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Abstract 

Navigation in a traffic congested city can prove to be a difficult task.  Often a path that 

may appear to be the fastest option is much slower due to congestion.  If we are able to 

predict the effects of congestion, it may be possible to develop a better route that allows 

us to reach our destination more quickly.  This thesis studies the possibility of using a 

centralized real-time traffic information system containing travel time data collected from 

each road user.  This data is made available to all users, such that they may be able to 

predict the effects of congestion when building a route.   

This method is further enhanced by combining the traffic information system data with 

previous routing experiences.  We test our method using a multi-agent simulation, 

demonstrating that this method produces a lower total route time for all vehicles than when 

using either a centralized traffic information system or direct experience alone. 

 Keywords: multi-agent systems, multiagent systems, reinforcement learning, 

traffic congestion, pathfinding 
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Chapter 1: Introduction 

 

1.1 Research Motivation 

 When a driver attempts to navigate in a modern urban environment, they must 

overcome many obstacles to reach their destination.  Poor weather, road construction, and 

accidents are just a few of these.  However, while these problems may occur with varying 

degrees of frequency, traffic congestion is one which is encountered on a daily basis.  

Delays on the morning and evening commute to and from work are familiar to many who 

regularly travel in a city.  Indeed, in particularly congested cities with high population 

densities, the problem of traffic congestion may be a constant condition on many roads. 

 Delays due to traffic congestion can be the cause of many problems.  Drivers 

experience increased stress as delays may cause them to miss appointments or arrive late 

for work.  Environmental damage is also a concern, as traffic delays require vehicles to 

operate for longer periods than may otherwise be necessary, resulting in increased 

pollution due to automotive exhaust.  As well, economic damage can occur as worker 

productivity is reduced due to increased stress and work time lost in travel (Mandayam 

and Prabhakar, 2014). 

 When one considers the negative impacts of congestion it is clear that its reduction 

would be beneficial both to individuals and society.  However, reducing congestion is not 

a simple task.  Building additional roads to increase the volume of traffic that may be 

handled without congestion may not be possible in many locations, due to existing 

structures or budget constraints.  Increased availability of mass transit can be helpful in 
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reducing the number of road users, but this can be expensive to operate and may not be 

feasible for users who must travel beyond a short distance to reach their destination.

 If we consider that many commuters may opt to drive personal vehicles, either by 

preference or necessity, it is worthwhile to investigate how they may be better routed to 

reach their destinations while minimizing the negative effects of congestion. 

1.1.1 Individually Optimized Routing to a Destination 

 The simplest approach to routing is to take the shortest path to one’s destination.  

While this may seem ideal, the shortest path may not be the best option, as the roads 

selected may have a low speed limit and thus be inherently slow.  The roads may also be 

congested at the time of travel, causing the route to be slower than anticipated. 

 A more sophisticated approach to routing would involve a consideration of the 

speed limit on each road taken.  By factoring in how fast we can travel on each road in our 

path, we can calculate how long it would take to travel them.  As such, a path that uses 

faster roads may result in a shorter route time than one that simply selects the shortest path. 

 These routing methods are examples of user or individually optimized routing 

(Bazzan and Chira, 2015).  This type of routing focuses on finding the fastest, or optimal, 

route to the driver’s destination.  As such, there is little regard for the impact on existing 

traffic congestion beyond the necessity to limit its effects in delaying the driver. 

 However, using individually optimized routing can have a detrimental effect when 

all drivers attempt to use this method.  Referred to as the tragedy of the commons (Hardin, 

1968), this problem appears when all vehicles attempt to use the same roads at the same 

time.  As the road is finite in the number of vehicles that may efficiently use it concurrently, 
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increasing the number of users will increase the amount of time it takes to travel upon the 

road. 

1.1.2 System Optimization to Improve Routing to a Destination 

An alternate method is to build routes that are system optimized.  System 

optimization focuses on reducing the total amount of travel time for all vehicles using the 

road network (Bazzan and Chira, 2015), with the goal of reducing the impact of each 

vehicle on the congestion problem.  As such, many road networks are designed to favour 

system optimization by operating high capacity and high-speed roads, with the goal of 

moving the largest number of vehicles possible through the system.  System optimization 

can also be attempted through the use of traffic light systems that prioritize traffic on high 

capacity roads while also directing vehicles towards them (Bazzan and Chira, 2015). 

 Unfortunately, system optimization may result in negative effects for some drivers.  

When a route is built to take advantage of high capacity roads, the driver may not be using 

the best route to reach their destination – they may be required to take a longer path than 

otherwise necessary.  While this can reduce the total travel time experienced by all drivers 

– the modified path reduces congestion on some other road – the individual driver does not 

see a benefit. 

1.1.3 Hybrid Routing to a Destination 

Ideally, we would like to optimize the route for the individual while also optimizing 

for the system.  A hybrid method, combining both individual and system optimized routing 

attempts to use the best components of both methods to achieve this (Bazzan and Chira, 

2015).  By selecting roads that provide for a fast route for the driver but also work to avoid 

congestion, we can avoid building routes that cost the individual too much time while also 
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working to reduce the total congestion in the road network.  The reduction in congestion 

may then be enough to offset the extra time that the individual driver must spend reaching 

their destination. 

 However, when routing in congestion, one must consider the following question: 

is it better for me to use a road that is short, but congested; or, is it better for me to take a 

road that is longer, but uncongested.  The answer to this question is not simple when one 

does not know how badly congested the road is, as a short but congested road may be a 

better option than a longer, uncongested one if the delay due to congestion is small. 

 

1.2 Research Objectives 

The purpose of this thesis is to determine if we can develop routes that are better 

suited for areas with traffic congestion than existing methods. 

When routing in traffic we face the following challenges: 

1. Finding the best route while accounting for congestion requires the driver to 

search through a number of possible alternatives. 

2. The specific amount of congestion that will be encountered on any given road 

segment is unknown to the driver. 

3. Avoiding the tragedy of the commons to approach a system optimum state. 

 

1.2.1 Finding the Best Route 

Finding the fastest route to one’s destination can be accomplished using a number 

of pathfinding algorithms, such as Dijkstra’s Algorithm (Dijkstra, 1959) or the A* 
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algorithm (Hart et al., 1968).  Given a map with sufficient detail of the road segment 

lengths and permissible road speeds, these algorithms can provide a route that will get the 

driver to their destination.  However, given the unknown details of congestion and its 

effects on road speed, these algorithms are insufficient by themselves. 

If we were to use a pathfinding algorithm to produce a number of possible routes 

that our driver could choose from, we may be able to find the fastest route.  To do this we 

can use reinforcement learning try to learn which route will be the quickest.  A Multi-

Armed Bandit algorithm, such as Ꜫ-Greedy (Thathachar and Sastry, 1985) or Upper 

Confidence Bound (UCB) (Auer et al., 2002) may be used to search for the best routing 

solution and more reliably select it in the future.  However, in order to learn the fastest 

route to take, these methods must first explore the possible solutions, resulting in the driver 

using some potentially poor routes while trying to find the best one. 

This provides us with the first objective for this thesis: 

Objective 1: Determine the fastest route for the driver with the least 

exploration. 

 

1.2.2 The Amount of Congestion is Unknown 

 The amount of congestion along a given route affects its speed.  If a driver would 

like to select the fastest route with a limited number of routing tries, more detailed 

information about the congestion on a road segment may be of help. 

 Software such as Google Traffic (Google, 2017) and Waze (Waze, 2017) offer 

information about the traffic conditions on a road.  Both operate by collecting data from 
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public traffic sensors and user provided travel times (via smartphone application) and use 

it to provide routes that account for delays due to congestion. 

 While a large amount of travel data can be collected from users, we must consider 

that the congestion problem will change over time.  The number of road users may change, 

and the routes they select can result in roads becoming more or less congested over time.  

As such, we need a routing method that can adapt to changes in congestion and anticipate 

what these changes will do to congestion while building a route. 

 This provides us with our second objective for this thesis: 

Objective 2: The routing method must adapt to changes in congestion over 

successive routing actions. 

 

1.2.3 Avoiding the Tragedy of the Commons 

As noted in 1.1.1, the tragedy of the commons occurs when each driver attempts to 

select the fastest route without regard for the effects of this selection on congestion.  

Ideally, we would like to avoid this issue and reach a system optimum state where the total 

travel time is at a minimum while also minimizing the travel time for each driver. 

Stackelberg routing (Roughgarden, 2001), where a leader selected to pick an initial 

route which is then built upon by others, can be used to solve this issue.  However, this 

method requires a central authority to select the leader and assign routes, which may or 

may not be followed by the other drivers if they consider them to be unfair. 

This provides us with our final objective for this thesis: 



ROUTING USING A TRAFFIC INFORMATION SYS. AND DIRECT EXPERIENCE 

7 
 

Objective 3: The routing method must produce routes that are fair for each 

driver but also minimizes the total travel time for all drivers. 

 

1.3 Research Questions 

 In addition to the three objectives noted in section 1.2, this research we will 

attempt to answer the following questions: 

1) Will such a multi-agent system achieve user equilibrium with fewer routing 

episodes than either a centralized real-time traffic information system or direct 

agent experience? 

2) Will re-routing while on route result in lower total route times than when no re-

routing is used? 

3) Will the weighting factor reach an equilibrium point at which the agent will no 

longer make adjustments between routing episodes? 

 

1.4 Thesis Contribution and Significance of Research 

 This research makes multiple contributions towards solving the congestion 

problem in the urban environment.  First, we show that the fastest route in a congested 

road network can be determined with less exploration than might otherwise be necessary.  

This is done by combining the data the driver acquires through experience driving a route 

with the data that is collected by all road users. 

