possible unwanted side-effect of overfitting, which means it will only 
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classify objects that are exactly what it was trained on. Finally, the quality of data is important as 

if during training it is learning aspects of a wrongly classified object, it will not recognize the 

real object in future classifications. By looking at the amount of data, the quality of data, and the 

amount of training time for the current model (m1), it can be improved and a higher accuracy can 

be achieved. 

For the amount of data considered in the model (m1), little can be improved. There are already 

hundreds of hours of audio for each language, to the point where data storage is already an issue. 

One solution to increase the amount of data is to up-scale the database instead of down-scaling, 

however this would lead to unwanted biases. This would also increase the time for a single epoch 

to increase tenfold, taking over two (2) months to complete, which is not acceptable. The number 

of data is the one characteristic that can be left alone.  

For the training time, there are simpler and more complex solutions. The simpler solution is to 

simply train the model (m1) for more epochs. As the accuracies continued to rise at a steady state, 

it can be inferred that running a few more epochs would increase the accuracy. While this is an 

easy solution, the issue lies in how volatile the system is. As each epoch takes significantly more 

time to successfully complete due to the volatility of the system, the model cannot simply be 

trained by 30 more epochs. A more complex solution can avoid this issue though. By pre-

processing the data before the training, the training epochs can become significantly shorter. The 

current implementation of i-vector feature extraction however relies on data being processed 

while being trained. Coming up with a solution to account for this can be investigated if it can be 

proven that more training time would indeed increase the accuracy. The accuracy should increase 

if more training epochs are permitted, which is only feasible if data is pre-processed, a complex 

issue given the current implementation of i-vector feature extraction. 
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To prove that more training epochs would increase the accuracy, as well as warrant the need to 

do data pre-processing, a second model (m2) was created and tested, with the results shown in 

Appendix A and training output illustrated in Figure 13. This model (m2) was trained for 11 

epochs instead of just the seven (7) epochs permitted for the first model (m1). The accuracy using 

the training dataset increased steadily as predicted, with a slope that indicates even more training 

epochs would result in a higher accuracy. The accuracies are similar for the first seven (7) 

epochs because the same random seed is used for the down-sampling and which data is used as 

training or testing. After around 300 hours of training time, the model (m2) was able to achieve 

an accuracy of 82%, meaning 100 hours of training time more than the first model (m1) achieved 

an accuracy four (4) points higher.  

Figure 13 Models (m1 and m2) Accuracy Over Time, at Each Epoch 

Models (m1 and m2) Accuracy Over Time, at Each Epoch 

 

To better understand the accuracy, Table 10 lists the results showing that the model (m2) 

achieved an accuracy of 40% on the testing database, which is shown in Appendix A. This is two 

(2) points higher than the first model (m1). The second model (m2) achieving an accuracy of 82% 

during training and 40% during testing indicates that it is worthwhile to investigate how to 

conduct data pre-processing so that many more epochs can be completed. 
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Table 10 Accuracy and Time-Spent Recognizing a Spoken Language With Model (m2) 

Accuracy and Time-Spent Recognizing a Spoken Language With Model (m2) 

Language Accuracy Compared to m1 Average Time-Spent 
English 40% ↑ (from 28%) 0.45s 
French 40% ↑ (from 24%) 0.45s 
Russian 50% ↑ (from 40%) 0.45s 

Chinese (China) 70% ↑ (from 100%) 0.45s 
Arabic 40% ↓ (from 60%) 0.45s 
Persian 50% ↑ (from 40%) 0.45s 
German 0% ↓ (from 10%) 0.45s 
Overall 40% ↑ (from 38%) 45s 

For the quality of data, there is much that can be improved. The dataset uses a crowd-sourced 

method of validating clips. Random internet users can listen to clips and compare it to what is 

supposed to be being said, and either upvote it or downvote it. Clips are considered to be 

validated if the upvotes are simply higher than the downvotes. Many of the clips only have a 

single upvote and no downvote, meaning a lot of trust is being put into a single random internet 

user. By manually listening to a few hundred clips, many were found to be considered validated 

but were simply static, music without lyrics, or simply nothing. It is an almost impossible task 

for one individual to go through the 2,655,198 voice clips in the training database and validate 

them all. One simple solution is to increase the threshold of the already employed validation 

method, increasing the amount of upvotes that are needed for each downvote. Due to the sheer 

amount of data however, some anomalies sprinkled in the dataset may not actually impact the 

training. Looking further, more complex solutions to filtering the data can be done, such as 

limiting the lengths of clips, if it is proven that data filtration will improve the accuracy. The 

accuracy should increase if the data is better filtered for quality, which can invoke more complex 

filtration criteria than relying on random internet users. 

To prove that more data filtration would increase the accuracy, as well as warrant the need to do 

more complex data transformations, a third model (m3) was created and tested, with the results 
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shown in Appendix A and training output illustrated in Figure 14. This model (m3) was trained 

with voice clips that had at least four (4) times as many upvotes as downvotes by the random 

internet users. This resulted in the down-sampled training database having 212,247 voice clips, 

with the Chinese (China) clips again setting the down-sampled threshold. This is 17% less than 

the 255,304 clips used in the training database for the first two models (m1 and m2), meaning 

epochs were completed relatively faster. The model (m3) was trained for seven (7) epochs just as 

the first model (m1) for easier comparison. While the accuracies during training were less than 

the first model (m1), the model (m3) maintained a stronger slope, achieving an accuracy of 82%. 

This may just be one more point than the first model (m1), however the testing database accuracy 

is even more important than usual here as the first model may have been scoring a higher 

accuracy due to thinking a language was simply static noise, as it was trained on.  

Figure 14 Models (m1, m2, and m3) Accuracy Over Time, at Each Epoch 

Models (m1, m2, and m3) Accuracy Over Time, at Each Epoch 

 

On the testing database, Table 11 lists the results showing that the model (m3) achieved an 

accuracy of 46%, six (6) points above the first model (m1). The third model (m3) achieving an 

accuracy of 82% during training and 46% during testing indicates that it is worthwhile to 

investigate how to better filter the data so that the training database only has quality data. 
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Table 11 Accuracy and Time-Spent Recognizing a Spoken Language With Model (m3) 

Accuracy and Time-Spent Recognizing a Spoken Language With Model (m3) 

Language Accuracy Compared to m2 Average Time-Spent 
English 64% ↑ (from 40%) 0.43s 
French 44% ↑ (from 40%) 0.43s 
Russian 0% ↓ (from 50%) 0.43s 

Chinese (China) 90% ↑ (from 70%) 0.43s 
Arabic 20% ↓ (from 40%) 0.43s 
Persian 50% = (from 50%) 0.43s 
German 30% ↑ (from 0%) 0.43s 
Overall 46% ↑ (from 40%) 43s 

Now that is has been established that the accuracy will improve with more quality data and more 

training time, a fourth model (m4) can be created exploring both concepts. The first step is to 

look at how the quality of the data can be improved. This can be done by limiting the amount of 

data in the testing database based on certain characteristics, as well as performing some data 

augmentation to standardize the voice clips. The second step is to look at how data can be pre-

processed so that training epochs are much smaller. If features can be extracted before the 

training occurs, the training will be significantly faster. The fourth model (m4) combines the 

strengths of the previous model improvements. 

To increase the quality of the data, the training database can be used to create a separate filtered 

training database. The first filter which has already been applied in training the third model (m3) 

was to increase the threshold for a validated clip based on upvotes from random internet users. 

The second filter is to ignore any voice clips that have no audio data in them. This is done by 

loading the voice clip as an array through librosa and verifying if unique values exist in the array. 

The third filter is to only use voice clips that lasted more than seven (7) seconds. Many of the 

voice clips are a single word or number, which is not ideal for training as it applies too much 

emphasis on a small number of sounds compared to sentences being read. Once voice clips pass 

these three filters, they are copied to a new location. This created a new filtered training database 
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of 29,820 clips. While Chinese (China) has the lowest number of total voice clips, Arabic had the 

lowest number of voice clips that met these filters, down-sampling all languages to 4,260 clips 

each.  

The quality of the data can be further improved through data augmentation. Almost all the voice 

clips in the database were likely recorded sitting in front of a computer based on the nature of 

how the voice clips were collected. As the model needs to be able to account for background 

noise to correctly classify voice captured in real world scenarios, noise can be added to the clips 

to train the model to focus better on a spoken voice. As librosa ultimately loads voice clips into 

an array, an array of the same size with a Gaussian distribution can simply be added to simulate 

background noise. This database of filtered voice clips with noise added can be included with the 

existing filtered database, creating a database of 59,640 voice clips. This will allow the model to 

be trained on both clips with background noise and clips without, achieving a better 

understanding of how to carve out a voice from noise. By augmenting the filtered database with 

a filtered database with added noise, the quality of the data can help generate a more accurate 

model when considering real world data. 

Pre-processing can be used to reduce the amount of time needed to aptly train the model. Instead 

of doing computations while training the model, features can be extracted and stored for later use. 

The features can be stored as a spectrogram as an image. Figure 15 shows a spectrogram of a 

pre-processed voice clip with and without added noise. To standardize the images, each voice 

clip was also looped so that it is exactly 10 seconds long, which can be observed occurring at the 

very right of Figure 15. The model can then be trained by only reading in images, improving the 

speed of a training epoch greatly. By pre-processing the feature extraction into a spectrogram 
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image, the model can be trained quickly enough that even other, time consuming optimizations 

can occur. 

Figure 15 Spectrogram of Voice Clip With (Top) and Without (Bottom) Added Noise 

Spectrogram of Voice Clip With (Top) and Without (Bottom) Added Noise 

 

As the model can now be trained in a day, some more computational costing improvements can 

be done to the model. The six (6) layer kernel can be greatly expanded on, allowing for the 

training to consider far more aspects of the given features. Inceptionv3 [53] is a significantly 

larger CNN with 48 layers, optimized to classify image recognition models. Although this takes 

significantly more time to train, the pre-processing of features more than accounts for the time 

loss. By using the inceptionv3 CNN, the model can greatly benefit from a more complex kernel.  

Now that the model can be fully trained, a risk that must now be mitigated is overfitting. Two 

approaches are used to avoid this, early stopping and learning rate decay. Early stopping uses the 

validation data to determine when the accuracy stops improving and forces the model to stop. 

The learning rate decay determines how much the model can impact its parameters at each 

training epoch, preventing the model from quickly reaching suboptimal conclusions. Combining 
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early stopping and learning rate decay ensures that the fully trained model stops once it reaches 

optimal conclusions. 

A fourth model (m4) was generated and trained with all of the improvements with an accuracy of 

90%. Figure 16 shows its accuracy and training time compared to the previous models. Not only 

was the model trained significantly quicker, but it also achieved a much higher accuracy. 

Although the accuracy of 90% is only 10 points higher than the 80% accuracy of the first model 

(m1), each point is much more difficult to obtain. It is therefore better to observe the difference in 

accuracy from the error percentage, meaning this model (m4) had a 10% error rate compared to a 

20% error rate, a 50% improvement. The accuracy of the fourth model (m4) is significantly 

higher thanks to the improvements explored. 

Figure 16 Models (m1, m2, m3, and m4) Accuracy Over Time, at Each Epoch 

Models (m1, m2, m3, and m4) Accuracy Over Time, at Each Epoch 

 

The training behavior of the fourth model (m4) displays how the early stopping and learning 

decay rate helped influence its high accuracy. Figure 17 shows just the training timeline of the 

fourth model (m4). The accuracy does not universally improve, showing how the model was 

beginning to come to an incorrect conclusion. The learning rate decay prevented this impacting 

0
0.4906
0.5214

0.6841
0.5565

0.703

0.7422
0.8085

0.8621
0.8995

0.8984 0.8985

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350

Ac
cu

ra
cy

Time (Hours)

m₁

m₂

m₃

m₄



AUTOMATED SPOKEN LANGUAGE DETECTION  

62 
 

the learning too much and it was able to consider other conclusions that improved the accuracy. 

After 10 epochs of no improvements, the early stopping prevented the model from going through 

the 100 epochs, and instead end at 43 epochs. The model (m4) does an excellent job at displaying 

the effectiveness of early stopping and learning rate decay. 

Figure 17 Model (m4) Accuracy Over Time, at Each Epoch 

Model (m4) Accuracy Over Time, at Each Epoch 

 

The fourth model (m4) also performed better on the real-world data with the testing database, 

Table 12 lists the results showing that model (m4) achieved an accuracy of 60%. Appendix A 

lists all the accuracy test results for the four trained models. Now that the accuracy has passed 

the 50% threshold, this model (i.e., model m4) can listen to an individual speaking and have a 

better conclusion of the language being spoken by creating and classifying multiple voice clips. 

Although it is still 40 points from a perfect 100%, it has still achieved a high accuracy given that 

the testing data is purposely difficult to comprehend. This model (m4) has a high enough 

accuracy to be deployed onto an application to correctly classify a spoken language. 
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Table 12 Accuracy and Time-Spent Recognizing a Spoken Language With Model (m4) 

Accuracy and Time-Spent Recognizing a Spoken Language With Model (m4) 

Language Accuracy Compared to m3 Average Time-
Spent 

English 68% ↑ (from 64%) 0.66s 
French 60% ↑ (from 44%) 0.66s 
Russian 40% ↑ (from 0%) 0.66s 

Chinese (China) 80% ↓ (from 90%) 0.66s 
Arabic 50% ↑ (from 20%) 0.66s 
Persian 50% = (from 50%) 0.66s 
German 50% ↑ (from 30%) 0.66s 
Overall 60% ↑ (from 46%) 66s 

The changes in the time required to make a classification per voice clip is logical when the 

differences between the models are understood. The first model (m1) set the base-line time of 44 

seconds. As the second model (m2) was simply given more training time, it was a larger model 

and took a slightly higher time of 45 seconds. The third model (m3) filtered the training data 

further and therefore dealt with a lower number of voice clips, resulting in a smaller model and a 

slightly lower time of 43 seconds. The fourth model (m4) has a seemingly abnormally high time 

of 66 seconds but can be attributed to having to create and store files outside of the interpreter. 