 Second, we show that this method is adaptable to changes in the congestion 

problem by using reinforcement learning to teach each driver which travel data best 

matches the current congestion. 
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 Finally, we demonstrate, through the use of a multi-agent simulation, that the 

drivers can reach an equilibrium point that approaches the system optimum with being 

directed through a control mechanism. 

 

1.5 Definitions and Nomenclature Used 

The following language is used in this thesis: 

1) Agent – The term agent will be used to refer to the vehicle’s navigation system.  

The agent develops the routes and decides which one the vehicle will take.  The 

driver of the vehicle managed by the vehicle simulation and will always follow the 

route provided by the agent. 

2) Road Segment – The term road segment is used to refer to a section of a road that 

lies between two intersections.  As the routing agent can only make road selection 

decisions at an intersection, the road segment represents the smallest unit of a road 

that the agent can perceive. 

3) Travel Time – The travel time refers to the time, in seconds, required for a vehicle 

to travel the length of a road segment.  The travel time may be that of an individual 

vehicle, or may be an average of all vehicles for a specified range of times. 

4) User Equilibrium (UE) – A state in which no agent perceives a possibly faster route 

than the one they are currently using.  At this point no agent will select a different 

route than the one they used in their previous routing instance. 

5) System Optimum (SO) – The road network is considered to be system optimum 

when the total amount of time required for all agents to complete their routes is 

minimized. 
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6) Centralized Real-Time Traffic Information System (TIS) – A system which 

collects travel time data from all agents and maintains it in a database.  Each 

connected agent may request and receive travel time data for any road segment. 

 

1.6 Thesis Organization 

 This thesis consists of seven chapters.  Chapter 1 introduces routing in traffic 

congestion and presents the thesis objectives.  Chapter 2 discusses the problem in more 

detail and reviews the literature on some of the other routing methods used.  Chapter 3 

discusses the theoretical framework.  Chapter 4 covers the design of the solution and the 

method of experimentation.  Chapter 5 presents our experimental results.  Chapter 6 

discusses the results of this research and future work.  Finally, chapter 7 presents the 

conclusions reached. 
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Chapter 2: Review of the Literature 

 

2.1 Routing in a City  

In this chapter we review the various components involved in finding an efficient 

route to one’s destination in a city.  We start with some of the previous and current methods 

used to build a better path. 

 

2.2 Traffic Planning 

Before delving further into the details of building an effective routing solution that 

accounts for the effects of urban traffic, we must consider the composition of the traffic 

problem.  This consists of two components – congestion and bottlenecking (Kutz, 2011).  

Congestion is the volume of traffic on a road while bottlenecking is a reduction in road 

capacity.  A road may be considered to be congested when the volume of vehicles per 

section of roadway exceeds its capacity to handle them efficiently – beyond this volume 

the average speed of each vehicle is reduced.  Bottlenecking can be caused when a road’s 

capacity is reduced by either an event – such as construction or an accident closing a lane 

– or by slow moving vehicles – such as a bus or truck, or a car attempting a left turn at an 

intersection.  This thesis is concerned with the alleviating the effects of the former issue, 

and as such we will not discuss bottlenecking further. 

 For city and traffic planners, the issue of traffic congestion is most often viewed as 

a network design and management problem.  To optimize the road network, they use what 

is commonly referred to as an Intelligent Transportation System (ITS) (Desjardins, et al., 

2009; Bazzan, 2009), and focus on using traffic information to make better use of existing 
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infrastructure.  These methods include radio broadcasts and roadside messages to pass 

information to drivers, traffic cameras, websites, and variable timed traffic lights (Bazzan, 

2009). 

Centralized traffic management systems, such as the Sydney Coordinated Adaptive 

Traffic System (SCATS) (Wang et al., 2016) can attempt to improve traffic flow by further 

managing traffic lights, such that busier roads are given priority to increase the speed of 

vehicles travelling along the road when there is high traffic volume.  While this technology 

can greatly improve traffic flow, it is complex and costly to implement.  As well, changing 

traffic light timings to favour certain roads will encourage drivers to prefer using them, 

resulting in further congestion. 

 Recent advances in communications technology have also enabled the use of more 

advanced techniques.  Vehicle-to-roadside (V2R) communications technologies allow for 

greater organization of the network by transmitting information about destination and 

vehicle status to local traffic management systems (Hong and Cheng, 2016).  Intelligent 

intersections can sense the volume and direction of traffic passing through them and time 

signal changes to improve flow while also providing information to neighbouring 

intersections about the volume of traffic headed in their directions (Desjardins et al., 2009; 

Hong and Cheng, 2016; de Oliveira and Bazzan, 2009). 

 

2.3 Wardrop’s Principles 

 While ITS technologies can increase the overall capacity of the road network and 

generally work to improve the transit times for users, they do not focus on providing an 

efficient routing solution for the individual vehicle.  This task falls to routing methodology. 
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 Many routing methods attempt to solve this problem by focusing on reaching either 

a User Equilibrium (UE) or System Optimum (SO) state.  These states are defined as two 

principles of route choice by Wardrop (1952), which can be summarized as: 

1) User equilibrium, a state in which the travel time of routes used by all vehicles is 

equal to or less than any alternative route that could be selected by drivers. 

2) System optimum, a state in which the total travel time for all drivers is minimized. 

 

Each of these principles may be understood intuitively as the consequences of 

either self-interested or altruistic agents (Levy et al., 2017).  When self-interested drivers 

build routes selfishly, that is, attempt to find the fastest route, regardless of the effect that 

selection has on other drivers, the road network will eventually reach UE.  When drivers 

behave altruistically, they select routes that are perhaps slower, but reduce congestion on 

a given road, so a SO state may be reached. 

However, to understand Wardrop’s principles more thoroughly, we must look at 

the problem of routing in traffic congestion through the use of game theory. 

 

2.4 Routing as Congestion Games 

 Game theory is the mathematical study of the strategies used when playing games.  

It’s important to note that in our case, games are considered to be any activity where there 

are multiple players, each of which is attempting to determine the best strategy to use to 

achieve the largest reward possible (Shoham and Leyton-Brown, 2009).  A strategy is the 
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method that is used to determine which action, or set of actions, the player will take to 

accomplish this. 

 While game theory is a broad subject, we are concerned with its use in modelling 

the problem of traffic congestion in a city.  To do this, the problem can be represented as 

a congestion game (Tumer and Proper, 2013; Shoham and Leyton-Brown, 2009).  

Congestion games study the problem of maximizing an individual player or agent’s reward 

where there are limited resources available.  Each player in the game is attempting to own 

as many resources as possible, while also paying the lowest cost for them, thus maximizing 

their reward.  The focus of the game is to determine which strategy will achieve this and 

at what point an equilibrium is reached.  The game reaches equilibrium when no player 

perceives a possibility of improving their reward by changing strategy (Shoham and 

Leyton-Brown, 2009). 

The game theory analysis of routing in traffic congestion views the problem as a 

nonatomic congestion game consisting of a large number of players attempting to use a set 

of roads (Shoham and Leyton-Brown, 2009).  As the number of players is very large, 

although not infinite, the decisions of any individual player on the congestion encountered 

is very small – essentially, the decision of any one player to use a particular road at a 

particular time will not make a noticeable difference in how fast a vehicle may travel down 

that road. 

A common example of this class of game is the El Farol Bar Problem (Shoham 

and Leyton-Brown, 2009).  In this problem, each player must decide whether to visit the 

bar or stay at home.  If more than 60% of players visit the bar, the player would have more 

fun staying at home.  If less than 60% of players visit the bar, the player has more fun 
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visiting the bar.  As all players must make their decisions at the same time, each must use 

a strategy to decide whether most of the other players have decided to go to the bar, or stay 

at home.  The player maximizes their reward if they make a decision that is the opposite 

of that selected by most of the other players. 

2.5 The Mathematics of Nonatomic Congestion Games 

Mathematically, we can represent the nonatomic congestion game as a tuple, 

(𝑁, 𝜇, 𝑅, 𝐴, 𝜌, 𝑐), with the following properties (Shoham and Leyton-Brown, 2009): 

𝑵 = {𝟏, … , 𝒏} is a set of players of different types; 

𝝁 = (𝝁𝟏, … , 𝝁𝒏) represents the players.  Where 𝒊 ∈ 𝑵 there is a continuum of 

players represented by the interval [𝟎, 𝝁𝒊]; 

𝑹 is a set of k roads.  Each road segment, 𝒓 is 𝒓 ∈ 𝑹; 

𝑨 = 𝑨𝟏 × … × 𝑨𝒏, where 𝑨𝒊 ⊆ 𝟐𝑹{∅} is the set of actions.  The action 𝒂𝒊 ∈ 𝑨𝒊 is 

selected by all players of type i.  The action 𝑎𝑖 represents a segment of the player’s path 

𝑨𝒊; 

𝝆 = (𝝆𝟏, … , 𝝆𝒏), where for each 𝒊 ∈ 𝑵, 𝝆𝒊: 𝑨𝒊 × 𝑹 ⟼ ℝ+ denotes the amount of 

congestion contributed to a given road segment 𝒓 ∈ 𝑹 by players of type i selecting an 

action 𝒂𝒊 ∈ 𝑨𝒊; 

𝒄 = (𝒄𝟏, … , 𝒄𝒌), where 𝒄𝒓: ℝ+ ⟼ ℝ is a cost function for road segment 𝒓 ∈ 𝑹, and 

𝒄𝒓 is nonnegative, continuous and nondecreasing. 
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We begin by defining the action distribution for the game.  An action is the move 

that each agent makes that puts them on a particular road segment at a particular time.  The 

action distribution, 𝑠 ∈ 𝑆, indicates the number of players that choose each action, and 

𝑠(𝑎𝑖) is the element of s that corresponds to the set of players of type i who select action 

𝑎𝑖 ∈ 𝐴𝑖. 