After a few calls as a warm-up, the time spent to classify a voice clip is very reasonable with all 

four (4) models. 
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Chapter 4. Prototype 

Architecture and Workflow 

To utilize this research, a deployable application must be developed that can take advantage of 

the developed model, shown in Figure 18. This figure includes Figure 7 to show how the 

research completed so far rolls into the application deployment. The output of the research thus 

far is a model that, given voice clip data, can classify the spoken language. Before the model can 

be used however, other steps must be taken. First, the User Interface (UI) must be developed so 

that a user can interact with the model. Second, the user must be able to record a voice clip for 

the model.  Third, the backend of the application must be able to take the voice clip and 

manipulate it so that it is an acceptable format for the model to ingest. Finally, the model can 

detect the language and present it to the user. 
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Figure 18 Model Research and Deployment 

Model Research and Deployment 

 

Before the application can be deployed, a platform to develop the application needs to be chosen. 

Android Studio is the main IDE that is used for creating and deploying android applications. This 

IDE is heavily supported with documentation but uses either Java or Kotlin languages. As the 

research thus far used Python and the IDE Visual Studio Code, it would be ideal if the platform 

could also be developed with the same IDE and language. While Google products such as 

TensorFlow fully utilize python, android application simply cannot natively be programmed in 
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Python. This problem of Python being unsupported for application development by Google has 

led others to create platforms and tools to bridge the gap. 

Kivy27 is an open-source platform that allows applications to be developed with Visual Studio 

Code in Python and packaged into an application. This packaging not only creates Android 

applications, but also iOS application. Applications developed with Kivy can also avoid having 

to be packaged and put onto an official store by using the existing Kivy Launcher application28. 

This allows Python scripts to be exported as a Kivy file and tested on a mobile device. This 

could be very beneficial if the application could not be put onto the application store for reasons 

such as application size or ethics. Applications can be tested even quicker however as they can 

be launched directly with a pop-up window. As most application development platforms require 

the heavy cost of running an emulator of a phone to test the applications, this is very beneficial 

for rapid development. Kivy appeared to be a viable solution for deploying an application using 

Python and Visual Studio Code. 

Unfortunately, Kivy was found to not be a viable solution after reaching the third step of Figure 

18, Prepare Data. A UI was rapidly developed, shown in Figure 19. Developing a UI in Kivy, 

although simple, lacks the robust UI manipulation of a dedicated application IDE. It however 

quickly creates a functioning UI, which is really all that is required to deploy this research. 

Creating the audio functionality was also quick and simple, making use of Kivy’s own API for 

 

 
27 Kivy, “Kivy,” Kivy. https://kivy.org/ (accessed Feb. 16, 2021). 

28 M. Virbel, “Kivy Launcher,” Google Play. https://play.google.com/store/apps/details?id=org.kivy.pygame 
(accessed Feb. 16, 2021) 

https://kivy.org/
https://play.google.com/store/apps/details?id=org.kivy.pygame
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handling audio29. Since Kivy’s API is used, this allows for the application to be deployed onto 

either Android or iOS, as it will deal with the unique system calls that handle audio. When 

starting to interact with the voice clip, Kivy’s major weakness was brought to light. While Kivy 

can use certain libraries, they have to be specifically supported and very few are. TensorFlow is 

not one of the supported libraries. Due to this reason, development with the Kivy platform had to 

be abandoned for another solution to run Python scripts on Android. 

 

 
29 Kivy, “Audio,” Kivy. https://kivy.org/doc/stable/api-kivy.core.audio.html (accessed Feb. 16, 2021) 

https://kivy.org/doc/stable/api-kivy.core.audio.html
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Figure 19 Kivy Application to Record and Play Audio 

Kivy Application to Record and Play Audio 

 

A few other solutions for running Python scripts on Android were tested such as Beeware30, 

QPython31, and PyQt32, but the ultimate solution was Chaquopy33. This tool allows the Android 

Studio IDE to make calls to a Python script, downloading the libraries it requires to function. 

While this unfortunately means that the Visual Studio IDE cannot be used, at least the current 

Python solution could be called with Java in an IDE specifically designed for developing and 

deploying Android applications. With Chaquopy being able to handle calls to a Python script and 

 

 
30 R. Keith-Magee, “BeeWare,” BeeWare. https://beeware.org/ (Accessed Feb. 16, 2021) 

31 QPython, “QPython – Python on Android,” QPython. https://www.qpython.com/ (Accessed Feb. 16, 2021) 

32 The QT Company, “What is PyQt?,” Riverbank Computing. 
https://www.riverbankcomputing.com/software/pyqt/intro (Accessed Feb. 16, 2021) 

33 Chaquo, “Chaquopy,” Chaquo Ltd. https://chaquo.com/chaquopy/ (Accessed Feb. 16, 2021) 

https://beeware.org/
https://www.qpython.com/
https://www.riverbankcomputing.com/software/pyqt/intro
https://chaquo.com/chaquopy/
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its required libraries, the development for this application could be moved to the Android Studio 

IDE.  

Application Design 

Using Android Studio as an IDE and Chaquopy to handle data manipulation and calls to the 

model, a well-designed application was created to house this research. Although creating the UI 

in Android Studio took some time, it was able to look quite professional. Recording and storing 

voice clips were simple to accomplish, making use of Android API in Java. The voice clips were 

able to be manipulated in Python through Chaquopy. Finally, the classification was able to be 

made in Python through Chaquopy, creating an optimal deployment of this research. 

The UI for this application was designed to be minimalistic and intuitive. Figure 20 shows the UI 

of the developed application. Icons were used in place of buttons as the images can invoke more 

of an understanding on what the buttons do than if they were buttons with text. The IDE was able 

to make these icons more aesthetic by taking care of spacing them out equally no matter the 

screen size, changing their colors, giving them a shadow effect, and most importantly, allowing 

them to fade. Depending on the state of the application, buttons are either enabled or disabled, 

and fading the buttons allows the users to understand what buttons can be pressed at any given 

state. The IDE does an excellent job at creating an aesthetically pleasing UI the promotes 

functionality. 
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Figure 20 User Interface of the Application Deployment 

User Interface of the Application Deployment 

 

Recording and storing the voice clips at the push of the buttons was accomplished using 

MediaRecorder34, a native Android API. When a recording is started, the MediaRecorder is 

invoked, specifying the format and location to save the voice clip. To do this however, 

permission must be asked to access the microphone. In primary implementations of the 

application, permission would also be asked for reading and writing to external storage, though 

this was avoided by later saving the voice clip to an internal directory of the application. The 

format specified is an m4a file, encoded with Advanced Audio Coding (AAC), the highest 

quality audio format available35. The file is then stored at a specific location so that it could be 

fed into the model for classification, as well as be played back if the user desired.  

 

 
34 Android Developers, “MediaRecorder,” Google Developers. 
https://developer.android.com/reference/android/media/MediaRecorder (Accessed Feb. 18, 2021) 

35 Android Developers, “Supported media formats,” Google Developers. 
https://developer.android.com/guide/topics/media/media-formats (Accessed Feb. 18, 2021) 

https://developer.android.com/reference/android/media/MediaRecorder
https://developer.android.com/guide/topics/media/media-formats
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Preparing the data for the model was completed in Python through Chaquopy, though this 

highlighted an issue with how Chaquopy installs the packages the Python scripts require. One of 

the libraries needed to prepare the data is librosa, which loads the voice clip so that it can be 

manipulated. This library however can only load in Waveform Audio File Format (WAVE) files. 

This was previously solved by using FFmpeg which was installed alongside librosa, however the 

installation of librosa that Chaquopy does skips the FFmpeg installation. As MediaRecorder is 

unable to output the WAVE files that librosa requires, this was a problem. 

The first solution to load the voice clips for manipulated was to convert the python code into the 

native Android Java code. A Java package called jlibrosa36 was used to make the same librosa 

calls in Java. While this was able to manipulate the voice clips, this unfortunately did not 

manipulate the data the exact same way librosa did. Comparing outputs from librosa and jlibrosa 

showed similar data, but they were not exact. As giving similar but not exact data to the model 

would significantly alter its accuracy, this was not a viable solution.  

The second solution was to focus on how to convert the m4a file to a WAVE file. As a WAVE 

file is not an encoding, but a container, a WAVE file can be manually made. This is done by 

creating a new file, filling out the WAVE header information37, followed by the voice clip raw 

data. Fortunately, a Java package called mobile-ffmpeg38 exists, which can use FFmpeg on a 

mobile device to do just that. By parsing in a string to emulate how the call to FFmpeg would be, 

 

 
36 Subtitle-Synchronizer, “jlibrosa,” GitHub. https://github.com/Subtitle-Synchronizer/jlibrosa (Accessed Feb. 18, 
2021) 

37 FileFormat, “What is a WAV file?,” Aspose Pty Ltd. https://docs.fileformat.com/audio/wav/ (Accessed Feb. 18, 
2021) 

38 tanersener, “mobile-ffmpeg,” GitHub. https://github.com/tanersener/mobile-ffmpeg (Accessed Feb. 18, 2021) 

https://github.com/Subtitle-Synchronizer/jlibrosa
https://docs.fileformat.com/audio/wav/
https://github.com/tanersener/mobile-ffmpeg
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the saved voice clip could be converted to a WAVE file. This allowed librosa to load and prepare 

the data for the model. 

With the data correctly prepared, a classification can be made and presented to the user, though 

after taking a long time. As observed earlier, the first classification that is made takes 

significantly longer than subsequent classifications. Further time was added by Chaquopy as well 

as it must invoke the python instance and along with some other set up. The time for the first 

classification on lesser hardware was taking upwards of two (2) minutes, which was far too long 

for the user. Two solutions were implemented to address this inexcusable wait. 

The first solution to handling the timing delays was converting the TensorFlow model output 

from the previous research into a TensorFlow Lite model. This conversion results in size 

reduction, latency reduction, and an increased accelerator compatibility. The original 257MB 

TensorFlow model was able to be converted into an 85MB TensorFlow Lite model. Loading this 

lite model onto the android device significantly reduced the amount of time to load in the model 

and make calls to it. The cost of this optimized performance boost comes with accuracy. With 

the Inceptionv3 CNN, accuracy is reported to drop from 78% to 77.5%39. Although maintaining 

the accuracy of the model is extremely important in the deployment of it, the accuracy loss is 

small enough to be considered acceptable. 

The second solution to handling the timing delays was to alter the UI to occupy the user while a 

classification is made immediately upon starting the application. The UI addition is shown in 

Figure 21. The loading bar steadily fills at a predetermined rate while the model is loaded in and 

 

 
39 TensorFlow, “Model optimization,” Google. https://www.tensorflow.org/lite/performance/model_optimization 
(accessed Feb. 18, 2021). 

https://www.tensorflow.org/lite/performance/model_optimization
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a classification is made on a pre-loaded voice clip. The size of the model is said to be much 

larger than it really is so that the user can better appreciate the loading time. Once a classification 

is made, the loading bar is instantly filled and the icons become active so that the user can 

interact with the models with no delays.  

Figure 21 User Interface to Account for Model Delay Time 

User Interface to Account for Model Delay Time 

 

With the application fully developed and ready to deploy to the Google Play Store, the issue of 

the size of the application was discovered. As Chaquopy installs all of the packages and their 

dependencies directly into the application storage, the application is quite large. The TensorFlow 

package alone is 80MB and the model requires even more storage. Although the model was able 

to be converted into a lite model, the storage limits of an Android Application Package (APK) to 

be on the Google Play Store is 100MB. This limit can be increased by instead using an Android 

App Bundle (AAB), which is a way for the Google Play Store to dynamically generate APKs 
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based on the device downloading the application40. The storage limit for an AAB is 150MB41. 

The current 228MB AAB can still be deployed onto mobile devices manually or through 

privately hosting it but deploying to the Google Play Store would allow the research to reach a 

much greater audience. The 228MB AAB can be analyzed to show that the AAB would be 

149MB without the model, which would allow the deployment onto the Google Play Store. 

The solution to the size constraint of the Google Play Store was to employ the Play Asset 

Delivery42 function of the Google Play Store. This service is typically used for games, allowing 

assets to be patched in as required. The Play Asset Delivery has three (3) modes to deploy further 

assets, install-time, fast-follow, and on-demand43. Using install-time allows for the model to be 

packaged with the application as it is installed, providing the needed functionality. Unfortunately, 

this treats the model as an asset file, which means that it is compressed and not at a static 

location as needed. 

To attain a static reference to the model, the model needs to be extracted from being an asset. 

When the application first starts, the AssetManager44 is used to copy all assets to the internal 

application storage. This results in the application size growing on the device, as the model now 

 

 
40 Android Developers, “About Android App Bundles,” Google Developers. 
https://developer.android.com/guide/app-bundle (Accessed Feb. 18, 2021) 

41Android Developers, “About Android App Bundles,” Google Developers. 
https://developer.android.com/topic/performance/reduce-apk-size (Accessed Feb. 18, 2021) 

42 Android Developers, “Play Asset Delivery,” Google Developers. https://developer.android.com/guide/app-
bundle/asset-delivery (Accessed Feb. 18, 2021) 

43 Android Developers, “Integrate asset delivery (Java),” Google Developers. 
https://developer.android.com/guide/playcore/asset-delivery/integrate-java (Accessed Feb. 18, 2021) 

44 Android Developers, “AssetManager,” Google Developers. 
https://developer.android.com/reference/android/content/res/AssetManager (Accessed Feb. 18, 2021) 

https://developer.android.com/guide/app-bundle
https://developer.android.com/topic/performance/reduce-apk-size
https://developer.android.com/guide/app-bundle/asset-delivery
https://developer.android.com/guide/app-bundle/asset-delivery
https://developer.android.com/guide/playcore/asset-delivery/integrate-java
https://developer.android.com/reference/android/content/res/AssetManager
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exists as an asset as well as fully uncompressed in internal storage. For this reason, the UI 

change to add the loading bar in Figure 21 also overstates the real size of the model. The 

application uses 722MB of internal storage due to also uncompressing the Chaquopy packages, 

so rather than the user wondering why it takes so much room, an easy, understandable, and 

ultimately false reason is given to them. The loading time for the loading bar is also doubled 

when it has to ask for microphone permissions, to account for the time to copy the model out of 

the AssetManager. This results in the fully functional application with a 149MB AAB that can be 

deployed onto the Google Play Store45. 

Evaluation Plan 

To evaluate this research, the developed application must be used in conjunction with certain 

criteria to adequately measure the accuracy and usability. First (E-1), the test must be conducted 

in a real-world scenario, which was previously defined as an individual speaking into a device 

with the background noise of an environment. Second (E-2), many willing individuals must be 

found who can speak one or more of the seven languages considered in the application. Third (E-

3), the evaluation must be quick and anonymous to avoid some of the biases that could be 

present. Fourth (E-4) and finally, the results of the evaluation must capture all necessary 

information and be easy to consolidate to create some meaningful findings on the accuracy and 

usability of the application. 

Meeting the first criterium (E-1) requires that the test be conducted outdoors. By conducting the 

test outdoors, the noise will be much more random and uncontrollable, which is what is needed 

 

 
45 R. Pennell, “Automated Spoken Language Detector,” Google Play. 
https://play.google.com/store/apps/details?id=rip.thesis.automatedspokenlanguagedetector (accessed Jan. 6, 2022) 

https://play.google.com/store/apps/details?id=rip.thesis.automatedspokenlanguagedetector
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to aptly simulate a real-world scenario. At any given point, a somewhat unique background noise 

will be present for each individual test, consisting of different noises coming from sources such 

as automobiles, birds, the wind, passerby conversations, and machinery on a building. Meeting 

with individuals outside is also much safer to conduct during the coronavirus pandemic. The 

pandemic also means all users will be wearing a mask, which will add yet another randomness 

factor to truly test the accuracy.  

While beyond the scope of the evaluation criteria, other steps will be taken for the evaluation due 

to the coronavirus pandemic. As the evaluation will be conducted using a single phone, a thick 

protective screen will be used on top of the phone, so that hand sanitizer can be liberally and 

excessively. This will prevent damage to the device, while also relieving users of any sanitary 

dangers. This however may have an impact on usability, as the extra screen and hand sanitizer 

may have an impact on the users’ ability to control the touch screen. When setting up the testing 

area, it will be done to remain six (6) feet away from any main walk paths, which could also 

have an impact on the background noise of passerby conversations. A face shield will also be 

worn, to protect all users who agree to participate. 

Meeting the second criterium (E-2) requires that the test be conducted on a military base. This is 

the perfect location to find users to evaluate this research, based on three reasons. First, there are 

many members of the military who speak multiple languages. Second, military users are the 

targeted audience for this research. Third, it will be easy to track down users who speak multiple 

languages by using internal military databases of the base. Every member of a military base that 

speaks one of the needed secondary languages will be asked to partake in the evaluation of this 

research. 
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Meeting the third criterium (E-3) requires that biases be understood and accounted for. The first 

identified bias (B-1) is the professional relationship. As the tests will be conducted on a military 

base, participants who are a lower rank may be inclined to rate the application higher for fear of 

offending a military officer. This will partially mitigated by not wearing a uniform while 

preparing the tests, however the rank might still be known by being seen previously. A further 

mitigation will be done by giving the participants as much anonymity as possible. While one 

method to do this would be to have a book that the participant could flip through and put their 

information on a random page, the coronavirus pandemic restricts having items multiple 

participants must touch. Instead, a box with a slit, similar to an amnesty box, will be used for 

participants to drop papers into. The papers will be pre-filled with the required information and 

only ask for bullets to be checked, so that the unique handwriting of a participant does not 

identify them. The participants will also be told that the lock that is put on the amnesty box will 

not be opened until 100 participants have put their information in, so that they are not concerned 

with being the only person to speak a certain language that day. 

The second identified bias (B-2) is the improvisation ability of the participant. While the 

participants will have self-identified as being able to speak a different language, sticking a device 

in front of them and telling them to say something random will certainly be off-putting to those 

without much improvisation experience. To mitigate this, some questions will be printed out on 

the table, designed such that the responses are likely unique to prevent classifications on the 

exact same phrase. They will also try to prevent the participant from using proper nouns, as they 

will be the same for all languages. These questions will allow the participant to instantly be able 

to create their own phrase in their tested language. 



AUTOMATED SPOKEN LANGUAGE DETECTION  

78 
 

The third identified bias (B-3) is the urge of the participant to assist the algorithm. As the model 

was trained on a mix of native language and secondary language speakers, some resilience is 

already built into the model. Since the participants will understand that the application is trying 

to guess the correct language, they may put extra emphasis into the accent to attempt to help the 

algorithm classify correctly. Doing this prevents the evaluation data from being real-world data. 

To mitigate this, participants will be told to not force an accent and to speak as naturally as 

possible and that the model has been trained with many accents. Participants will also be asked 

to self-identify how much of an accent they have, to see how the model adapts. This will appease 

to the participants’ natural urge to assist the algorithm. 

The fourth identified bias (B-4) is the time availability of the participant. As almost all 

participants will be conducting this test during working hours, many participants will not be able 

to spend too much time away from their desk. The participant might take any opportunity they 

see to quickly end the test, so that they can continue with their workday. The mitigation for this 

is to design the test to take the minimal amount of time possible and ensuring all paths that can 

be taken during the test are short. Since the same phone is being used, no time is wasted having 

to download the very large application and loading in the very large model. The participant will 

instantly have the app primed for their use and will only get one classification per language they 

can speak. They can of course experiment with the application after if they wish, and relevant 

findings from this unstructured evaluation will be recorded with their permission. The evaluation 

will take no more than a minute, and the pre-filled questionnaire with bullets to fill out will also 

take no longer than a minute. Unfortunately, this means that participants will not be writing 

down the phrase that they used for the classification. However, this would not be possible 
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regardless in order to preserve anonymity. This allows the test to be very quick with no apparent 

shortcuts that the participant might gravitate to. 

Meeting the fourth criterium (E-4) requires that the pre-filled questionnaire be designed to 

account for meaningful findings for the research as well as be easy to amalgamate. A unique 

identifier will be given to each data point at the point of amalgamation, as prior to the collection 

it is not needed. Content that must be in the questionnaire revolve around the research question 

and the two hypotheses of the research. To capture the accuracy of the research, the language 

spoken, the degree of a self-identified accent, the language identified, and the level of confidence 

will be recorded. This will allow a comparison to be done between tests with real-world data, and 

the test data that was used to track the different models’ performances. To capture the usability 

of the research, a System Usability Scale (SUS) will be used. The SUS is a technology 

independent method to measure usability that has become an industry standard since its release 

in 1986 [54]. It consists of a 10-item questionnaire with five (5) response options, ranging from 

strongly disagree to strongly agree. There is then a science to calculating a final score and how 

that score is to be interpreted. The results of the tests in combination with the SUS will allow for 

an evaluation to aptly amalgamate the accuracy and usability of the research. 

Accounting for the four (4) criteria, a step-by-step evaluation plan can be created.  

1. Set up the testing environment. 

a. Stand up a folding desk, outside of the only entrance to the base compound. 

Ensure it is six (6) feet away from all main pathways and entrances. 

b. Place on the desk 10 black and 10 blue disposable pens in case a participant does 

not have a pen in their uniform. 
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c. Place on the desk 125 copies of a pre-filled questionnaire, which is shown in 

Appendix B. 

d. Place on desk 10 questions that participants can opt to use. 

e. Prime the application for execution on a phone with a thick layered protective 

screen. 

f. Place on desk a large hand sanitizer dispenser. 

g. Place on desk a box of wipes for use on the phone in between participants. 

h. Place a Bristol board sign against table with the question, “Speak a second 

language?” 

2. Gather participants. 

a. Ask passersby if they speak one of the languages which data is still required for. 

b. Meet with a linguist for some of the needed languages and get a contact list of 

potential participants. 

c. Meet with the base admin staff to check who has self identified as speaking on of 

the needed languages. 

d. Continue to search for participants until 100 tests are completed, with the 

appropriate ratios of data to achieve a similar dataset to the testing database. 

3. Running the evaluation. 

a. Briefly explain to the participant the military intent of the research. 

b. Wipe the phone with sanitary products. 

c. Hand the phone to the participant, without any instructions other than use the 

application. 
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d. Give the participant the questionnaire and ask them to fill it out and place in the 

amnesty box. Move away from the table so that the questionnaire cannot be seen. 

e. Respond to any questions they might have from this point. 

This evaluation plan was submitted to and approved by the Athabasca University Research 

Ethics Board, with the approval shown in Appendix C. Upon receipt of the ethics approval, the 

evaluation plan was enacted exactly as outlined above.  
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Chapter 5. Results 

Accuracy and System Usability 

Real-world evaluation of the research, conducted as per the evaluation plan, generated highly 

accurate results, which are shown in Appendix D. The accuracy is even higher than the accuracy 

of the testing database, with the evaluation accuracy being 81% compared to the testing accuracy 

being 60%. This high accuracy of 81% approaches the accuracy the model achieved during 

training, 90%. As 14% accuracy would be accuracy of a completely random classifier for seven 

(7) languages, an accuracy of 81% concretely proves the technical hypothesis (HT) of this 

research. 

The precision, recall, and F-score of each language is shown in Table 13. The precision value 

helps answer the question of how many of those identified as a certain language were actually 

correct? In the case of Persian, which achieved a perfect precision score of 1, anytime the 

application deemed someone was speaking Persian, it was correct. Chinese (China), which had 

the lowest precision score of 0.64, was the most mistaken classification of the algorithm. It 

makes logical sense that the language with the highest accuracy also has the lowest precision, as 

it means that the algorithm is most likely to identify a language as Chinese (China) if it is going 

to be incorrect. 
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Table 13 Precision, Recall, and F-Score of Each Language 

Precision, Recall, and F-Score of Each Language 

Language Precision Recall F-score Support 
English 0.81 0.84 0.82 25 
French 0.88 0.84 0.86 25 
Arabic 0.89 0.8 0.84 10 
Russian 0.75 0.6 0.67 10 
Persian 1 0.8 0.89 10 

Chinese (China) 0.64 0.9 0.75 10 
German 0.73 0.8 0.76 10 

Total Accuracy 0.81 100 
Macro avg 0.81 0.8 0.8 100 

Weights avg 0.82 0.81 0.81 100 

The recall value helps answer the question of how many times was a language correctly 

identified? Chinese (China) had the highest recall score of 0.9, meaning it is very likely that if 

someone is speaking Chinese (China), it will be correctly identified. Russian had the lowest 

recall score of 0.6, which is still well above the recall of a random selector, 0.14. These two 

languages were also the most and least accurate in the testing database. 

The F-score is the average between precision and recall, helping to answer the question on which 

language is the application performing the best with? Although Persian did not achieve the 

highest recall score, its perfect precision score causes it to have the highest F-score of 0.89. 

Russian has the lowest F-score of 0.67. Although Chinese (China) had the highest recall score, it 

is the second last in F-score due to its low score in precision. If only the recall or accuracy were 

considered, it would be deemed that the algorithm handles Chinese (China) the best, but in 

actuality, by looking at the F-score, it is one of the worst. 

The confusion matrix of the evaluation results is shown in Figure 22. This matrix shows the two 

most common confusions, both with a score of 0.2 which is at least double of every other 

confusion. Russian speakers were mistakenly classified as English, and Persian speakers were 

mistakenly classified as Chinese (China). As these values are just over the accuracy of random, 
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0.14, there appears to be slight similarities between the languages. The rest of the confusions 

were less than 0.14, indicating the mistakes were a random guess. 

Figure 22 Precision, Recall, and F-Score of Each Language 

Precision, Recall, and F-Score of Each Language 

 

Real-world evaluation of the research, conducted as per the evaluation plan, generated high user 

ratings, which are shown in Appendix D. The overall SUS score was 95.7. This is well above the 

average SUS score of 68 and is close to a score of 100 which represents the best imaginable 

design [55]. While a bias might be assumed, biases were already identified and mitigated as part 

of the evaluation plan. The high score is likely due to a combination of the algorithm having a 

high accuracy and the application being very simple and intuitive. As the SUS score of 95.7 is 

much higher than the average SUS score of 68, this concretely proves the usability hypothesis 

(HU) of this research. 

The SUS score of the application by language is shown in Table 14. Both Persian and Chinese 

(China) speakers rated the application the highest, with Arabic speakers rating it the lowest, 

though still very high. Arabic speakers also shared the highest range (90-100) of scores, despite 

having the lowest average score. Comparing this table with Table 13, the accuracy of each 
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language, it is clear that the correlation between high accuracy and a high SUS score is not 

absolute, as Russian had the lowest accuracy, but Arabic had the lowest SUS score. 