As the action distribution represents the actions of each player of type i, we can 

arrive at the following: 

∑ 𝑠(𝑎𝑖) = 𝑢𝑖

𝑎𝑖∈𝐴𝑖

 

This allows us to determine the amount of congestion, 𝑠𝑟, on a given road segment 

as a multiplication of the number of players selecting the segment by the amount of 

congestion each contributes by their actions: 

𝑠𝑟 = ∑ ∑ 𝜌𝑖(𝑎𝑖, 𝑟)𝑠(𝑎𝑖)

𝑎𝑖∈𝐴𝑖𝑖∈𝑁

 

We note from the above formula that, although the effect of any one player on the 

congestion problem is very small, it is not 0.  Thus, the actions of all players result in 

congestion that can be measured and does affect the flow of traffic. 

While we can now formulate the amount of congestion on a road segment, we 

would still like to know the effect of this on our players.  We can calculate the cost function 

due to congestion induced on the a given road segment by the players’ actions as: 

𝑐𝑎𝑖
(𝑠) = ∑ 𝜌(𝑎𝑖, 𝑟)𝑐𝑟(𝑠𝑟)

𝑟∈𝑎𝑖

 

(1) 

(2) 

(3) 
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The utility function for the player may now be determined.  The utility function 

helps the player determine which of a number of possible actions is of the most benefit to 

them if selected (Shoham and Leyton-Brown, 2009).  In this case, the utility function can 

be expressed as the cost of selecting a road segment, where the road segment with the least 

congestion gives the highest utility: 

𝑢𝑖(𝑎𝑖, 𝑠) = −𝑐𝑎𝑖
(𝑠) 

Finally, the social cost to all players choosing an action may be found by 

multiplying the action distribution for all players of type i by the cost function due to those 

players selecting a given road segment: 

𝐶(𝑠) = ∑ ∑ 𝑠(𝑎𝑖)𝑐𝑎𝑖
(𝑠)

𝑎𝑖∈𝐴𝑖𝑖∈𝑁

 

An analysis of the social cost formula reveals that the system optimum is achieved 

when the players select actions that sum to the lowest social cost.  However, because the 

social cost is the sum of the cost incurred by all players, we can achieve this when some 

players achieve a lower cost by selecting a given action while other players select an action 

that is more costly to them individually.  Under these conditions, the player with the more 

costly action will select a less costly action to increase their utility.  As such, by selecting 

an action that is less costly, they increase the congestion on the road segment, thus 

increasing the cost for all players selecting the same action.  Since the cost increases, this 

increases the social cost to all players, although at this point an equilibrium may have been 

reached. 

(4) 

(5) 
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Given the effects of selfish selection of routes, the user equilibrium can, at best, 

reach a social optimum.  However, often this may not be the case, as the effects of selfish 

actions work to increase the impact of congestion for all (Levy et al., 2017). 

 

2.6 Approaches to Routing 

 There have been a number of different approaches that have been applied to the 

routing problem.  As noted in chapter 1, these approaches can be separated into attempting 

to solve for either of Wardrop’s Principles or both, with varying levels of sophistication. 

2.6.1 Dijkstra’s Algorithm and A* Routing 

Perhaps the most direct method of routing is to select a path that combines the 

fastest allowable road speeds with the shortest possible distance.  Provided a map of the 

city in which we would like to navigate, we can use a pathfinding algorithm such as 

Dijkstra’s Algorithm or A*. 

 Treating the map as a graph, where each intersection is a node and each road 

segment is an edge, Dijkstra’s Algorithm (Dijkstra, 1959) performs a best-first search to 

find the shortest path.  Starting at an origin point, the algorithm calculates the travel time 

to each unvisited node that can be reached directly and selects the fastest one.  In successive 

iterations, the algorithm selects the closest node to the origin that has not yet been visited.  

Given sufficient iterations, this algorithm will provide the user with the fastest route to 

their destination. 

 The A* algorithm (Hart et al., 1968) is a modified version of Dijkstra’s Algorithm 

that attempts to improve upon the speed at which an optimal path is determined.  Rather 
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than selecting the edge that arrives at a neighbouring node the fastest, the algorithm also 

considers whether the edge will bring the driver closer to their destination. 

 Using a heuristic value, such as the Euclidian distance from the edge endpoint node 

to the driver’s destination, the algorithm selects the next edge in its path as the shortest 

sum of distance travelled so far and the heuristic distance to the destination.  This method 

allows the algorithm to focus on trying paths that take the driver closer to their destination, 

and thus typically arrives at an optimal solution more quickly than Dijkstra’s algorithm. 

2.6.2 Route Information Sharing 

 Route Information Sharing (RIS) (Yamashita et al., 2005) represents one method 

to reach a system optimum.  By sharing information on the routes chosen by drivers, this 

method seeks to enable them to avoid congestion.  The method is implemented as follows: 

1) Each driver builds a shortest route to the destination.  The information is then 

transmitted to a server. 

2) The server collects route information from all drivers and assigns a weight value to 

each road segment for each driver. 

3) The weight of each driver on each segment is summed, producing a total weigh for 

each segment. 

4) The total weight is used to calculate the expected traffic on each segment and, thus, 

the expected travel time. 

5) The expected travel time is transmitted to each driver for their prospective routes.  

The drivers may then revise their routes based on this information. 

6) Steps 2 through 5 are repeated until each driver has selected the route they will use. 
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7) The drivers travel their routes.  At each intersection, the driver transmits their 

location and updates their information.  If the vehicle encounters congestion the 

route is revised. 

8) Once at their destination, the vehicle is removed from the problem. 

 

Route Information Sharing has been shown to provide an improvement in the 

average travel time for drivers using this method over the average times for drivers routing 

using a shortest distance method.  This difference was found to increase as the percentage 

of vehicles using RIS increased in the road network. 

However, while an improvement was found, the number of cycles of route, 

transmit, receive, and re-route that must be accomplished before a final set of routes is 

reached can be large.  As well, it has been noted that, in large cities where there may be 

millions of vehicles, such a system may be impractical, as a typical communications 

system, such as a cellular network, may not capable of handling the number of connections 

required. 

2.6.3 Sampling and Weighting Algorithm 

 While a system optimal method of routing results in faster overall route times, 

preventing the system from reverting to a user equilibrium state that is less efficient is 

difficult.  Route Information Sharing approaches this, but does so at the price of potentially 

delayed routing results and a large communications infrastructure cost. 

 If drivers are selfish in their behaviours – that is, always attempting to achieve the 

fastest route for themselves, regardless of the cost to others – perhaps a better approach 
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would be to achieve a user equilibrium state that is as close as possible to the social 

optimum.  Levy, Klein and Ben-Elia (2017), and Levy and Ben-Elia (2016) investigate the 

possibility of system optimum being an emergent property of a multi-agent system. 

 In their research, a group of agents, representing drivers, are given a choice 

between two routes of equal length.  As both routes are equal, the only factor that affects 

the route completion time is the number of agents that select the route.  Each agent has the 

goal of reaching the end of the route in the shortest time possible and must decide which 

route is the best choice to achieve this. 

 The authors solve this problem applying the agents’ previous routing experience 

on each route.  A routing simulation was built for the agents with both available routes.  

As successive simulations are run, the agents acquired more information as to the amount 

of time required to complete each route, which is used to inform the agent’s route selection 

in the next simulation. 

 To determine which route is likely to be the least congested, each agent uses the 

Sampling And Weighting (SAW) formula (Levy et al., 2017; Levy and Ben-Elia 2016), 

which is an adaptation of the formula used by Erev et al. (2010): 

𝐸𝑆𝑇𝑗,𝑘 = 𝑤 ∗
∑ 𝑅𝑜𝑢𝑡𝑒𝑇𝑖𝑚𝑒𝑗(𝑖)𝑘

𝑖=0

𝐷𝑎𝑦𝑠𝑂𝑛𝑅𝑜𝑢𝑡𝑒
+ (1 − 𝑤) ∗

∑ 𝑅𝑜𝑢𝑡𝑒𝑇𝑖𝑚𝑒𝑗(𝑖)𝑘
𝑖=𝑘−𝛿

𝛿
 

 Where j is the potential route, k is the index of simulations where the agent selected 

route j, 𝛿 is the number of recent simulations used, and w is a unitary weight determining 

the agent’s long-term memory.  A weight value of 1 results in the agent only using long-

term travel data, while a weight of 0 causes the agent to use only recent travel data.  The 

(6) 
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weight value can take any value between and including 0 and 1, giving the agent the ability 

to consider both long-term and recent travel data as well. 

 The experiment was initially performed using a group of agents selecting routes 

selfishly – the agents use a utility function that is maximized when their route is the shortest 

possible.  It was found that the agents converged on a user equilibrium most quickly when 

w = 0 and long-term memory was not employed. 

 After 15000 runs, the agents were modified to become altruistic, where each 

agent’s utility function is maximized by the total route time of all agents being minimized.  

The researchers found that the agents were able to achieve a SO state without a control 

mechanism and that this occurred most quickly when w = 0. 

 While this work shows that it is possible to reach a user equilibrium and a social 

optimum state using a deterministic algorithm, there are some practical limitations.  First, 

the agents required almost 2000 runs to reach a user equilibrium, and reaching a social 

optimum required approximately 500 runs.  If such a system were attempted for a group 

of drivers, it would require a large number of tries before they saw a significant 

improvement in their route times. 

 Secondly, the experiments gave the agents the option of two routes, rather than the 

hundreds that may be possible in an urban road network.  Given the larger number of 

options, a weight value that accounts for long-term memory may result in a better result 

that was found when only two routes were allowed. 
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2.7 Summary 

While the methods discussed above may assist in improving travel in a congested 

city, there are costs or limitations to each.  In chapter 3 an alternative routing method is 

introduced that may better manage these issues. 
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Chapter 3: The Theoretical Framework 

 

3.1 Multi-Agent Routing Method 

In Chapter 1 we noted the following three objectives for this thesis: 

1) To determine the fastest route for the driver with the least exploration. 

2) To find a routing method to adapt to changes in congestion over successive 

routing actions. 

3) To find a routing method to produce routes that are fair for each driver but also 

minimize the total travel time for all drivers. 

 

 We present a multi-agent routing methodology that addresses each of these 

objectives when routing in an urban environment.  To develop their route, each agent uses 

the following steps, which we expand upon later in this chapter. 

1) Build a list of routes - The agent builds a list of potential routes to its 

destination.  The list is built using a modified version of the A* algorithm, 

which returns the fastest routes possible based on the map data available to the 

agent. 

2) Estimate road segment start times - For all potential routes in the list, the 

agent estimates the time at which they will start each road segment. 

3) Request travel time data from TIS - The agent requests travel time data from 

the centralized real-time traffic information system (TIS) for each road segment 

in each route.  By using TIS, the agent avoids the need to try each route to learn 
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the amount of congestion first hand, thus minimizing the exploration required 

to estimate its effects. 

4) TIS returns travel times - The TIS returns two average travel times for each 

road segment requested, adjusted for the time at which the agent estimates it 

will reach the segment.  First is the long-term average, which is an average of 

all vehicle travel times on the given road segment for all available routing 

episodes.  Second, the short-term average, comprised of the average travel time 

for all vehicles in the 5 most recent routing episodes. 

5) Estimate potential route times - The agent applies the averages to each 

potential route using the SAW formula.  The agent selects the route with the 

fastest estimated time.  As the estimates are developed using previous travel 

time data, our routing method is able to adapt to changes in congestion – the 

effects of any changes will be reflected in the travel times used. 

6) Apply previous routing experience - The agent compares the selected route 

to a list of routes it has travelled previously.  If the route is the same as the route 

used by the agent in the previous routing episode, the agent will select the route.  

If it is different, the agent searches the list to determine if it has used the route 

before.  If not, the agent will use the route.  If the agent has used the route 

previously, it will only select the new route if it was significantly faster than 

the route used in the previous routing episode. 

7) Drive selected route - The agent travels its route.  As the agent travels, it 

transmits the time required to complete each road segment to the TIS.  If re-

routing is enabled for the agent, it compares the time on route to its estimated 
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route time to that point.  If the route time is significantly higher than the 

estimated time it will re-route. 

8) Apply learning algorithm - After completing its route, the agent reviews the 

route times for each of its potential routes by again querying the TIS to apply 

the most recent travel time data to each one.  If the fastest route was different 

than the one the agent selected, they adjust their selection algorithm to better 

reflect the effects of congestion on its routes.  As each agent acts to improve its 

route selection, the amount of time to complete its routes are reduced and works 

to minimize the total travel time for all drivers, while also providing a fair route 

for the agent.  

  

 Figure 1 presents a flowchart depicting the agent’s routing actions.  The algorithm 

Agent Routing Process provides an overview of the agent routing steps and calls the 

algorithms presented in the following sections. 
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Figure 1. Agent Routing Process 
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Algorithm Agent Routing Process 

 Input: Map data, agent origin, agent destination. 

 Output: Updated SAW weight. 

  

 // Get the list of potential routes (Step 1). 

 routeList = call ModA*(map data, origin, destination, number of routes requested); 

 

 // Estimate fastest route (Steps 2, 3, 4, 5). 

 routeList[fastestRoute] = call RouteSelector(routeList, SAW Weight); 

 

 // Find route with fastest estimate (Step 6). 

 fastestRoute = call RouteMemory(routeList[fastestRoute], last completed route,  

    exploration factor); 

 

 // Agent drives route (Step 7). 

 

 // If re-routing is enabled, determine a new route if current route is too slow at 

// end of each road segment (Step 7). 

 fastestRoute = call ReRouting(fastestRoute, actual route time, performance factor); 

 

 // Apply the learning algorithm to find new SAW weight (Step 8). 

 newSAWWeight = call LearnSAWWeight(routeList, actual route time, 

    previous SAW weight, weight change factor); 

Algorithm 1. Agent Routing Process 
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3.2 Building the Potential Routes List (Step 1) 

Before selecting the fastest path to its destination, the agent must first develop a 

list of viable routes.  In many cities the number of possible routes can be quite large, given 

a multitude of roads to choose from.  However, many routes are not good options due to a 

combination of allowable road speed and distance. 

To accomplish this task, the agent uses a modified version of the A* algorithm 

(Hart et al., 1968).  While the standard A* algorithm finds the fastest route to a destination, 

based on the path length and allowable road speed, this only provides one route.  Our 

modified version, Mod A*, will continue to build routes until a pre-determined number of 

routes has been reached, providing the agent with a list of routes to choose from. 
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Algorithm ModA* 

 Input: Map data, agent origin, agent destination, number of routes requested. 

 Output: A list of the fastest routes by distance and road speed. 

  

 mapData = Map data; 

 originNode = The origin node location on the map; 

 destinationNode = The destination node location on the map; 

 edgeList = null;     // The list of edges to search. 

 numberOfRoutes = The number of routes requested; 

 currentEdgeIndex = 0;    // The index of the edge being  

// searched by the algorithm. 

 destinationFound = false;    // Boolean indicating the 

// destination node was found. 

 routeList = null;     // The list of potential routes. 

 routesFound = 0;     // Counts the number of routes. 

 

 // Find every edge from the origin node. 

 for (each edge from originNode) { 

     edge.available = true; 

     edge.g = mapData.edgeLength / mapData.roadSpeed; 

     edge.h = destinationNode.GPS – edge.endNode.GPS; 

     edgeList.add(edge); 

 } 

  

 

Algorithm 2. ModA* 
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Algorithm ModA* continued 

 

 // Loop through the list of available edges until the requested number of routes  

 // are found. 

 While (routesFound < numberOfRoutes) { 

     // Find the available edge with the lowest f(x) = g(x) + h(x). 

     shortestEdge = 1000000; 

  

     for (each edge in edgeList) { 

         if (edge.available) { 

             if (edge.endNode == destinationNode) { 

      destinationFound = true; 

      currentEdgeIndex = index of edge; 

             } 

             edge.f = edge.g + edge.h; 

             if (edge.f < shortestEdge && !destinationFound) { 

                 shortestEdge = edge.f; 

                 currentEdgeIndex = index of edge; 

             } 

         } 

     } 

  

     // We now have the available edge with the shortest f(x). 

     edgeList[currentEdgeIndex].available = false; 

 

 

Algorithm 2. ModA* 
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Algorithm ModA* continued 

 

     // If the destination wasn’t found, retrieve all connected edges. 

     if (!destinationFound) { 

         for (each childEdge in edgeList[currentEdgeIndex]) { 

             childEdge.available = true; 

             childEdge.g = mapData.edgeLength / mapData.roadSpeed  

                          + edgeList[currentEdgeIndex].g; 

             childEdge.h = destinationGPS – childEdge.endNode.GPS; 

             childEdge.parentEdge = currentEdgeIndex; 

             edgeList.add(childEdge); 

         } 

     } 

  

     // If the destination was found, add the route to the route list. 

     if (destinationFound) { 

         route = Route built by tracing back from edgeList[currentEdgeIndex]; 

         routeList.add(route); 

         routesFound = routesFound + 1; 

         destinationFound = false; 

     } 

 } 

 

 // Return the list of potential routes. 

 return routeList; 

Algorithm 2. ModA* 
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3.3 Estimate Route Times (Steps 2, 3, 4, 5) 

 Given a list of potential routes, the agent must now determine which one to use 

while also accounting for the effects of congestion.  As shown by Levy et al. (2017), 

determining the impact congestion has on a given route can require a large number of tries 

before we can be sure we have found the fastest one. 

To reduce the amount of searching required to find the fastest route with 

congestion, we use a TIS containing travel time data collected from each vehicle.  When a 

vehicle passes through an intersection, the amount of time required to traverse the road 

segment is transmitted to the database, along with the start and completion times on the 

segment.  As the amount of information is small and only transmitted at the intersection, 

we can avoid the RIS communications capacity limitations noted by Yamashita et al. 

(2005). 

The collected travel time data is used by each agent as a substitute for direct 

experience that would have been gathered through the exploration of different route 

options.  This allows our routing method to be flexible as to the origin and destination of 

the agent – they need not have travelled to a destination previously to be able to select a 

route that will account for traffic congestion. 

3.3.1 Requesting Travel Times (Step 2) 

 Although the agents have travel time data available to them for any road segment 

they may wish to select, they are faced with a problem.  The amount of travel time data 

can be very large, as it may be collected from many vehicles over a long period of time, 

and the transfer of such a large volume of data would be impractical when a driver is 

waiting for their route. 
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 We manage this issue by limiting the amount of data that is required by the agent 

to make its decision.  As the agent has a list of potential routes to choose from, they only 

require the travel time data relevant to each route.  The agent further reduces the required 

data by estimating the time at which its vehicle will reach a given road segment, thus only 

requesting the travel time data for a limited time frame. 

 The specification a time frame further aids the agent by accounting for changes in 

congestion that may occur while travelling a route.  For instance, a road segment may not 

have much congestion at the time when the agent begins its route, but a number of 

employers located along the route may begin their day as the agent’s vehicle travels, 

producing congestion that didn’t exist earlier.  Having data that indicates that a given road 

segment will become more congested by the time its vehicle reaches it helps the agent 

determine if selecting a route with that segment is good option. 