Table 14 SUS Scores Description for Each Language 

SUS Scores Description for Each Language 

Language N Mea
n 

Std. 
Deviation 

Std. 
Error 

95% Confidence Interval 
for Mean Mi

n Max Lower 
Bound 

Upper 
Bound 

English 25 96 5.352 1.070 93.79 98.21 80 100 
French 25 96 5.774 1.155 93.62 98.38 80 100 
Arabic 10 93.5 3.545 1.121 94.21 99.29 90 100 
Russian 10 95.75 4.888 1.546 90.00 97.00 88 100 
Persian 10 97 5.898 1.865 91.53 99.97 80 100 

Chinese (China) 10 97 3.073 0.972 94.80 99.20 90 100 
German 10 94 5.028 1.590 90.40 97.60 88 100 

All 100 95.7 5.076 0.508 94.69 96.71 80 100 

The SUS score and accuracy not having an absolute correlation is another indicator that the 

application is highly successful. Despite being given a wrong classification, users still found that 

the usability of the application was very high, which means the application is meaningful and 

useful in general. Another interesting phenomenon was that the SUS question on inconsistency 

sometimes had a perfect score despite showing the wrong classification. This is certainly because 

of how users understand the current maturity of current translation capabilities, allowing them to 

have the patience with their incorrect results as long as the application performs the way it does. 

The SUS score of the application by degree of accent is shown in Table 15. Users with no accent 

rated the application the highest, with users with strong regional accents rating it the lowest, 

though still very high. There were very few users which identified as speaking with a strong 

regional accent, with the majority either having no accent or a strong accent. Users with a strong 

regional accent had the most diverse ratings, though this is likely due to the very small sample 

size of four (4). 
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Table 15 SUS Scores Description for Each Degree of Accent 

SUS Scores Description for Each Degree of Accent 

Degree of Accent N Mean SD Std. 
Error 

95% Confidence 
Interval for Mean Min Max Lower 

Bound 
Upper 
Bound 

I have no accent 41 96.28 5.066 0.791 94.68 97.88 80 100 
I have a bit of an accent 18 94.86 5.718 1.348 92.02 97.70 80 100 
I have a strong accent 37 95.74 4.709 0.774 94.17 97.31 80 100 

I have a strong regional accent 4 93.13 6.250 3.125 83.18 103.07 85 100 
All 100 95.7 5.076 0.508 94.69 96.71 80 100 

The SUS score of the application by correctness is shown in Table 16. Users given a correct 

result rated the application higher than those shown an incorrect result. The bounds for a 95% 

confidence interval for the mean do not overlap between the two groups, with a gap existing 

between 92.87 and 96.41. The minimum SUS score of a user shown a correct result, 88, is almost 

the same as the average SUS score of a user shown an incorrect result, 89.61. This suggests that 

there is an impact on the user’s usability depending on whether a correct result is shown.  

Table 16 SUS Scores Description for Whether Result was Correct 

SUS Scores Description for Whether Result was Correct 

Correct N Mean Std. 
Deviation 

Std. 
Error 

95% Confidence Interval for 
Mean Minimum Maximum 

Lower Bound Upper Bound 
No 19 89.61 6.784 1.556 86.34 92.87 80 100 
Yes 81 97.13 3.262 0.362 96.41 97.85 88 100 
All 100 95.7 5.076 0.508 94.69 96.71 80 100 

The SUS scores for each SUS question is shown in Table 17. Question seven (7) and eight (8) 

are tied for being answered the best. These two questions scored well certainly due to the 

simplicity and intuitiveness of the application. Question one (1) was answered the worst, though 

still very well. This question focuses on how applicable this application would be to their lives, 

which is perhaps the most archaic question of the 10 as it touches on the daily lives and needs of 

the users. 
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Table 17 SUS Score of Each Question 

SUS Score of Each Question 

SUS Question Average 
Score 

Difference 
From Perfect 

Score 
1. I think that I would like to use this system frequently. 4.54 0.46 
2. I found the system unnecessarily complex. 1.18 0.18 
3. I thought the system was easy to use. 4.95 0.05 
4. I think that I would need the support of a technical person to be able to use this 
system. 1.06 0.06 

5. I found the various functions in this system were well integrated. 4.93 0.07 
6. I thought there was too much inconsistency in this system. 1.35 0.35 
7. I would imagine that most people would learn to use this system very quickly. 4.96 0.04 
8. I found the system very cumbersome to use. 1.04 0.04 
9. I felt very confident using the system. 4.59 0.41 
10. I needed to learn a lot of things before I could get going with this system. 1.06 0.06 

All N/A 0.17 

Normality Tests and Transformations of Collected Data 

To conduct statistical analysis on the SUS scores of each language, the data first needs to be 

tested for normality, as the statistical analysis assumes the data is normally distributed46. To 

conduct a normality test, the SUS score of each language was analyzed to determine the 

skewness and kurtosis of each dataset. Skewness is a measurement that helps define how 

asymmetric the distribution is while kurtosis measures the peakedness of a distribution. A z-

score can be generated for both by dividing the value by its standard error. If the absolute z-score 

for either of these are above the absolute value of 1.96, then the normality test has failed and 

statistical analysis cannot be conducted on the dataset [56]. 

The results of the normality test are in Table 18. Over half of the languages failed the normality 

test. Every language has a negative skewness value, which indicates a negative skew, meaning 

 

 
46 UCLA, “WHAT IS THE DIFFERENCE BETWEEN CATEGORICAL, ORDINAL AND INTERVAL 
VARIABLES?,” Statistical Consulting Group. https://stats.idre.ucla.edu/other/mult-pkg/whatstat/what-is-the-
difference-between-categorical-ordinal-and-interval-variables (Accessed Aug. 18, 2021) 

https://stats.idre.ucla.edu/other/mult-pkg/whatstat/what-is-the-difference-between-categorical-ordinal-and-interval-variables
https://stats.idre.ucla.edu/other/mult-pkg/whatstat/what-is-the-difference-between-categorical-ordinal-and-interval-variables
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the tail on the left is larger than on the right. This is unsurprising as many perfect scores were 

given and it is not possible to give an above perfect score, or a score above the “ceiling”. 

Statistical analysis can still be done on this dataset despite failing the normality test as the data 

can fortunately be transformed into normality. 

Table 18 Normality Test of Raw SUS Scores for Each Language 

Normality Test of Raw SUS Scores for Each Language 

Language Skewness z-value Below |1.96|? Kurtosis z-value Below |1.96|? 
English -3.98 No 3.67 No 
French -3.77 No 2.50 No 
Arabic -1.17 Yes -0.28 Yes 
Russian -0.38 No -1.36 Yes 
Persian -3.61 No 5.20 No 

Chinese (China) -1.93 Yes 1.66 Yes 
German -0.49 Yes -1.14 Yes 

All -6.21 No 3.71 No 

Before transforming the data, more normality tests should be done first so that all of the data can 

be transformed at once. Table 19 shows the remaining normality tests on other datasets that 

should be analyzed for usability. The impact of a person’s accent on SUS scores and the impact 

of a person being presented with a correct classification on SUS scores are important to 

understand. These datasets also failed the normality tests and require transformation. 



AUTOMATED SPOKEN LANGUAGE DETECTION  

89 
 

Table 19 Normality Test of Raw SUS Scores for Each Language 

Normality Test of Raw SUS Scores for Each Language 

Accent Skewness z-value Below |1.96|? Kurtosis z-value Below |1.96|? 
I have no accent -4.49 No 3.25 No 

I have a bit of an accent -3.32 No 2.37 No 
I have a strong accent -3.69 No 2.89 No 

I have a strong regional accent -0.55 Yes 0.35 Yes 
Correctness Skewness z-value Below |1.96|? Kurtosis z-value Below |1.96|? 

Incorrect 0.03 Yes -1.21 Yes 
Correct -4.90 No 2.63 No 

There are multiple methods to transform data into normality47. The selected method is typically 

used for positive skewness but altered to work with negative skewness since all normality test 

failures in the dataset are negatively skewed. A base 10 logarithm of each value works for a 

positive skewness. Taking the max value in the data set, adding one (1) so that no final value is 

ever zero (0), and subtracting each variable and doing a base 10 logarithm on the result works for 

a negative skewness. In this case, the max SUS score which was achieved multiple times is 100. 

101 subtracted by the variable with a base 10 logarithm of the result provides a transformed 

dataset that should test as normally distributed. 

Normality tests on all useability datasets after dataset transformation is shown in Table 20. For 

almost all datasets, the transformation was a success. The only dataset that was not normalized 

was SUS scores of users shown an incorrect classification, which did have the lowest skewness 

z-score of all datasets before the transformation. Its unique behaviour is indicative that being 

shown an incorrect classification has a large impact on the SUS score. With the datasets all 

 

 
47 IBM SPSS Statistics, “Transforming Variable to Normality for Parametric Statistics,” IBM. 
https://www.ibm.com/support/pages/transforming-variable-normality-parametric-statistics (Accessed Aug. 18, 
2021) 

https://www.ibm.com/support/pages/transforming-variable-normality-parametric-statistics


AUTOMATED SPOKEN LANGUAGE DETECTION  

90 
 

transformed, applicable data analysis can be done to better understand the impact each 

independent factor has on the SUS score. 

Table 20 Normality Test of Transformed SUS Scores for Each Language 

Normality Test of Transformed SUS Scores for Each Language 

Language Skewness z-value Below |1.96|? Kurtosis z-value Below |1.96|? 
English 0.54 Yes -1.37 Yes 
French 0.97 Yes -1.25 Yes 
Arabic -0.08 Yes -1.42 Yes 
Russian -1.24 Yes 0.42 Yes 
Persian 0.26 Yes -0.15 Yes 

Chinese (China) -0.38 Yes -0.74 Yes 
German -1.09 Yes -0.42 Yes 
Accent Skewness z-value Below |1.96|? Kurtosis z-value Below |1.96|? 

I have no accent 0.97 Yes -1.76 Yes 
I have a bit of an accent -0.12 Yes 0.04 Yes 
I have a strong accent -0.24 Yes -1.69 Yes 

I have a strong regional accent -1.29 Yes 0.82 Yes 
Correctness Skewness z-value Below |1.96|? Kurtosis z-value Below |1.96|? 

Incorrect -2.51 No 1.08 Yes 
Correct 0.24 Yes -2.63 No 

All 0.18 Yes -2.59 No 

Data Analysis 

A one-way analysis of variance (ANOVA) test48 was conducted on the language dataset to 

determine the impact a spoken language had on the SUS score. This test requires the independent 

variable to be categorical, with an interval dependent variable. The type of language is 

categorical and the SUS scores is interval.  

Results of the one-way ANOVA test on languages and transformed SUS score is shown in Table 

21. The Games-Howell post hoc test was used as the sample sizes between English and French 

are different from the rest. The one-way ANOVA revealed that there was not a statistically 
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significant difference in the transformed SUS scores between at least two groups (F(6, 93) = 

[0.70] , p = 0.653). The Games-Howell post hoc test for multiple comparisons found that there 

was no statistically significant difference in transformed SUS scores between any of the 

languages. 

 

 
48 UCLA, “One-way ANOVA,” Statistical Consulting Group. 
https://stats.idre.ucla.edu/spss/whatstat/what-statistical-analysis-should-i-usestatistical-analyses-
using-spss/#1anova (Accessed Aug. 18, 2021) 
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Table 21 One-Way ANOVA Test on Languages and Transformed SUS Scores 

One-Way ANOVA Test on Languages and Transformed SUS Scores 

(I) 
Language (J) Language Mean 

Difference (I-J) 
Standard 

Error Significance 
95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Arabic 

Chinese -0.0159 0.17707 1.000 -0.6025 0.5707 
English -0.0192 0.16152 1.000 -0.5545 0.5161 
French 0.0070 0.16324 1.000 -0.5320 0.5460 

German -0.2350 0.19062 0.872 -0.8649 0.3949 
Persian -0.0674 0.19082 1.000 -0.6979 0.5632 
Russian -0.3006 0.17733 0.628 -0.8880 0.2868 

Chinese 
(China) 

Arabic 0.0159 0.17707 1.000 -0.5707 0.6025 
English -0.0033 0.14634 1.000 -0.4804 0.4738 
French 0.0229 0.14823 1.000 -0.4588 0.5045 

German -0.2191 0.17793 0.873 -0.8087 0.3705 
Persian -0.0515 0.17814 1.000 -0.6419 0.5389 
Russian -0.2847 0.16361 0.600 -0.8253 0.2559 

English 

Arabic 0.0192 0.16152 1.000 -0.5161 0.5545 
Chinese 0.0033 0.14634 1.000 -0.4738 0.4804 
French 0.0262 0.12926 1.000 -0.3715 0.4239 

German -0.2158 0.16247 0.830 -0.7547 0.3232 
Persian -0.0482 0.16270 1.000 -0.5880 0.4917 
Russian -0.2814 0.14665 0.491 -0.7597 0.1969 

French 

Arabic -0.0070 0.16324 1.000 -0.5460 0.5320 
Chinese -0.0229 0.14823 1.000 -0.5045 0.4588 
English -0.0262 0.12926 1.000 -0.4239 0.3715 
German -0.2420 0.16418 0.756 -0.7845 0.3006 
Persian -0.0744 0.16441 0.999 -0.6178 0.4691 
Russian -0.3076 0.14854 0.404 -0.7904 0.1752 

German 

Arabic 0.2350 0.19062 0.872 -0.3949 0.8649 
Chinese 0.2191 0.17793 0.873 -0.3705 0.8087 
English 0.2158 0.16247 0.830 -0.3232 0.7547 
French 0.2420 0.16418 0.756 -0.3006 0.7845 
Persian 0.1676 0.19162 0.972 -0.4656 0.8008 
Russian -0.0656 0.17819 1.000 -0.6560 0.5248 

Persian 

Arabic 0.0674 0.19082 1.000 -0.5632 0.6979 
Chinese 0.0515 0.17814 1.000 -0.5389 0.6419 
English 0.0482 0.16270 1.000 -0.4917 0.5880 
French 0.0744 0.16441 0.999 -0.4691 0.6178 

German -0.1676 0.19162 0.972 -0.8008 0.4656 
Russian -0.2332 0.17840 0.840 -0.8244 0.3579 

Russian 

Arabic 0.3006 0.17733 0.628 -0.2868 0.8880 
Chinese 0.2847 0.16361 0.600 -0.2559 0.8253 
English 0.2814 0.14665 0.491 -0.1969 0.7597 
French 0.3076 0.14854 0.404 -0.1752 0.7904 

German 0.0656 0.17819 1.000 -0.5248 0.6560 
Persian 0.2332 0.17840 0.840 -0.3579 0.8244 
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A one-way ANOVA test49 was conducted on the accent dataset to determine the impact an 

accent had on the SUS score. This test requires the independent variable to be categorical, with 

an interval dependent variable. The type of accent is slightly ordinal, but should be considered 

categorical due to the non-linearity of each rating and the SUS scores is interval. 