3.3.2 Retrieving Travel Times (Steps 3, 4) 

 The traffic information system, upon receiving a request, must retrieve the data and 

format it to send to the requesting agent.  However, there are variations in the data that 

must first be managed.  The travel time data will vary over days and months – a road 

segment may have little congestion on a Sunday afternoon, but be very congested on 

Monday morning when a large number of drivers are travelling to work.  Additionally, 

seasonal changes may be expected, such as higher congestion on road segments near 

shopping malls in the month of December. 

 The database accounts for these changes by only returning travel times for the same 

day of the week as the day being routed.  Thus, if the current date is a Monday, the database 

will only retrieve data from previous Mondays. 
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 Another issue that may arise is travel time variation due to unforeseen conditions.  

A driver may encounter a slow-moving vehicle or bottlenecking due to construction, which 

may temporarily slow traffic.  While these incidents will show in the data as an increased 

amount of time required to traverse a road segment, they aren’t representative of the day-

to-day congestion that the driver may be expected to encounter. 

 The database manages this issue by averaging the travel time data returned.  Upon 

retrieval, the database will construct two values for the road segment – the long-term and 

short-term average.  The long-term average consists of the average time required to 

complete the segment over all dates available, while the short-term average is that over the 

most recent days.  The number of recent days used is configured to be consistent for all 

data requests. 

 Finally, when data is returned to the agent, it consists of a long-term and short-term 

average for each road segment requested, adjusted for the estimated time of arrival at the 

segment. 

3.3.3 Building the Route Estimate (Step 5) 

 Given the list of potential routes and both long and short-term travel time averages 

for each road segment, the agent must now make a routing decision.  To do this we use the 

Sampling And Weighting (SAW) formula from Levy et al. (2017): 

𝐸𝑆𝑇𝑗,𝑘 = 𝑤 ∗
∑ 𝑅𝑜𝑢𝑡𝑒𝑇𝑖𝑚𝑒𝑗(𝑖)𝑘

𝑖=0

𝐷𝑎𝑦𝑠𝑂𝑛𝑅𝑜𝑢𝑡𝑒
+ (1 − 𝑤) ∗

∑ 𝑅𝑜𝑢𝑡𝑒𝑇𝑖𝑚𝑒𝑗(𝑖)𝑘
𝑖−𝛿

𝛿
 

Rewritten, we use the formula as (7): 

𝐸𝑆𝑇𝑟𝑜𝑢𝑡𝑒 = 𝑤 ∗ ∑ 𝐿𝑜𝑛𝑔 − 𝑇𝑒𝑟𝑚 𝐴𝑣𝑔(𝑖) + (1 − 𝑤) ∗ ∑ 𝑆ℎ𝑜𝑟𝑡 − 𝑇𝑒𝑟𝑚 𝐴𝑣𝑔(𝑖)
𝑟

𝑖=0

𝑟

𝑖=0
 

(6) 
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Where 𝐸𝑆𝑇𝑟𝑜𝑢𝑡𝑒  is the estimated total route time, 𝑟 is the number of segments on 

the route, and 𝑤 is a weighting factor.  The weighting factor allows the agent to choose 

which set of averages will have more value in the routing decision – long-term or short-

term. 

The SAW formula (6) was selected for the route estimation task as it allows the 

agents to easily apply the large amount of travel time data available to them while also 

accounting for changes to the congestion problem that will occur over time.  The weighting 

factor is not a fixed value, but rather is changed by the agent over time as the congestion 

problem changes.  The selection of the weighting factor is explained further in section 6 

of this chapter. 

Once the agent has estimated the travel time for each potential route it selects the 

one with the lowest estimate. 

Steps 2, 3, 4, and 5 are implemented by the Route Selector algorithm.  
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Algorithm RouteSelector 

 Input: List of potential routes, SAW weight. 

 Output: A route with the fastest estimated time. 

  

 routeList = List of routes from ModA*; // Algorithm 2: ModA* 

 weight = The SAW weight; 

 

 // Calculate the estimated time for each route. 

 for (each route in routeList) { 

     for (each roadSegment in route) { 

         // Calculate estimated start time at road segment. 

         estStartTime = routeSegment.EstEndTime – routeSegment.EstTravelTime; 

         // Request travel times from database for segment. 

         roadSegment.LongTermTime = Get Long-term average by estStartTime; 

         roadSegment.ShortTermTime = Get Short-term average by estStartTime; 

         // Add the segment times to the route times. 

         route.LongTermTime = route.LongTermTime + roadSegment.LongTermTime; 

         route.ShortTermTime = route.ShortTermTime + roadSegment.ShortTermTime; 

      } 

     // Calculate SAW estimated route time.  Formula (7). 

     route.SAWEst = weight * route.LongTermTime  

+ (1 – weight) * route.ShortTermTime; 

 } 

  

Algorithm 3. Route Selector 
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3.4 Apply Direct Experience (Step 6) 

 Although the agent has made a decision as to the best route to use, we are now 

faced with a potential problem.  In their research, Levy et al. (2017) required a large 

number of routing runs before the agents reached equilibrium.  This is partly due to the 

agents having to guess the amount of congestion on a given road – an issue which we are 

addressing with the use of a traffic information system.  However, another issue is the 

amount of route switching the agents perform while trying to settle on the fastest one.  For 

our routing method to produce a good route for each driver, the agents must reach an 

Algorithm RouteSelector continued 

  

 // Select the route with the fastest estimate. 

 fastestSAW = 10000000;   // Stores the fastest estimate. 

 fastestIndex = 0;    // Stores the route list index of fastest. 

 for (each route in routeList) { 

     if (route.SAWEst < fastestSAW) { 

         fastestSAW = route.SAWEst; 

         fastestIndex = routeList.CurrentIndex; 

     } 

 } 

 // Return the estimated fastest route. 

 return routeList[fastestIndex]; 

Algorithm 3. Route Selector 



ROUTING USING A TRAFFIC INFORMATION SYS. AND DIRECT EXPERIENCE 

38 
 

equilibrium where there is no incentive for them to switch routes in consecutive routing 

tries. 

 To reach equilibrium the agents must avoid selecting different routes that have 

slightly faster estimated times than the route they most recently completed.  For instance, 

if an agent were to select a route that is estimated to be one second faster than its previous 

route, the agent may find that the new route is not as fast as expected, due to unanticipated 

delays, such as a slower moving vehicle.  In the next routing instance, the agent would 

switch back to its first route, only to find the previous route may have been faster.  This 

cycle may continue many times before the agent reaches settles on a route. 

 We manage this issue by including previous experience on the route as the final 

step of the routing process.  If the agent has never used the estimated fastest route before, 

it will always select it, allowing it to explore an option that may well prove be the best 

available under current congestion.  If the agent has used the route previously it then 

compares it to the route it has used most recently for the same origin and destination.  If 

the route is the same it will continue to use it.  If the route is different it must decide if 

selecting the new route will be faster than the last used route. 

 The agent will now retrieve the average completion time for the new route and the 

actual completion time for the most recently used route.  This time is the agent’s own 

experience on the route.  If the new route is faster, the agent will select it, as both the 

estimated route time and previous experience indicate this is likely to be a good choice.  If 

the new route’s previous times are slower, the agent will compare the new route’s 

estimated time with the previous route’s average multiplied by an exploration factor.  The 

exploration factor represents the agent’s willingness to switch to a different route rather 
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than continue exploiting the one they have most recently used.  If the new route’s estimated 

time is faster, it will select it, otherwise the agent will stay with the previous route.  The 

exploration factor static value used by the agent in all routing attempts. 

 The algorithm, Route Memory, implements step 6 and applies the agent’s direct 

experience to the routing problem. 
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Algorithm RouteMemory 

 Input: Estimated fastest route, last completed route, exploration factor. 

 Output: Selected route. 

 

 route = Estimated fastest route; 

 prevRoute = Last completed route; 

 explorationFactor = Exploration factor; 

 

 // Check if the agent has used the route before.  The agent always uses a new route. 

 if (route is not new) { 

       // Compare the segment list of the new route and previous route. 

     if (route.segmentList != prevRoute.segmentList) { 

         // The routes are different.  Get the new route’s average route time in the past. 

         route.avgPastTime = The average of route time in past routing tries.  

        // Compare the new route average time to the previous route time. 

         if (route.avgPastTime > prevRoute.actualTime) { 

             // The new route average time is higher than the previous route time. 

            // Compare new route estimated time to previous route time with exploration 

            // factor. 

            if (route.SAWEst > (prevRoute.actualTime * explorationFactor)) { 

                // The agent will use the previous route.  Set the selected route to previous. 

                route = prevRoute; 

            } 

         } 

     } 

 } 

 return route; 

  Algorithm 4. Route Memory 
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3.5 Driving the Route and Re-routing (Step 7) 

 While its vehicle is travelling its selected route, the agent evaluates its performance 

at each intersection.  As the vehicle approaches an intersection, the agent compares the 

amount of time the vehicle has taken to reach this point in its route and compares it to the 

estimated time, multiplied by a performance factor.  The performance factor is used to 

prevent the agent from evaluating the route time as simply slower than estimated, the 

difference between the two must be large enough that the agent has reason to believe that 

its route selection was a bad decision. 

 If the agent determines that its route is not performing as expected, they will re-

route, using the next intersection as its origin point and the same method as described in 

sections 2 and 3.  The next intersection is used to allow the agent time to develop a new 

route and position the vehicle to execute it appropriately.  The vehicle will then continue 

travel using the new route selected. 

 The agent will only re-route once while on route.  This limitation is set to prevent 

the agents from attempting to re-route at each intersection, thus reducing the amount of 

communication required.  This limitation will also aid the agents in reaching an 

equilibrium, avoiding large changes in road congestion that may occur if each agent is 

constantly changing its routes. 

 Re-routing is implemented using the ReRouting algorithm. 
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Algorithm ReRouting 

 Input: Agent’s route, Actual route time, Performance factor. 

 Output: Original route or new route. 

 

 route = The agent’s current route; 

 performanceFactor = Performance factor; 

 actualTime = Total time the agent’s vehicle has spent on route; 

 potentialRouteList = null;     // Empty list of potential routes if  

// re-routing. 

 

 // Check if the actual route time to the end of the road segment is greater than 

// the estimated route time to this point multiplied by the performance factor.  

 if (actualTime > (route.roadSegment.EstTime * performanceFactor)) { 

     // The agent will re-route from the next intersection of the current route. 

     if (route.nextRoadSegment != route.lastRoadSegment) { 

         potentialRouteList = Call ModA*;  // Algorithm 2: ModA* 

         route = Call RouteSelector(potentialRouteList); 

     } 

 } 

  

 return route; 

Algorithm 5. ReRouting 
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3.6 Applying the Learning Algorithm (Step 8) 

 An agent’s route selection is affected by the weighting value they use in the SAW 

formula.  This weight must be learned by the agent, as its ideal value may change over 

time, as traffic congestion along routes change.  The learning process will utilize the 

following steps: 

1) After the agent’s vehicle completes a route, the agent will request the actual 

travel times for its alternate routes from the database.  The times used will be the 

most recent road segment completion time averages, providing the agent with the 

travel time they would likely have achieved if they had selected a given alternate 

route. 

2) The agent selects the route with the fastest actual travel time - this list includes 

the route they just completed - and uses the SAW formula (6) to find the new 

weight, 𝑤𝑛𝑒𝑤 : 

𝐴𝑐𝑡𝑢𝑎𝑙𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒 = 𝑤𝑛𝑒𝑤 ∗
∑ 𝑅𝑜𝑢𝑡𝑒𝑇𝑖𝑚𝑒𝑗(𝑖)𝑘

𝑖=0

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑎𝑦𝑠
+ (1 − 𝑤𝑛𝑒𝑤) ∗

∑ 𝑅𝑜𝑢𝑡𝑒𝑇𝑖𝑚𝑒𝑗(𝑖)𝑘
𝑖−𝛿

𝛿
 

 Rewritten, we use the formula as: 

𝑤𝑛𝑒𝑤 =  
(𝐹𝑎𝑠𝑡𝑒𝑠𝑡𝐴𝑐𝑡𝑢𝑎𝑙𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒 − 𝑆ℎ𝑜𝑟𝑡𝑇𝑒𝑟𝑚𝐴𝑣𝑒𝑟𝑎𝑔𝑒)

(𝐿𝑜𝑛𝑔𝑇𝑒𝑟𝑚𝐴𝑣𝑒𝑟𝑎𝑔𝑒 − 𝑆ℎ𝑜𝑟𝑡𝑇𝑒𝑟𝑚𝐴𝑣𝑒𝑟𝑎𝑔𝑒)
 

3) The newly calculated weight represents the weighting value that would have 

allowed the agent to select the fastest route, given the previously available travel 

time data.  However, the agent may choose to adjust it, depending on its learning 

strategy. 

(8) 
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 The agent’s learning strategy will determine how aggressively it will change its 

routing weight.  An exploratory strategy (Sutton and Barto, 2014) would cause the agent 

to accept the newly calculated weight and use it in their next routing problem.  However, 

this strategy may not be advisable if patterns of congestion change rapidly from one routing 

period to the next. 

 The agent may also use a strategy of exploitation (Sutton and Barto, 2014), in 

which the weight changes very little from one route to the next, hoping to ride out any 

fluctuations in road congestion in favour of long-term route stability. 

 To resolve this issue, the agent will treat the selection of a new weight as a multi-

armed bandit (MAB) problem, where the arms to be chosen are the existing weight being 

used by the agent and the new weight calculated.  The selection method is similar to that 

used by the Upper Confidence Bound 1 (UCB1) MAB algorithm (Sutton and Barto, 2014), 

in that it is deterministic in how it selects arms, rather than stochastic. 

 A deterministic method was chosen due to the large amount of actual travel time 

data available to the agent.  As the agent has the near perfect ability to determine which 

weight would have given the best route in the previous routing episode, the randomness 

associated with stochastic methods would not be helpful. 

 We use a maximum weight change factor to determine whether the agent’s strategy 

is one of exploration (a high change) or exploitation (a low change).  The weight change 

factor remains fixed for the agent over successive routing tries.  If the difference between 

the new weight and the previous weight is greater than the weight change factor, then the 

agent will use the previous weight adjusted by the weight change factor. 
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 The weight change is adjusted as follows: 

𝑤𝑢𝑠𝑒𝑑 = {
max{𝑤𝑛𝑒𝑤 , (𝑤𝑝𝑟𝑒𝑣 − 𝑤𝑐𝑓)} , 𝑤𝑛𝑒𝑤 < 𝑤𝑝𝑟𝑒𝑣

min{𝑤𝑛𝑒𝑤 , (𝑤𝑝𝑟𝑒𝑣 + 𝑤𝑐𝑓)} , 𝑤𝑛𝑒𝑤 ≥ 𝑤𝑝𝑟𝑒𝑣

 

Where 𝑤𝑐𝑓 is the weight change factor, 𝑤𝑛𝑒𝑤 is the newly calculated weight, 𝑤𝑝𝑟𝑒𝑣 

is the weight used in the recently completed routing episode, and 𝑤𝑢𝑠𝑒𝑑  is the adjusted 

weight that will be used by the agent. 

Algorithm LearnSAWWeight performs the agent SAW weight update. 

Algorithm LearnSAWWeight 

 Input: Potential route list, Actual route time, Previous SAW weight, Weight change 

  Factor. 

 Output: Newly calculated SAW weight or previous SAW weight with adjustment. 

 

 potentialRouteList = List of potential routes from ModA* algorithm; 

 routeTime = The total time to complete agent’s current route; 

 prevWeight = The SAW weight the agent used to determine its recent route; 

 totalTimeList = List of actual total times for each potential route; 

 wcf = Weight change factor; 

 

 

(9) 

Algorithm 6. LearnSAWWeight 
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Algorithm LearnSAWWeight continued 

 

 // Build a list of actual total times for each potential route. 

 for (each potentialRoute in potentialRouteList) { 

     for (each roadSegment in potentialRoute) { 

         // Accumulate the average travel time for the road segment in the most recent 

         // simulation, adjusted for the time the agent’s vehicle would be travelling on it. 

         totalCurrentTime = totalCurrentTime + averageRoadSegmentTime; 

     } 

     totalTimeList.add(totalCurrentTime); 

 } 

 

 // Select the route with the fastest time. 

 fastestRouteTime = 10000000;  // Stores the fastest time. 

 fastestIndex = 0;    // Stores the route list index of fastest. 

 for (each time in totalTimeList) { 

     if (time < fastestRouteTime) { 

         fastestRouteTime = time; 

         fastestIndex = totalTimeList.CurrentIndex; 

     } 

 } 

 

 

  

Algorithm 6. LearnSAWWeight 
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Algorithm LearnSAWWeight continued 

 // Retrieve the average long and short-term travel times for the fastest route. 

 for (each roadSegment in potentialRouteList[fastestIndex]) { 

     // Calculate estimated start time at road segment. 

     estStartTime = routeSegment.EstEndTime – routeSegment.EstTravelTime; 

     // Request travel times from database for segment. 

     roadSegment.LongTermTime = Get Long-term average by estStartTime; 

     roadSegment.ShortTermTime = Get Short-term average by estStartTime; 

     // Add the segment times to the route times. 

     longTermTime = longTermTime + roadSegment.LongTermTime; 

     shortTermTime = shortTermTime + roadSegment.ShortTermTime; 

  } 

 

 // Calculate the weight that would have allowed the agent to select the route. 

 newWeight = (fastestRouteTime – shortTermTime)  

/ (longTermTime – shortTermTime);  // Formula 8. 

 

 // Adjust the newWeight by the cut-off factor if the difference is too large.  Formula 9. 

 if (|newWeight – prevWeight| > wcf) { 

   if (newWeight >= prevWeight) { 

     newWeight = prevWeight + wcf; 

   } 

   else { 

     newWeight = prevWeight – wcf; 

   } 

 } 

 return newWeight; 

Algorithm 6. LearnSAWWeight 
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Chapter 4: Experimental Design 

 

4.1 Hypothesis and Research Questions 

 We propose the following hypothesis: 

 A multi-agent system using a combination of centralized real-time traffic 

information system and direct agent experience will achieve a user equilibrium with a 

lower total route time than is possible using either method alone. 

 Additionally, we would like to answer the following questions: 

4) Will such a multi-agent system achieve user equilibrium with fewer routing 

episodes than either a centralized real-time traffic information system or direct 

agent experience? 

5) Will re-routing while on route result in lower total route times than when no re-

routing is used? 

6) Will the weighting factor reach an equilibrium point at which the agent will no 

longer make adjustments between routing episodes? 

 

4.2 Experimental Design 

We tested our hypothesis through the use of simulation.  The simulations were run 

using a variety of parameters to determine the conditions under which routing would be 

most effective at reducing delays due to congestion.  As a control, simulations were also 

run in which the agents were limited to using only the travel time information they were 

able to collect through direct experience, as a typical driver would.  The resulting route 



ROUTING USING A TRAFFIC INFORMATION SYS. AND DIRECT EXPERIENCE 

49 
 

times were then compared to determine if the agents saw an improvement by using either 

the TIS or TIS/direct experience method. 