A one-way ANOVA was performed to compare the effect of accents on transformed SUS scores 

with the results shown in Table 22. The Games-Howell post hoc test was used as the sample 

sizes between different accents were not controlled and vary widely. The one-way ANOVA 

revealed that there was not a statistically significant difference in the transformed SUS scores 

between at least two groups (F(3, 96) = [1.126] , p = 0.343). The Games-Howell post hoc test for 

multiple comparisons found that there was no statistically significant difference in transformed 

SUS scores between any of the accents. 

 

 
49 UCLA, “One-way ANOVA,” Statistical Consulting Group. https://stats.idre.ucla.edu/spss/whatstat/what-
statistical-analysis-should-i-usestatistical-analyses-using-spss/#1anova (Accessed Aug. 18, 2021) 

https://stats.idre.ucla.edu/spss/whatstat/what-statistical-analysis-should-i-usestatistical-analyses-using-spss/#1anova
https://stats.idre.ucla.edu/spss/whatstat/what-statistical-analysis-should-i-usestatistical-analyses-using-spss/#1anova
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Table 22 One-Way ANOVA Test on Accents and Transformed SUS Scores 

One-Way ANOVA Test on Accents and Transformed SUS Scores 

Accent Accent Comparison 
Mean 

Difference 
(I-J) 

Standard 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

I have no 
accent 

I have a bit of an accent -0.18594 0.11412 0.375 -0.4926 0.1207 
I have a strong accent -0.09015 0.09891 0.799 -0.3500 0.1697 

I have a strong regional accent -0.27947 0.26747 0.738 -1.4584 0.8994 

I have a bit of 
an accent 

I have no accent 0.18594 0.11412 0.375 -0.1207 0.4926 
I have a strong accent 0.09579 0.11409 0.835 -0.2110 0.4026 

I have a strong regional accent -0.09354 0.27345 0.984 -1.2418 1.0547 

I have a strong 
accent 

I have no accent 0.09015 0.09891 0.799 -0.1697 0.3500 
I have a bit of an accent -0.09579 0.11409 0.835 -0.4026 0.2110 

I have a strong regional accent -0.18933 0.26746 0.889 -1.3683 0.9897 

I have a strong 
regional accent 

I have no accent 0.27947 0.26747 0.738 -0.8994 1.4584 
I have a bit of an accent 0.09354 0.27345 0.984 -1.0547 1.2418 
I have a strong accent 0.18933 0.26746 0.889 -0.9897 1.3683 

A two independent samples t-test50 was conducted on the correctness dataset to determine the 

impact a correct classification had on the SUS score. This test requires the independent variable 

to be two independent groups, with an interval dependent variable. The classification being 

correct or incorrect are two independent groups and the SUS scores is interval. 

Results of the two independent samples t-test on correctness and transformed SUS score is 

shown in Table 23. The Levene’s test51 has a p-value of 0.509 which is above 0.05 and therefore 

the null hypothesis of the variances being equal is accepted and assumed. There was a significant 

difference in transformed SUS scores for showing the incorrect (M=0.931, SD=0.093) and 

 

 
50 UCLA, “Two independent samples t-test,” Statistical Consulting Group. 
https://stats.idre.ucla.edu/spss/whatstat/what-statistical-analysis-should-i-usestatistical-analyses-using-spss/#2ittest 
(Accessed Aug. 18, 2021) 
51 NIST, “Levene Test for Equality of Variances,” Engineering Statistics Handbook. 
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm (Accessed Aug. 30, 2021) 

https://stats.idre.ucla.edu/spss/whatstat/what-statistical-analysis-should-i-usestatistical-analyses-using-spss/#2ittest
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm
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correct (M= 0.432, SD=0.042) language; t(98)=5.068, p=0.000. This is consistent with the 

concluded observations of the raw data concerning SUS scores and correctness in Table 15. 

Table 23 Two Independent Samples t-test of Correctness and Transformed SUS Scores 

Two Independent Samples t-test of Correctness and Transformed SUS Scores 

Levene’s Test for Equality of 
Variances t-test for Equality of Means 

Equality of 
Variances 

 
F Sig. t df Sig. (2-

tailed) 
Mean 

Difference 
Std. Error 
Difference 

95% Confidence 
Interval 

Lower Upper 
Assumed 0.440 0.509 5.068 98 0.000 0.499 0.095 0.304 0.694 

Not Assumed   4.866 25.928 0.000 0.499 0.103 0.288 0.710 

Findings and Discussion 

Overall, the application and the research produced outstanding results. A total accuracy of 81% 

is significantly higher than 14%, the accuracy of a random classification of seven (7) languages. 

This concretely proves the technical hypothesis (HT) of this research. A total SUS score of 95.7 

is significantly higher than 68, the average SUS score according to industry standards [55]. This 

concretely proves the usability hypothesis (HU) of this research. Both hypotheses of this research 

are proven and therefore, the answer is yes to the research question, “Can machine learning 

algorithms be used to increase the effectiveness of spoken language detection?”  

From the evaluation, three beneficial theories are apparent for this research. First, there appears 

to be no dependency on which language is being spoken. This demonstrates this research can be 

expanded to handle many languages. Second, there appears to be little dependency on the accent 

of a speaker. This demonstrates that the algorithm has a deep understanding of what makes a 

certain language that language. Third, the concept of this research is meaningful and useful to the 

military and the greater public. This demonstrates that this research has the potential to be used 

with current technologies to improve both military operations and the public’s daily lives.   
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In terms of both accuracy and usability, all languages that this research considered were 

successful. Although Russian had the lowest recall of 0.6, this is still well above the recall of a 

random selector, 0.14. It is not too far from the average accuracy, which is 81%. It’s precision 

and F-score are also quite high, at 0.75 and 0.67 respectively. Conversely, Arabic had the lowest 

SUS score of 93.5, which is much higher than the average SUS score of 68 according to industry 

standards [55]. This is also not too far from the average SUS score of all languages, 95.7.  

All languages being successful proves the potential of this research. The research was designed 

in such a way that the specific languages themselves were not important. The database used 

contains voice clips from both high-resourced and low-resourced languages, meaning that other 

languages can be trained for the application and likely have a high accuracy and high usability. 

The cost to incorporate more languages is simply the training time. There is the possibility that 

the average accuracy of all languages will decrease, as the amount of false positives will increase. 

It is however almost certain that the accuracy of the individual languages will always be well 

above the accuracy of a random selection, which will also decrease as more languages are added.  

The accent of the speaker did not appear to have an impact on accuracy and usability. The 

evaluation consisted of 41 users who reported having no accent and 37 users who reported 

having a strong accent for the spoken language. The average accuracy of the users with no accent 

was 80.49%, while the average accuracy of the users with a strong accent was 83.78%. 

Conversely, the average SUS score of users with no accent was 96.28, while the average SUS 

score of the users with a strong accent was 95.74. Both users who self-reported as having no 

accent and having a strong accent had excellent accuracy and usability with the application. 

The performance of the application’s accuracy with strong accents proves a great potential for 

this research. The application actually performed better with users with a strong accent (83.7%) 
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than users with no accent (80.49%). This is impressive given that the database used was mostly 

native speakers, that is speakers with no accent. This indicates that the algorithm used to 

determine the language has a deep understanding of what makes a language a language, and not 

just relying on a user sounding like someone from the training database. An unsupervised 

machine learning algorithm would have likely relied on similar sounds that native speakers 

commonly say, which is why the custom i-vector algorithm was so important to the success of 

this research. 

The relationship between the SUS scores and the accuracy is complex. The two independent 

samples t-test on correctness and transformed SUS score indicated that there was a significant 

difference in the way users rated the application depending on whether they were shown the 

correct language or not. While this alone would demonstrate that the relationship is correlational 

and likely causational, there are instances where this is shown to be false. The users with strong 

accents had a higher overall accuracy (83.7%), but a lower overall SUS score (95.74) than users 

with no accent (80.49% and 96.28) without significant difference (refer to Table 22). Looking at 

individual tests, users with an accuracy of zero (0), since they only used the application once, 

still rated the application exceptionally high. It is logical, and was observed, that users shown the 

correct language would rate the application higher, yet observing the data specifically and 

comparing certain datasets, this was not always the case. 

The complex relationship between the SUS scores and the accuracy proves the potential 

usefulness of this application. As stated above, users that identified themselves as being able to 

speak a language without an accent, despite having a lower accuracy, rated the application higher. 

This is almost certainly due to these users understanding how useful this research can be. Many 

of these users with no accents were required for their military profession to know these 
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languages and so even if they were shown the incorrect language, they understood the 

application’s usefulness to be very high. This indicates that there is great potential for this 

application to be incorporated with other language applications to produce compelling solutions 

and break-down current language barriers.  
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Chapter 6. Conclusion 

Summary 

This research provided a solution to one of the greatest barriers in communication by 

automatically detecting the language being spoken. The military will greatly benefit from this 

research as working in regions with a multitude of languages is a continuous problem. Current 

solutions to verbal translation require the manual selection of languages being spoken, which is 

not always a possibility. This research is important to the military and any individual who will be 

in areas where they cannot speak every local language. 

The purpose of this research, to solve a gap in current verbal translation through the automatic 

detection of a spoken language, was accomplished. A positive answer was given to the research 

question: “Can machine learning algorithms be used to increase the effectiveness of spoken 

language detection?” Proof was validated for the technical hypothesis: “A machine learning 

algorithm can classify a language being spoken in real-world scenarios.” Proof was also 

validated for the usability hypothesis: “The perceived usability toward the application with the 

proposed machine learning algorithm built-in is high.” By proving the two hypotheses, the 

research question could be answered, accomplishing the purpose of the research. 

Existing relevant SLRs were examined to justify the need to conduct one specifically for this 

research. Of the two that were found, neither were able to identify acceptable methods or 

algorithms to use in this research. The first SLR was a well outlined SLR focused on sign 

language recognition but was missing some key information on how it was conducted. The 

second SLR was a poorly outlined SLR focused on ASR that did not have a clear application use. 

Both SLRs however demonstrated that there is an inherent assumption when dealing with 
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different languages that the language will be known or manually selected, justifying the need of 

this research. The SLRs also exhibited the need for SLRs to be highly detailed so that readers can 

understand why and how it was conducted. The existing SLRs aided in understanding what is 

needed to create an effective SLR and why one needed to be conducted. 

The SLR completed for this research consisted of four highly detailed steps. The first step 

formulated the review question, “What machine learning algorithms have been used to 

successfully identify specific spoken languages?” The second step defined the three exclusion 

criterium of the research’s publication year (i.e., its age, older than five years), non-focus on 

spoken languages, and classification accuracy (less than 80%). The third step was a highly 

detailed search strategy and location of studies, using two methods to intelligently identify the 

best literature sources for this research, defining their filter criterium of not being a journal, 

being unrelated to the research, and a duplicate source, and identifying the keywords to search 

for. The fourth step was to select the studies using the defined parameters outlined in the 

previous steps. The SLR considered 57 publication sources and narrowed these sources down to 

19. From these sources, 9,662 papers were considered and narrowed down to nine (9). The SLR 

did an excellent job of systematically finding relevant works for analysis to answer the review 

question. 

Quantitative analysis conducted with the papers outputted from the SLR identified the i-vector 

algorithm to be the best algorithm for this research. It was used the most and is clearly 

recognized as a benchmark for the application of detecting a spoken language. The accuracy of 

the algorithm is also high, sometimes even higher than the algorithm it was being a benchmark 

for. The customization available for the algorithm was also an important factor. Of the 11 
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algorithms identified in the SLR, the i-vector algorithm was the best algorithm for this research 

based on the quantitative analysis. 

Qualitative analysis conducted with the papers outputted from the SLR continued to identify the 

i-vector algorithm is the best algorithm for this research. The algorithm was shown to have an 

acceptable level of accuracy when compared to the others. It however was shown to be 

extremely well established in the field. Additionally, it was able to handle low resource 

languages extremely well. While the analysis had its score tie with the GMM algorithm, it 

outperformed GMM in a paper that used the two with the same dataset. Of the 11 algorithms 

identified in the SLR, the i-vector algorithm was confirmed to be the best algorithm for this 

research based on the qualitative analysis. 

The method of using an i-vector algorithm was implemented successfully to detect a spoken 

language, broken down into four (4) steps. First a database of spoken languages was formed 

using Mozilla Common Voice52, down-sampled and manipulated by FFmpeg53  and librosa [46]. 

Second, an i-vector extraction method was created using a rewritten implementation of Kaldi 

[42]. Third, a neural network, specifically CNN models54, were trained using TensorFlow55. 

Fourth and finally, the finished model allowed for new voice recordings to have their language 

classified with excellent accuracy.  

 

 
52 Mozilla, “Common Voice.” https://commonvoice.mozilla.org/ (accessed Dec. 18, 2020). 

53 FFmpeg, “FFmpeg,” telepoint. https://ffmpeg.org/ (accessed Dec. 22, 2020). 

54 TensorFlow, “tf.keras.layers.Conv2D | TensorFlow Core v2.4.0,” Google. 
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D (accessed Jan. 13, 2021). 

55 TensorFlow, “TensorFlow Core | Machine Learning for Beginners and Experts,” Google. 
https://www.tensorflow.org/overview (accessed Dec. 18, 2020). 

https://commonvoice.mozilla.org/
https://ffmpeg.org/
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
https://www.tensorflow.org/overview
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The algorithm, the second step of the classification method, was successfully implemented in a 

Python environment as a compatible implementation of Kaldi [42]. This had to be done as 

TensorFlow is only available in Python and porting extracted i-vectors was not an available 

option [43]. Many of the open source Kaldi files that extracted i-vectors written in C++56 were 

rewritten into Python, using librosa to generate MFCCs [48] and an NVIDIA CUDA GPU to 

extract then extract the i-vectors [52]. 

Four (4) different models were trained and evaluated, with the fourth and best model benefiting 

from the observed strengths of the others. The first model (m1) achieved an accuracy of 38% on 

the testing database. Increasing the training time (m2) improved this accuracy to 40%. Increasing 

the quality of the data (m3) further improved this accuracy to 46%. To accomplish both at the 

same time for the final model (m4), implementations were done to further improve the training 

time and quality of the data. Stricter validation and adding noise improved the quality of the data. 

Pre-processing the voice clips into spectrogram images greatly improved the training time, which 

also allowed the model to use Inceptionv3, a CNN with many more layers. This final model (m4) 

achieved an accuracy of 60% on the testing database. 

The architecture of the prototype allowed for the i-vector algorithm to successfully be deployed 

onto a phone, broken down into four (4) steps. First, the UI was developed so that the finished 

model could be interacted with. Second, the capability to record a user’s voice and store it 

appropriately was created. Third, the voice clip was manipulated to an acceptable format for the 

 

 
56 Kaldi, “kaldi/egs/wsj/s5/steps/nnet/ivector/extract_ivectors.sh,” GitHub. https://github.com/kaldi-asr/kaldi 
(accessed Jan. 14, 2021). 

https://github.com/kaldi-asr/kaldi
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model to ingest. Fourth and finally, the finished model makes a classification based on the user’s 

voice clip. 

The application was designed using Chaqoupy57 to allow the architecture of the prototype to 

function on a mobile device. Android Studio cannot process the Python commands needed to 

interact with the TensorFlow model, however Chaqoupy is able to load in Python libraries to an 

application to be called with Java commands. As the Python packages required have many 

dependencies, there were storage challenges to create an app within the 100MB Google Play 

Store limit. This was overcome by using a TensorFlow Lite model to reduce the size of the 

model, as well as using the Play Asset Delivery58 function of the Google Play Store to side-load 

the model during the install. 

Evaluation criteria was created to determine the accuracy and usability of this research fairly and 

objectively, broken down into four (4) principles. First, the test was conducted in a real-world 

scenario. Second, evaluated users had an even spread amongst the seven (7) languages 

considered in the prototype. Third, all biases that can impact the results were identified and 

mitigated. Fourth and finally, the results captured all necessary information to create meaningful 

findings on the accuracy and usability of the research. A step-by-step evaluation plan was 

created, with many steps considering the coronavirus pandemic. The evaluation plan was then 

granted a Certification of Ethics Approval by the University of Athabasca for conduct. 

 

 
57 Chaquo, “Chaquopy,” Chaquo Ltd. https://chaquo.com/chaquopy/ (Accessed Feb. 16, 2021) 

58 Android Developers, “Play Asset Delivery,” Google Developers. https://developer.android.com/guide/app-
bundle/asset-delivery (Accessed Feb. 18, 2021) 

https://chaquo.com/chaquopy/
https://developer.android.com/guide/app-bundle/asset-delivery
https://developer.android.com/guide/app-bundle/asset-delivery
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The evaluation of the research provided results with high accuracy and high usability. The total 

accuracy was 81%. This is higher than the accuracy for the testing database (60%) and 

significantly higher than a random classification (14%). The users rated the application with an 

average SUS score of 95.7. This is significantly higher than the industry standard average SUS 

score of 68 and this score approaches the best possible design [55]. These SUS scores were then 

broken into three (3) datasets to determine what impacted the scoring, the independent variables 

being language, accent, and correctness. 

To conduct data analysis on the evaluation results, normality tests and transformations were 

conducted. Almost all datasets were kurtotic and heavily skewed negatively, which was expected 

due to the scores being close to the maximum values. As statistical analysis requires the data to 

be normal, transformation was conducted using logarithms. This produced three (3) datasets that 

were able to pass the normality test. 

Data analysis was conducted on the evaluation results using two types of tests, ANOVA tests59 

and a two independent samples t-test60. The ANOVA tests were conducted on the language and 

accent datasets with a Games-Howell post hoc test and found no statistically significant 

difference between what languages the users spoke or their self-identified accent. The two 

independent samples t-test however did find a significant statistical difference between whether a 

user was shown a correct or incorrect classification of the language they spoke.  

 

 
59 UCLA, “One-way ANOVA,” Statistical Consulting Group. https://stats.idre.ucla.edu/spss/whatstat/what-
statistical-analysis-should-i-usestatistical-analyses-using-spss/#1anova (Accessed Aug. 18, 2021) 
60 UCLA, “Two independent samples t-test,” Statistical Consulting Group. 
https://stats.idre.ucla.edu/spss/whatstat/what-statistical-analysis-should-i-usestatistical-analyses-using-spss/#2ittest 
(Accessed Aug. 18, 2021) 

https://stats.idre.ucla.edu/spss/whatstat/what-statistical-analysis-should-i-usestatistical-analyses-using-spss/#1anova
https://stats.idre.ucla.edu/spss/whatstat/what-statistical-analysis-should-i-usestatistical-analyses-using-spss/#1anova
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Apart from the excellent accuracy and usability scores, three (3) concepts were proven as a result 

of the evaluation of this research. First, there appears to be no dependency on which language is 

being spoken, allowing the research to scale to many more languages. Second, there appears to 

be no dependency on the accent of the user, meaning the model is truly understanding what 

makes a language a language. Third and finally, the research is meaningful and useful to the 

military and greater public as users shown an incorrect classification still rated the application 

high, indicating the idea is exceptionally useful even if it did not function correctly for them. 

Limitations 

While the goal of this research is to ultimately provide a high quality solution to the problem of 

language translation, it will never be able to replace human translators working under ideal 

circumstances. The scope of this research only aims to solve the problem of using human 

translators with a high cost in situations where perfect accuracy is not required, namely local 

human translators in combat zones. Human translators working at companies and government 

agencies will continue to be able to translate with a higher accuracy than a machine due to the 

illogical and innate emotional portion of speaking a language. Idioms cause phrases such as the 

French phrase “c’est mon rayon,” which literally translates to “that’s my ray,” to actually 

translate to “that’s my cup of tea,” neither of which clearly indicate the meaning of something 

interesting someone. This research will not negatively impact human translators working in ideal 

circumstances and provides a solution to human translators in unideal circumstances. 

While the current application implementation of this research is able to be hosted on the Google 

Play Store, replicating and improving the application will certainly lead to size challenges. 

Although the size challenges were overcome by using the Play Asset Delivery to side-load the 

model, the way Chaqoupy functions requires that all python libraries and its dependencies are 
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stored in the initial application file. For this research, it was extremely fortunate that the 

application package with all of the compressed libraries and dependencies was 149 MB, as the 

Google Play Store can only hold 150 MB. Adding any additional packages, or additions to the UI, 

will certainly break the 150 MB limit. The creator of Chaqoupy was contacted about this 

behaviour and although he is aware of the problem, no solution currently exists.  

Almost every tool used in this research is a stable, open-source project, freely available to the 

public, except for Chaqoupy. Each time the application is run, a call is made to a server to 

validate the Chaqoupy license being used. If the application does not have a license, it will 

automatically close itself in five (5) minutes. While paid licenses do exist, the creator of the 

project generously will give out free licenses if they are contacted and shown that the 

overarching project is open-source. For this research, a free license was acquired after speaking 

with the creator and sharing some solutions to overcome size constraints using the Play Asset 

Delivery for the wider open-source community. 

Although the accuracy of this research is high, it almost certainly suffers somewhat from having 

the i-vector extraction custom made instead of using Kaldi. As Kaldi has had significant 

development since its inception in 200961, it will almost certainly perform better than a 

reimplementation in another environment. There are many optimizations that can be used to 

further increase the accuracy of the i-vector extraction, all available open-source on a continually 

updated GitHub page owned by Kaldi62. The solutions to utilize Kaldi in the development 

 

 
61 “History of the Kaldi project,” doxygen. http://kaldi-asr.org/doc/history.html (accessed Sep. 12, 2021). 
62 kaldi-asr, “kaldi,” GitHub, Jan. 13, 2021. https://github.com/kaldi-asr/kaldi (accessed Jan. 12, 2021). 

http://kaldi-asr.org/doc/history.html
https://github.com/kaldi-asr/kaldi
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environment, using a Windows-based Kaldi63 or cloud-based Kaldi64, are currently in their 

infancy, but once matured, will likely allow this research’s accuracy to improve. 

Current virtual machine standards also harms the capability to use both TensorFlow and Kaldi 

together due to GPU resources. In this research , the GPU, specifically NVIDIA CUDA [52] was 

essential to both i-vector extraction and model training in TensorFlow. Although there have been 

some advancements to allow virtual machines to utilize GPUs, it is not possible for a virtual 

machine to utilize NVIDIA CUDA. This is because the GPU is seen as a virtual hardware rather 

than the real hardware65. Therefore, utilizing this research in an application hosted on a mobile 

phone that is not running Linux presents a compatibility challenge if Kaldi is going to be used 

for the i-vector extraction. This challenge may be solved in the future. 

Future Works 

The current implementation of model training allows the model to easily be expanded. More 

languages from the same database can be added to the existing model as each language was 

treated as its own modular entity. As the training database is simply folders of voice clips of a 

certain language, other databases can also be extracted. Once a new folder with a new language 

is put into the correct directory, the language simply needs to be added to the array of considered 

languages and the algorithm will handle its addition. 

 

 
63 kaldi-asr, “kaldi/windows/INSTALL.md,” GitHub, Apr. 08, 2020. https://github.com/kaldi-asr/kaldi (accessed Jan. 
12, 2021). 
64 “Kaldi: online2/online-ivector-feature.h File Reference,” doxygen. https://kaldi-asr.org/doc/online-ivector-
feature_8h.html#details (accessed Jan. 12, 2021). 
65 vmware, “Frequently Asked Questions about VMware Fusion,” VMware Inc, Dec. 2, 2008. 
https://communities.vmware.com/t5/VMware-Fusion-Documents/Frequently-Asked-Questions-about-VMware-
Fusion/ta-p/2779216 (accessed Sep. 12, 2021) 

https://github.com/kaldi-asr/kaldi
https://kaldi-asr.org/doc/online-ivector-feature_8h.html#details
https://kaldi-asr.org/doc/online-ivector-feature_8h.html#details
https://communities.vmware.com/t5/VMware-Fusion-Documents/Frequently-Asked-Questions-about-VMware-Fusion/ta-p/2779216
https://communities.vmware.com/t5/VMware-Fusion-Documents/Frequently-Asked-Questions-about-VMware-Fusion/ta-p/2779216
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The datasets for each language can also be expanded. The current limitation on the datasets is 

only due to the amount of time required for the model to be trained. This limitation can be 

removed by utilizing cloud computing. TensorFlow, which is owned by Google, can easily be 

implemented to use Google Cloud resources66 at a reasonable fiscal cost, allowing an incredibly 

large model to be trained in a reasonable amount of time. Utilizing more data per language can 

also avoid the use of down-sampling and instead using more advanced techniques in data science 

to handle imbalanced datasets than simply up-sampling67. The currently used Mozilla Common 

Voice database has a significant amount of data that is not being used and another database may 

not even be required. 

Further augmentation of the data within the database can be done to increase the robustness of 

the classifications. Although the current database has different genders speaking, the pitch can be 

altered to emulate new speakers saying the same voice lines. Voice clips can also be interlaced 

with noises that would be expected to be heard in the background of use cases, such as car 

motors. Interlacing voice clips on top of each other can also create new clips that simulate users 

talking over each other. 

Introducing a constant, rolling window of voice sampling and classification will not only allow 

the application to effortlessly identify the language of the current speaker, but also increase the 

applications accuracy. The current implementation of the application was designed for evaluation 

purposes, but in practice the algorithm will need to be consistently listening and making 

 

 
66 TensorFlow, “Training Keras models with TensorFlow Cloud | TensorFlow Core,” Google. 
https://www.tensorflow.org/guide/keras/training_keras_models_on_cloud (Accessed Feb. 8, 2021) 
67 TensorFlow, “Classification on imbalanced data | TensorFlow Core,” Google. 
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data (accessed Dec. 21, 2020). 

https://www.tensorflow.org/guide/keras/training_keras_models_on_cloud
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
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classifications. This will increase the accuracy as the algorithm can use the average classification 

of a certain speaker. Since the accuracy is significantly above the accuracy of a random 

classification (14%), the average classification will almost certainly be correct.  

With an average language classification, the application will require ASR to identify when a 

certain user is speaking. One of the existing relevant SLRs considered during this research’s SLR 

was specifically on ASR. Many of the papers read for the SLR were also specifically about ASR 

and how to identify when a certain user is speaking. Utilizing existing ASR algorithms, once a 

classification is made using a rolling window to identify what language a specific user is 

speaking, the application can then stop making a language classification and just remember what 

language the users are speaking. 