4.2.1 Simulation Hardware and Software 

The agent software, including the route building and learning components, was 

developed in Java 1.8.0_121 using the NetBeans IDE, version 8.2.  Individual agent 

configurations and data collection were performed using MySQL 8.0.  The road 

simulations were run using SUMO 0.27.1 (DLR, 2017), an open source traffic simulator.  

All simulations were executed on a laptop using four Intel Core i7-7500U CPUs at 2.7Ghz 

with 8GB of RAM. 

 

Figure 2. SUMO Traffic Simulator 
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4.2.2 Simulation Configurations 

All simulations use the same map lattice – 25 standard city blocks of 100 metres to 

a side, arranged in a 5x5 grid.  A grid was selected to provide a consistent distance between 

all intersections, allowing the agent a choice of paths that may have varying amounts of 

congestion, but not a significant difference in length.  As the agent has several possible 

equal length routes available to it, the selection of a route becomes one of how much 

congestion is acceptable, rather than distance.  A diagram of the map grid is presented in 

Figure 3. 

 

 

Figure 3. 5x5 Lattice Map 

 

Each simulation, with the exception of the first set below, simulates 100 agents 

using the map simultaneously.  Although configuration parameters are changed between 

simulations, all simulations use the same set of origin and destination locations for the 

100 Metres 
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agents.  As well, each agent is limited to starting and ending their route at an intersection, 

rather than in the middle of a road segment. 

We limit the number of simulation runs to 60 per set of parameters in each scenario, 

with the exception of the first.  This limit is selected as each simulation run represents the 

same day in repeated weeks.  As such, for the routing method to be of value to a driver, it 

must produce improved routing results over a small number of attempts, leading us to use 

a limited number of runs for each scenario. 

The following six sets of simulation scenarios are used: 

1) Each agent simulated individually 

Each agent is provided with the five fastest routes from the modified A* 

algorithm and allowed to run through each as the sole agent in the simulation.  The 

fastest of the five is then selected as the fastest possible route time for the agent to 

travel from its origin to its destination without delays due to traffic congestion. 

 2) Run the simulation with direct experience but no re-routing 

The simulation is run using 100 agents that are limited to using only the 

travel time data they can collect directly.  The agents start by exploring the five 

fastest potential routes from the modified A* algorithm to determine the fastest one 

and then select a route as they gain further experience.  The SAW formula is used 

to estimate the fastest route, but each agent uses an epsilon-greedy algorithm 

(Sutton and Barto, 2014) to make their selection, with the epsilon value varied as 

one of the simulation parameters.   
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The simulations are run 60 times with the SAW weight fixed such that the 

same weight value is used for all simulations for a given set of parameters. 

 3) Run the simulation with a TIS but no re-routing 

The simulation is run using 100 agents that are allowed to learn a new SAW 

weight at varying rates using all travel time data available from the TIS.  The SAW 

formula is used to estimate the fastest routes from a list of potential routes and the 

agents select the fastest estimate.  After each simulation, the agent reviews the 

actual travel time for each potential route and determines what the SAW weight 

would need to be for the agent to have selected the fastest route.  

The simulations are run 60 times for each set of parameters. 

 4) Run the simulation with direct experience and re-routing 

The simulation is run using 100 agents that are limited to using only the 

travel time data they can collect directly.  This set of simulations is identical to the 

simulations in method 2, with the exception that a route performance factor of 1.5 

is set for each set of simulations.  The performance factor is a setting that allows 

the agent to calculate a new route from the next intersection they will occupy, to 

their destination.  In the case of these simulations, the agent will only attempt to re-

route if the total time they’ve experienced on a route is greater than 1.5 times the 

expected route time to that point.  While an agent can consider re-routing at each 

intersection, each agent is only allowed to select a re-route once in each simulation. 

The simulations are run 60 times for each set of parameters. 
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5) Run the simulation with a TIS and re-routing 

The simulation is run using 100 agents that are allowed to learn a new SAW 

weight at varying rates using all travel time data available from the TIS.  This set 

of simulations is identical to simulations in method 3, with the exception that a 

route performance factor of 1.5 is set for each set of simulations. 

The simulations are run 60 times for each set of parameters. 

6) Run the simulation with a combination of a TIS and direct experience 

The simulation is run using 100 agents that are allowed to learn a new SAW 

weight at varying rates using all travel time data available from the TIS.  Re-routing 

is not allowed for the agents. 

This set of simulations differs from method 3 in that agents are also able to 

learn from direct experience.  After an agent is provided a list of potential routes 

with estimated route times from applying the SAW formula, it reviews its previous 

route experience.  If the route with the fastest estimated route time has not been 

used before, the agent will always select it.  If the best estimated route is the same 

as the route used in the previous simulation, the agent selects the same route again.  

If the best estimated route is different from the route used in the previous 

simulation, the agent compares the estimated route time to the actual route time 

from the previous simulation.  The previous route’s travel time is modified by an 

exploration factor of 0.5.  If the estimated route is faster than the adjusted previous 

route time, the agent selects the new route. 

The simulations are run 60 times for each set of parameters. 



ROUTING USING A TRAFFIC INFORMATION SYS. AND DIRECT EXPERIENCE 

54 
 

4.3 Experimental Analysis 

 To measure the effectiveness of routing with a TIS we measure the price of anarchy 

(Shoham and Leyton-Brown, 2009).  The price of anarchy is the social cost due to 

congestion.  In the case of vehicle routing it can be measured as the increase in route times 

that wouldn’t otherwise be experienced if congestion was non-existent. 

The price of anarchy is calculated as the ratio of the social cost of congestion to the 

social cost at a minimizing action distribution 𝑠∗ (Shoham and Leyton-Brown, 2009).  

From chapter 2, the social cost is measured as: 

𝐶(𝑠) = ∑ ∑ 𝑠(𝑎𝑖)𝑐𝑎𝑖
(𝑠)

𝑎𝑖∈𝐴𝑖𝑖∈𝑁

 

 Where: 

 𝑵 = {𝟏, … , 𝒏} is a set of players of different types; 

𝑨 = 𝑨𝟏 × … × 𝑨𝒏, where 𝑨𝒊 ⊆ 𝟐𝑹{∅} is the set of actions.  The action 𝒂𝒊 ∈ 𝑨𝒊 is 

selected by all players of type i.  The action 𝑎𝑖 represents a segment of the player’s path 

𝑨𝒊; 

𝒄 = (𝒄𝟏, … , 𝒄𝒌), where 𝒄𝒓: ℝ+ ⟼ ℝ is a cost function for road segment 𝒓 ∈ 𝑹, and 

𝒄𝒓 is nonnegative, continuous and nondecreasing; 

𝒔(𝒂𝒊) is the element of s that corresponds to the set of players of type i who select 

action 𝒂𝒊 ∈ 𝑨𝒊. 

The price of anarchy is thus: 

𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝐴𝑛𝑎𝑟𝑐ℎ𝑦 =
𝐶(𝑠)

𝐶(𝑠∗)
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In our research, the value of 𝐶(𝑠∗) is calculated by summing the fastest route time 

for each agent when no other agents are being simulated.  This data is collected using 

simulation scenario 1.  As such, the minimized action distribution represents the fastest 

route time possible, given the list of origins and destinations being used. 

The value of 𝐶(𝑠) is calculated as the sum of the route times when all agents are 

simulated simultaneously.  The price of anarchy ratio will always give a value greater than 

or equal to 1, where 1 indicates the agents have found a set of routes that provides the 

fastest possible route times.  The method with the lowest price of anarchy for a given set 

of parameters at user equilibrium will be considered to provide the fastest routing solutions 

for all agents. 
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Chapter 5: Results 

   

5.1 Results Measured 

For all simulation methods, with the exception of the first, the following data are 

presented for each set of parameters: 

1) The total route time for all agents on the 60th simulation.  As this is the final 

simulation run for a given set of parameters, it represents the point at which the 

agents will no longer be able to modify their routes. 

2) The price of anarchy at the 60th simulation. 

3) The minimum price of anarchy across all simulations. 

4) The mean price of anarchy.  This value is presented to show the difference 

between the final simulation results and the average for the method. 

5) The median price of anarchy.  This value is presented to show the overall 

effectiveness of the method across all simulations. 

6) The number of times user equilibrium was achieved.  Equilibrium may last for 

a single pair of simulations, or may be repeated across multiple simulations. 

7) Where re-routing is used, the minimum number of re-routes across all 

simulations. 

 

5.2 Each agent simulated individually 

 The total travel time for all agents using their best route is: 3431.4 seconds.  This 

number is used as the 𝐶(𝑠∗) value when calculating the price of anarchy. 
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5.3 Run the simulation with direct experience but no re-routing 

 Table 1 presents the simulation results for direct experience with no re-routing.  

Each set of simulations is run 60 times and has a fixed SAW weight, such that the agent 

does not change the weight between simulations.  The mean and median price of anarchy 

is calculated using only the 6th through 60th simulations as the agents are still exploring 

potential routes in the 1st through 5th simulations, which would skew the values. 

 The epsilon values determine the percentage chance that the epsilon-greedy 

algorithm will select a route other than the fastest provided by the ModA* algorithm and 

their previous experience.  Thus, an epsilon of 10 represents a 10 percent chance that the 

agent will select a random alternate route in an attempt to find a faster route along traffic 

congested roads. 

Table 1. 