To utilize the research in a useful way, it will then need to be overlayed into an application that 

can make use of knowing what language users are speaking. Google Translate requires users to 

manually select what language they are speaking before listening and automatically translating 

the spoken dialog into the specified languages. Integrating this research with Google Translate 

will allow users to skip this manual selection and simply begin speaking in their languages. The 

application will identify the language being spoken and set the appropriate fields, allowing 

Google Translate to start translation. This will result in users being able to open up the 

application and begin speaking their own language knowing that it will be translated into the 

other users’ languages all automatically. 

Once this research has been integrated with a translation service, the next step to improve 

classifications would be to account for accents. While the number of accents is very large, 

computed as the number of languages in the world squared when accounting for no accents and 

not accounting for regional accents, it is a finite number. Although finding datasets would be 
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difficult, the application can introduce a feedback loop to capture any new accents. By training 

the model further through “field-use,” the robustness of the application can continue to grow for 

all users.
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Appendix A: Model Results 

Sentence Language Sentence in English Speaker 
Speaker’s 

Native 
Language 

m1 m2 m3 m4 

s1 en 

In addition to this book there are a 
few things you will need to play 
Pathfinder. These supplies can be 
found at your local hobby shop. 

u1 en de de de de 

s2 en 

Pathfinder is played in sessions, 
during which players gather in 
person or online for a few hours to 
play the game. A complete 
Pathfinder story can be as short as 
a single session, commonly 
referred to as a “one-shot,” or it 
can stretch on for multiple 
sessions, forming a campaign that 
might last for months or even 
years. 

u1 en de de en en 

s3 en 

Before creating your first 
character or adventure, you should 
understand a number of basic 
concepts used in the game. 

u1 en de zh-
CN 

zh-
CN 

zh-
CN 

s4 en 

During the game, players describe 
the actions their characters take 
and roll dice, using their 
characters’ abilities. The GM 
resolves the outcome of these 
actions. 

u1 en de de en en 

s5 en 

Whether you are the GM or a 
player, participating in a tabletop 
roleplaying game includes a social 
contract: everyone has gathered 
together to have fun telling a 
story. 

u1 en de zh-
CN en en 

s6 en 

Level is one of the most important 
statistics of the game, as it 
conveys the approximate power 
and capabilities of every 
individual creature. 

u1 en de de en en 

s7 en 

An ability score that’s above the 
average increases your chance of 
success at tasks related to the 
ability score, while those below 
the average decrease your chance. 

u1 en de de en en 
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Sentence Language Sentence in English Speaker 
Speaker’s 

Native 
Language 

m1 m2 m3 m4 

s8 en 

The GM determines the premise 
and background of most 
adventures, although character 
histories and personalities 
certainly play a part. Once a game 
session begins, the players take 
turns describing what their 
characters attempt to do, while the 
GM determines the outcome, with 
the table working together toward 
a specific goal. 

u1 en de en en en 

s9 en 

Every feat has a type to denote 
where its explanation can be 
found (for example, elf feats can 
be found in the elf ancestry) and 
its theme (wizard feats, for 
example, grant abilities that deal 
with spells). 

u1 en de en en en 

s10 en 

Characters and their choices 
create the story of Pathfinder, but 
how they interact with each other 
and the world around them is 
governed by rules. 

u1 en de fa fr de 

s11 en 

Throughout this mode of play, the 
GM asks the players what their 
characters are doing as they 
explore. This is important in case 
a conflict arises. 

u2 fr de en en en 

s12 en 

Free actions, such as dropping an 
object, don’t count toward the 
three actions you can take on your 
turn. Finally each character can 
use up to one reaction during a 
round. 

u3 fr zh-
CN en en en 

s13 en 

Attacking another creature is one 
of the most common actions in 
combat, and is done by using the 
Strike action. This requires an 
attack roll—a kind of check made 
against the Armor Class (AC) of 
the creature you’re attacking. 

u3 fr de de en en 

s14 en 

Strikes can be made using 
weapons, spells, or even parts of a 
creature’s body, like a fist, claw, 
or tail. You add a modifier to this 
roll based on your proficiency 
rank with the type of attack you’re 
using, your ability scores, and any 
other bonuses or penalties based 
on the situation. 

u3 fr de ru ru en 
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Sentence Language Sentence in English Speaker 
Speaker’s 

Native 
Language 

m1 m2 m3 m4 

s15 en 

The target’s AC is calculated 
using their proficiency rank in the 
armor they’re wearing and their 
Dexterity modifier. An attack 
deals damage if it hits, and rolling 
a critical success results in the 
attack dealing double damage! 

u3 fr de en en en 

s16 en I would like my steak medium 
rare. u4 en ar en en en 

s17 en Does this dish have gluten? u5 en en en zh-
CN ru 

s18 en 

People that have experienced so-
called 'lucid dreams' often 
describe them as being 'more real 
than reality'. They also describe 
reality after waking up from a 
'lucid dream' to be like a 
'whimsical dream'. 

u6 en en en en en 

s19 en 

We had a power outage, so I had 
to reset the clock on my VCR. 
However, I was off by an hour, so 
the program I wanted to record 
wasn't recorded. 

u7 en en en ru ru 

s20 en 

I wanted to visit Tom next 
Monday, but he said he was going 
to be busy, so I'm planning to visit 
him the Monday after next. 

u7 en de de de en 

s21 en 

Yonder is the gymnasium. Down 
there to the right is the stables for 
the riding horse, but that building 
is more than a quarter mile from 
here. 

u8 en en de de fr 

s22 en 

The screening of donated blood 
for the presence of various 
illnesses is expensive, but is also 
necessary to keep the blood 
supply as safe as possible. 

u9 en en de en de 

s23 en 

When we watch a movie, play a 
video game, or read a book, we 
become emotionally attached to 
certain characters and gradually 
become like them. 

u10 en en fr en en 

s24 en 

For the sake of completeness, let 
us mention that the ring R, 
considered as a module over itself, 
has submodules of arbitrarily 
large finite length. 

u11 en en en en en 

s25 en 

I can't promise that you'll like 
these books but I think it would be 
a good idea to at least look them 
over. 

u12 en ru de de de 
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Sentence Language Sentence in English Speaker 
Speaker’s 

Native 
Language 

m1 m2 m3 m4 

s26 fr When combat begins, all players 
make an initiative roll. u1 en de de fr de 

s27 fr 

At the start of combat, the players 
that are unaware of the enemy’s 
presences are automatically 
surprised (provided they are 
spotted by the opposing side of 
course). 

u1 en de de fr fr 

s28 fr 
Most perception checks are done 
in response to an observable 
stimulus. 

u1 en de de de fr 

s29 fr 

The perception skill can be used 
in a number of ways. Most often, 
this is a check against the 
opponent’s stealth check. 

u1 en de de fr fr 

s30 fr 
The perception skill also allows 
you to notice certain details in the 
character’s environment. 

u1 en de de de de 

s31 fr 

Start by determining the 
characteristics of your character. 
These six values represent the 
core qualities of your character, 
and there are a lot of things that 
depend on them. 

u2 fr de de de fr 

s32 fr 

Then choose your character's race 
and indicate any modifiers that 
apply to your characteristics as 
well as any other racial traits. You 
can choose from seven basic 
races, and your GM may have 
more to add to the list. 

u2 fr de de de fr 

s33 fr 

A character's class represents their 
profession (magician or warrior, 
for example). If this is a new 
character, it starts at level 1 in the 
chosen class. 

u2 fr de de fr fr 

s34 fr 

Determine the number of skill 
ranks your character has, based on 
their class and Intelligence 
modifier (as well as any other 
bonuses, such as humans). Then 
divide these ranks between the 
skills while remembering that 
each of them cannot receive a 
number of ranks higher than your 
level. 

u2 fr de de de fr 

s35 fr 

A new character enters play with a 
certain amount of gold depending 
on his class, which he can spend 
on equipment and materials (such 
as a chain mail or a leather 
backpack). 

u2 fr de de en en 
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Sentence Language Sentence in English Speaker 
Speaker’s 

Native 
Language 

m1 m2 m3 m4 

s36 fr 

Start by determining the 
characteristics of your character. 
These six values represent the 
core qualities of your character, 
and there are a lot of things that 
depend on them. 

u3 fr de fr de fr 

s37 fr 

Then choose your character's race 
and indicate any modifiers that 
apply to your characteristics as 
well as any other racial traits. You 
can choose from seven basic 
races, and your GM may have 
more to add to the list. 

u3 fr de fr fr fr 

s38 fr 

A character's class represents their 
profession (magician or warrior, 
for example). If this is a new 
character, it starts at level 1 in the 
chosen class. 

u3 fr fr de de ru 

s39 fr 

Determine the number of skill 
ranks your character has, based on 
their class and Intelligence 
modifier (as well as any other 
bonuses, such as humans). Then 
divide these ranks between the 
skills while remembering that 
each of them cannot receive a 
number of ranks higher than your 
level 

u3 fr de fr fr fr 

s40 fr 

He is very much interested in 
Japanese history. We are surprised 
at his vast knowledge of the 
subject. 

u13 fr de de de de 

s41 fr 
After reflecting on my life up to 
now, I decided that I needed to 
change my goals. 

u14 fr ru fr ar zh-
CN 

s42 fr 

I think it says something about 
human nature that the only form 
of life we have created so far is 
purely destructive. 

u15 fr de fr fr fr 

s43 fr 
I have tried for hours to remember 
where I put my keys, but it has 
completely escaped me. 

u16 fr fr fr fr fr 

s44 fr 
When you meet someone for the 
first time, be careful about how 
close you stand to that person. 

u17 fr de fr ar fr 

s45 fr 
On a rainy morning he left his 
house early so as to be in time for 
school. 

u18 fr ar fr fr fr 

s46 fr In a fit of anger he said everything 
he wanted to say and went home. u19 fr fr de en en 
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Sentence Language Sentence in English Speaker 
Speaker’s 

Native 
Language 

m1 m2 m3 m4 

s47 fr 
The fireplace, lacking firewood, 
flames already starting to lose 
their vigour. 

u20 fr fr ru ru fr 

s48 fr 
In hard times like this, no ordinary 
effort can get our company out of 
the red. 

u21 fr fr fr fr ar 

s49 fr It is illegal for bicycles to pass on 
the right of cars. u22 fr fr ar fa fa 

s50 fr The one resource more precious 
than any other was land. u23 fr ru fr fr ru 

s51 ar Where do I pay? u24 ar fr de de ar 
s52 ar Could I have this delivered? u25 ar ar fa fa ar 

s53 ar Could I have a receipt please? u26 ar fr ar fa zh-
CN 

s54 ar Do you have this in a larger size? u27 ar ar ar fr ar 
s55 ar Will I be charged a fee? u28 ar fa ar ar ar 
s56 ar What is the confirmation number? u29 ar ar en fr ar 
s57 ar I forgot my password. u30 ar ar de en en 
s58 ar The price is incorrect. u31 ar ar ar ar ar 
s59 ar Could I have a glass of tap water? u32 ar de en en en 

s60 ar Could you please bring me a 
spoon? u33 ar ar en fa fa 

s61 de Please take me to the hospital. u34 de en fa en de 

s62 de What time do they open? u34 de fr zh-
CN de de 

s63 de Can I make an appointment? u34 de fa en en fr 
s64 de My back hurts. u34 de fr ar fr de 

s65 de Do you come here often? u35 de en zh-
CN 

zh-
CN de 

s66 de What would you like to have? u34 de ar zh-
CN de fr 

s67 de I'm glad I came here tonight. u36 de en fa fa de 
s68 de Where are you from? u34 de de en de en 
s69 de What's your name? u37 de fa en en fr 

s70 de What do you do? u34 de en fa fa zh-
CN 

s71 fa We have the place to ourselves. u38 fa de ru de zh-
CN 

s72 fa Who am I to say? u39 fa ru fa fr fa 

s73 fa It's about time! u40 fa ru fa fa zh-
CN 

s74 fa Thank you very much u41 fa fa zh-
CN de zh-

CN 
s75 fa Is there a good time to chat? u42 fa fa fa fa fa 
s76 fa Where are we meeting? u43 fa fa fa fa fa 
s77 fa Is there sales tax? u44 fa fa en en de 
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Sentence Language Sentence in English Speaker 
Speaker’s 

Native 
Language 

m1 m2 m3 m4 

s78 fa I need some help please. u45 fa en ar ar fa 

s79 fa May I speak to the store manager 
please? u46 fa ar en fa en 

s80 fa I'm just browsing, thanks. u47 fa zh-
CN fa fa fa 

s81 ru Turn left at the stop sign. u48 ru ru ru fr ru 

s82 ru Right around the corner from 
here. u49 ru en en en fr 

s83 ru Go under the bridge. u50 ru fa ar ar ru 
s84 ru Where does this train go? u51 ru ar ar fr ar 
s85 ru Is this seat taken? u52 ru ru ru fr en 
s86 ru What gate do we need to go to? u53 ru ru ru ar ar 
s87 ru Is the ticket oneway or roundtrip? u54 ru ru ru ar ru 

s88 ru Is there a parking garage near 
here? u55 ru fr fr fr fr 

s89 ru How many stops are left? u55 ru fa fa en ru 
s90 ru I am allergic to nuts. u56 ru fa de en en 

s91 zh-CN 

No, I brought her here to have her 
teeth straightened. Look at her 
teeth, they're going in all 
directions. They look terrible. 

u57 zh-CN zh-
CN ar en ru 

s92 zh-CN 

Whoa! Amazingly, France used 
its newly-designed biological 
weapon. There are large-scale 
breakouts of the disease in the 
capital city. We're requesting that 
the UN send medical assistance! 

u58 zh-CN zh-
CN 

zh-
CN 

zh-
CN 

zh-
CN 

s93 zh-CN 

President Trump has said he was 
pulling out of the agreement 
because it would not prevent what 
he termed the world's leading state 
sponsor of terror from getting a 
nuclear weapon. 

u59 zh-CN zh-
CN 

zh-
CN 

zh-
CN 

zh-
CN 

s94 zh-CN 

If there is a market demand, we 
need to satisfy the demand. If 
there is no market demand, we 
then need to create the demand. 

u60 zh-CN zh-
CN 

zh-
CN 

zh-
CN 

zh-
CN 

s95 zh-CN 

First, thank you very much for 
giving me this chance for an 
interview. My major was 
marketing. Ever since graduating, 
I've been in sales. 

u61 zh-CN zh-
CN fa zh-

CN 
zh-
CN 

s96 zh-CN 

It depends on the situation. I think 
they have some kind of tool which 
you can insert through the 
peephole and unlock the door. 

u62 zh-CN zh-
CN 

zh-
CN 

zh-
CN 

zh-
CN 
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Speaker’s 

Native 
Language 

m1 m2 m3 m4 

s97 zh-CN 

Some countries are like this, so 
people become lazier and lazier. 
The country's economy also 
becomes worse and worse. I 
couldn't imagine that kind of life. 

u63 zh-CN zh-
CN 

zh-
CN 

zh-
CN 

zh-
CN 

s98 zh-CN 
Good thing he's just our manager. 
Imagine being his wife or kids... 
they're the really unlucky ones! 

u64 zh-CN zh-
CN fr zh-

CN ar 

s99 zh-CN 

Speaking of crying all day, it's me 
that's going to wallowing around 
the place now. It's hard to imagine 
that I have to wait a whole year to 
watch the next season! 

u65 zh-CN zh-
CN 

zh-
CN 

zh-
CN 

zh-
CN 

s100 zh-CN 
It's good that you're so calm. I 
can't at all imagine what else has 
been stolen. 

u66 zh-CN zh-
CN 

zh-
CN 

zh-
CN 

zh-
CN 

Total Accuracy: 38% 40
% 

46
% 

60
% 

Total Time: 44s 45s 43s 66s 
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Appendix B: Evaluation Questionnaire 
Steps have been taken to ensure your responses remain anonymous. This form will be put 
into a locked box which will only be opened once 100 participants complete evaluations. 
The Commanding Officer has the key to this box.  

Accuracy – Select one per column 

Language Spoken Degree of Accent Language Identified Confidence 

⃝   English ⃝   I have no accent ⃝   English ⃝   < 30% 

⃝   French ⃝   I have a bit of an accent ⃝   French ⃝   40% - 50% 

⃝   Arabic ⃝   I have a strong accent ⃝   Arabic ⃝   50% - 60% 

⃝   Russian ⃝   I have a strong regional accent ⃝   Russian ⃝   60% - 70% 

⃝   Persian  ⃝   Persian ⃝   70% - 80% 

⃝   Chinese (China)  ⃝   Chinese (China) ⃝   80% - 90% 

⃝   German  ⃝   German ⃝   90% - 100% 
 

Usability – Select one per row 

System Usability Scale Question Strongly 
Disagree 

1 

 
Disagree 

2 

 
Neutral 

3 

 
Agree 

4 

Strongly 
Agree 

5 
1. I think that I would like to use this system 
frequently. ⃝ ⃝ ⃝ ⃝ ⃝ 

2. I found the system unnecessarily complex. ⃝ ⃝ ⃝ ⃝ ⃝ 

3. I thought the system was easy to use. ⃝ ⃝ ⃝ ⃝ ⃝ 

4. I think that I would need the support of a 
technical person to be able to use this system. ⃝ ⃝ ⃝ ⃝ ⃝ 

5. I found the various functions in this system 
were well integrated. ⃝ ⃝ ⃝ ⃝ ⃝ 

6. I thought there was too much inconsistency 
in this system. ⃝ ⃝ ⃝ ⃝ ⃝ 

7. I would imagine that most people would 
learn to use this system very quickly. ⃝ ⃝ ⃝ ⃝ ⃝ 

8. I found the system very cumbersome to use. ⃝ ⃝ ⃝ ⃝ ⃝ 

9. I felt very confident using the system. ⃝ ⃝ ⃝ ⃝ ⃝ 

10. I needed to learn a lot of things before I 
could get going with this system. ⃝ ⃝ ⃝ ⃝ ⃝ 
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Appendix C: Certification of Ethical Approval 

 
 
 

CERTIFICATION OF ETHICAL APPROVAL  

The Athabasca University Research Ethics Board (REB) has reviewed and approved the research project noted 
below. The REB is constituted and operates in accordance with the current version of the Tri-Council Policy 
Statement: Ethical Conduct for Research Involving Humans (TCPS2) and Athabasca University Policy and 
Procedures.  

 
Ethics File No.:  24324  

Principal Investigator: 
Mr. Ripley Pennell, Graduate Student 
Faculty of Science & Technology\Master of Science in Information Systems (MScIS) 
 
Supervisor: 
Dr. Maiga Chang (Supervisor) 
 

Project Title:  
Evaluation of Thesis: Automated Spoken Language Detection  

 
Effective Date:   May 27, 2021                                      Expiry Date:   May 26, 2022  

 
Restrictions:  

Any modification or amendment to the approved research must be submitted to the AUREB for approval. 
 
Ethical approval is valid for a period of one year. An annual request for renewal must be submitted and approved by 
the above expiry date if a project is ongoing beyond one year.  

A Project Completion (Final) Report must be submitted when the research is complete (i.e. all participant contact and 
data collection is concluded, no follow-up with participants is anticipated and findings have been made 
available/provided to participants (if applicable)) or the research is terminated.  

Approved by:                                                                         Date: May 27, 2021  

Jon Dron, Chair 
School of Computing & Information Systems, Departmental Ethics Review Committee  

________________________________________________________________________________  
Athabasca University Research Ethics Board  
University Research Services, Research Centre 
1 University Drive, Athabasca AB  Canada   T9S 3A3 
E-mail  rebsec@athabascau.ca 
Telephone:  780.213.2033  
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Appendix D: Evaluation Results 

 

Language Spoken Degree of Accent Language Identified Confidence
1. I think that I would 

like to use this system 
frequently.

2. I found the system 
unnecessarily complex.

3. I thought the system 
was easy to use.

4. I think that I would 
need the support of a 
technical person to be 

able to use this system.

5. I found the various 
functions in this system 

were well integrated.

6. I thought there was 
too much inconsistency 

in this system.

7. I would imagine that 
most people would learn 
to use this system very 

quickly.

8. I found the system 
very cumbersome to 

use.

9. I felt very confident 
using the system.

10. I needed to learn a 
lot of things before I 
could get going with 

this system.
English I have no accent German 50% - 60% Agree Strongly Disagree Strongly Agree Strongly Disagree Agree Neutral Strongly Agree Strongly Disagree Disagree Strongly Disagree

Russian I have no accent English 80% - 90% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Agree Strongly Agree Strongly Disagree Neutral Strongly Disagree

Persian I have a bit of an accent Persian 80% - 90% Neutral Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have no accent English 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Disagree Strongly Agree Strongly Disagree

French I have a bit of an accent French 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have a bit of an accent French 80% - 90% Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Persian I have a strong accent Chinese (China) 70% - 80% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Neutral Agree Strongly Agree Strongly Disagree Disagree Strongly Disagree

German I have a strong accent German 90% - 100% Strongly Agree Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Chinese (China) I have no accent Chinese (China) 80% - 90% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Arabic I have a bit of an accent Arabic 80% - 90% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have a strong accent French 90% - 100% Agree Strongly Disagree Strongly Agree Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Arabic I have a strong accent Arabic 70% - 80% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have no accent German 60% - 70% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Disagree

Chinese (China) I have a strong accent Chinese (China) 70% - 80% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Persian I have a strong accent Persian 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

German I have a bit of an accent German 90% - 100% Disagree Neutral Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Persian I have a strong accent Persian 70% - 80% Neutral Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Persian I have a bit of an accent Chinese (China) 50% - 60% Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have no accent English 70% - 80% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have no accent English 80% - 90% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

German I have a strong accent German 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

German I have a bit of an accent German 80% - 90% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Disagree Agree Strongly Disagree

Russian I have no accent Russian 80% - 90% Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have no accent French 80% - 90% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have a strong accent French 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Disagree Strongly Agree Strongly Disagree

Chinese (China) I have no accent Chinese (China) 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have no accent Russian 80% - 90% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have no accent English 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Disagree Strongly Agree Strongly Disagree Agree Strongly Disagree

Chinese (China) I have no accent Chinese (China) 70% - 80% Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have no accent English 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Russian I have no accent French 60% - 70% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Neutral Strongly Agree Strongly Disagree Neutral Strongly Disagree

German I have a strong accent German 80% - 90% Neutral Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Chinese (China) I have a strong accent Chinese (China) 80% - 90% Agree Neutral Strongly Agree Strongly Disagree Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Russian I have no accent Arabic 70% - 80% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Neutral Strongly Agree Strongly Disagree Disagree Strongly Disagree

German I have a strong accent German 50% - 60% Disagree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have a strong regional accent English 70% - 80% Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Agree Strongly Disagree Strongly Agree Disagree

French I have a strong accent French 90% - 100% Strongly Agree Disagree Strongly Agree Strongly Disagree Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Chinese (China) I have a strong accent French 50% - 60% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Disagree Strongly Agree Strongly Disagree Agree Strongly Disagree

English I have no accent English 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Chinese (China) I have a strong accent Chinese (China) 60% - 70% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have a strong regional accent French 70% - 80% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Persian I have a strong accent Persian 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have no accent French 80% - 90% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have a strong accent French 70% - 80% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Chinese (China) I have a strong accent Chinese (China) 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have a bit of an accent English 90% - 100% Neutral Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Arabic I have a strong accent Arabic 60% - 70% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Arabic I have a strong accent English 70% - 80% Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Disagree Strongly Disagree

Persian I have a strong accent Persian 80% - 90% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have no accent English 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Arabic I have a strong accent Arabic 90% - 100% Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have no accent English 90% - 100% Disagree Strongly Disagree Strongly Agree Strongly Disagree Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Chinese (China) I have no accent Chinese (China) 80% - 90% Strongly Agree Neutral Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have no accent English 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have no accent English 90% - 100% Strongly Agree Strongly Disagree Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have no accent French 60% - 70% Strongly Agree Strongly Disagree Agree Strongly Disagree Strongly Agree Disagree Strongly Agree Strongly Disagree Agree Strongly Disagree

English I have a bit of an accent English 90% - 100% Strongly Agree Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Arabic I have a strong accent Arabic 90% - 100% Neutral Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

German I have a strong accent French 80% - 90% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Neutral Strongly Agree Strongly Disagree Neutral Disagree

French I have no accent French 70% - 80% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have no accent English 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Agree Strongly Agree Strongly Disagree Strongly Disagree Strongly Disagree

Arabic I have no accent Arabic 60% - 70% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have no accent English 90% - 100% Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Persian I have a bit of an accent Persian 90% - 100% Strongly Agree Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have no accent French 90% - 100% Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Russian I have a strong accent Russian 60% - 70% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Disagree Strongly Agree Strongly Disagree

Arabic I have a strong accent Arabic 80% - 90% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have no accent French 90% - 100% Agree Neutral Strongly Agree Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have a strong regional accent Chinese (China) 50% - 60% Neutral Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Neutral Strongly Agree Strongly Disagree Neutral Strongly Disagree

French I have a strong accent French 90% - 100% Strongly Agree Strongly Disagree Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

German I have a strong accent German 70% - 80% Disagree Strongly Disagree Agree Strongly Disagree Strongly Agree Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have no accent French 70% - 80% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have no accent English 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have no accent English 80% - 90% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Persian I have no accent Persian 90% - 100% Strongly Agree Strongly Disagree Agree Strongly Disagree Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Arabic I have a strong accent Chinese (China) 60% - 70% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Neutral Strongly Agree Strongly Disagree Agree Strongly Disagree

Russian I have a bit of an accent Russian 90% - 100% Strongly Agree Neutral Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

German I have a bit of an accent English 60% - 70% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have a strong accent English 80% - 90% Neutral Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Disagree

French I have no accent French 80% - 90% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Disagree

Russian I have a strong accent Russian 60% - 70% Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Chinese (China) I have a strong accent Chinese (China) 80% - 90% Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have a strong accent French 80% - 90% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have a bit of an accent French 90% - 100% Strongly Agree Neutral Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have a bit of an accent French 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

French I have a strong accent French 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Persian I have a bit of an accent Persian 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Agree Strongly Disagree

French I have no accent French 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have a bit of an accent English 80% - 90% Strongly Agree Strongly Disagree Strongly Agree Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have a bit of an accent German 60% - 70% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Agree Strongly Agree Strongly Disagree Strongly Disagree Strongly Disagree

French I have a bit of an accent Russian 50% - 60% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Agree Strongly Agree Strongly Disagree Disagree Strongly Disagree

German I have a strong accent German 60% - 70% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Disagree

Russian I have a strong accent Russian 80% - 90% Disagree Neutral Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have a strong regional accent English 90% - 100% Neutral Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

English I have no accent English 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Russian I have a strong accent English 50% - 60% Strongly Agree Strongly Disagree Strongly Agree Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Agree Strongly Disagree

English I have no accent Chinese (China) 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Agree Strongly Disagree Neutral Strongly Disagree

English I have no accent English 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Russian I have no accent Russian 70% - 80% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree

Arabic I have no accent Arabic 90% - 100% Strongly Agree Strongly Disagree Strongly Agree Strongly Disagree Strongly Agree Disagree Strongly Agree Strongly Disagree Agree Strongly Disagree

81%

Accuracy System Usability Scale

Total Accuracy Total System Usability Scale Score 95.7
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