Direct Experience w No Re-routing, Results 

Simulation 
Parameters 

Total 
Time on 

60th Sim 

Price of 
Anarchy 

60th Sim 

Min. 
Price of 

Anarchy 

Mean 
Price of 

Anarchy 

Median 
Price of 

Anarchy 

No. Times at 
Equilibrium 

SAW weight=1 

Epsilon=0 

4190.8 

 

1.221 1.161 1.203 1.207 

 

2 

SAW weight=1 

Epsilon=5 

4088.9 

 

1.192 

 

1.152 1.214 

 

1.211 

 

0 

SAW weight=1 
Epsilon=10 

4306.3 
 

1.255 1.152 1.22 
 

1.214 
 

0 

SAW weight=1 

Epsilon=15 

4161.3 

 

1.213 

 

1.17 1.268 1.268 0 

SAW weight=1 

Epsilon=20 

4327.7 

 

1.261 

 

1.226 1.306 1.299 

 

0 

SAW weight=0.75 

Epsilon=0 

4046.6 

 

1.179 1.169 1.186 1.182 

 

8 

SAW weight=0.75 

Epsilon=5 

3983.3 

 

1.161 

 

1.161 1.209 

 

1.206 0 

SAW weight=0.75 
Epsilon=10 

4337.3 
 

1.264 
 

1.168 1.242 
 

1.242 
 

0 

SAW weight=0.75 

Epsilon=15 

4488.8 

 

1.308 

 

1.205 1.287 1.281 0 
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5.3.1 Minimum and Median Price of Anarchy 

Figure 4 displays the minimum and median price of anarchy for each set of 

parameters.  The minimum price of anarchy was lowest when epsilon was set to 5 for all 

SAW weights, with the exception of w=0.5, where an epsilon of 15 provided the lowest 

value.  The lowest median occurred where epsilon was 0, regardless of the weight used. 

 That the median price of anarchy was consistently lowest when epsilon is 0, while 

also being highest at an epsilon of 20, shows us that agents are able to exploit their known 

routes more effectively when other agents are less likely to explore novel routes. 

SAW weight=0.75 
Epsilon=20 

4478.3 
 

1.305 
 

1.196 1.301 
 

1.297 
 

0 

SAW weight=0.5 

Epsilon=0 

4083.5 

 

1.190 

 

1.175 1.199 

 

1.194 

 

6 

SAW weight=0.5 
Epsilon=5 

4219 
 

1.23 
 

1.165 1.216 
 

1.214 
 

0 

SAW weight=0.5 

Epsilon=10 

3980.9 

 

1.160 1.16 1.236 

 

1.227 0 

SAW weight=0.5 

Epsilon=15 

4613.8 

 

1.345 

 

1.158 1.267 

 

1.274 

 

0 

SAW weight=0.5 
Epsilon=20 

4367 1.273 
 

1.196 1.287 
 

1.289 
 

0 

SAW weight=0.25 

Epsilon=0 

4014.7 

 

1.17 

 

1.149 1.182 

 

1.179 8 

SAW weight=0.25 
Epsilon=5 

4014.5 
 

1.17 
 

1.15 1.214 
 

1.211 0 

SAW weight=0.25 

Epsilon=10 

4106.7 

 

1.197 

 

1.179 1.256 

 

1.250 0 

SAW weight=0.25 

Epsilon=15 

4140.8 

 

1.207 

 

1.183 1.253 

 

1.250 

 

0 

SAW weight=0.25 
Epsilon=20 

4272.2 
 

1.245 
 

1.195 1.294 1.294 
 

0 

SAW weight=0 

Epsilon=0 

4019.4 1.171 1.169 1.196 

 

1.187 5 

SAW weight=0 
Epsilon=5 

4250.2 
 

1.239 1.163 1.206 
 

1.195 
 

0 

SAW weight=0 

Epsilon=10 

4563.8 

 

1.330 1.169 1.242 1.242 

 

0 

SAW weight=0 

Epsilon=15 

4335.9 

 

1.264 

 

1.185 1.264 

 

1.253 0 

SAW weight=0 

Epsilon=20 

4342.8 1.266 

 

1.195 1.288 

 

1.285 

 

0 
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The difference between the minimum and median price of anarchy for each set of 

routing parameters was found to vary between 0.013 and 0.116, with the largest differences 

occurring where higher epsilon values were used. 

 

Figure 4. Minimum/Median Price of Anarchy w Direct Experience, No Re-routing 

 

5.3.2 User Equilibrium Points 

Figure 5 displays the number of occurrences of user equilibrium for each set of 

parameters.  Equilibrium occurred only where the epsilon value was set to 0 as the agents 

would randomly select alternative routes when using higher epsilon values, regardless of 

their perceived likelihood of producing a better route time, preventing equilibrium from 

being achieved. 
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Figure 5. Equilibrium Points w Direct Experience, No Re-routing 

 

5.4 Run the simulation with a TIS but no re-routing 

 Table 2 presents the simulation results for a TIS with no re-routing.  Each set of 

simulations is run 60 times.  The first five sets of simulations use a fixed SAW weight, the 

remaining sets allow the agents to change the weight by an amount ranging from 0.1 to 1.0 

between each simulation.   

The mean and median price of anarchy is calculated using only the 6th through 60th 

simulations as the agents have not yet produced sufficient travel time data to avoid using 

estimated times in the 1st through 5th simulations.  Where travel time data is not available, 

the agent calculates an estimate using the allowed road speed and road segment length. 
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Table 2.  

TIS w No Re-routing, Results 

 

 

5.4.1 Minimum and Median Price of Anarchy 

Figure 6 displays the minimum and median price of anarchy for each set of 

parameters.  The minimum price of anarchy was lowest when the agents could change their 

SAW weights by up to 0.3 between routing episodes.  The median price of anarchy was 

Simulation 

Parameters 

Total 

Time on 
60th Sim 

Price of 

Anarchy 
60th Sim 

Min. 

Price of 
Anarchy 

Mean 

Price of 
Anarchy 

Median 

Price of 
Anarchy 

No. Times at 

Equilibrium 

SAW weight=1 

Weight fixed 

3920.8 

 

1.143 

 

1.089 1.123 

 

1.123 

 

0 

SAW weight=0.75 
Weight fixed 

3897.7 1.136 
 

1.097 1.122 1.118 
 

0 

SAW weight=0.5 

Weight fixed 

3932.2 

 

1.146 

 

1.098 1.120 

 

1.117 

 

0 

SAW weight=0.25 

Weight fixed 

3920.5 

 

1.143 

 

1.092 1.127 

 

1.126 

 

0 

SAW weight=0 

Weight fixed 

3848 

 

1.121 1.11 1.144 

 

1.141 

 

0 

SAW weight=0.5 

Weight step=0.1 

3824.9 

 

1.115 

 

1.089 1.118 1.114 

 

0 

SAW weight=0.5 
Weight step=0.2 

3788 
 

1.104 
 

1.094 1.121 
 

1.121 
 

0 

SAW weight=0.5 

Weight step=0.3 

3784.4 

 

1.103 

 

1.079 1.118 

 

1.117 

 

0 

SAW weight=0.5 

Weight step=0.4 

3893.4 

 

1.135 

 

1.096 1.122 

 

1.122 

 

0 

SAW weight=0.5 

Weight step=0.5 

3911.3 

 

1.14 

 

1.093 1.125 1.125 

 

0 

SAW weight=0.5 

Weight step=0.6 

3847.2 

 

1.121 

 

1.099 1.128 

 

1.128 0 

SAW weight=0.5 
Weight step=0.7 

3777.8 
 

1.101 
 

1.093 1.123 
 

1.12 
 

0 

SAW weight=0.5 

Weight step=0.8 

3856.5 

 

1.124 

 

1.098 1.123 1.122 0 

SAW weight=0.5 
Weight step=0.9 

3939.5 
 

1.148 1.097 1.122 
 

1.119 
 

0 

SAW weight=0.5 

Weight step=1.0 

3910.5 

 

1.14 

 

1.089 1.120 

 

1.120 

 

0 
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lowest where the agents were allowed to change their SAW weights by up to 0.1 between 

routing episodes. 

The difference between the lowest median price of anarchy and the highest was 

0.027.  However, when fixed SAW weights are not included the difference drops to 0.014, 

indicating that there is greater similarity in the median price of anarchy when the agents 

are able to change their weight values, regardless of the amount of change allowed. 

The difference between the minimum and median price of anarchy for each set of 

routing parameters was found to vary between 0.019 and 0.038.  This is a smaller range of 

differences than was found using direct experience only.  As well, the highest median price 

of anarchy, 1.141, was found be lower than the lowest median value when using direct 

experience, 1.179. 

 

Figure 6. Minimum/Median Price of Anarchy w TIS, No Re-routing 
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5.5 Run the simulation with direct experience and re-routing 

 Table 3 presents the simulation results for direct experience with re-routing.  Each 

set of simulations is run 60 times and has a fixed SAW weight, such that the agent does 

not change the weight between simulations.  The mean and median price of anarchy is 

calculated using only the 6th through 60th simulations as the agents are still exploring 

potential routes in the 1st through 5th simulations, which would skew the values. 

 Each agent is allowed to re-route a maximum of 1 time per simulation with a 

performance factor of 1.5.  The re-route decision is made at the end of each road segment 

by multiplying the estimated route time to the end of the segment by 1.5 and comparing 

the actual route time to that point.  If the actual time is greater than this value and the agent 

has not re-routed, the agent will re-route. 

Table 3. 

Direct Experience w Re-routing, Results 

Simulation 

Parameters 

Total 

Time on 

60th Sim 

Price of 

Anarchy 

60th Sim 

Min. 

Price of 

Anarchy 

Mean 

Price of 

Anarchy 

Median 

Price of 

Anarchy 

No. Times at 

Equilibrium 

Min. No. 

Re-routes 

SAW weight=1 

Epsilon=0 

4083.5 1.190 1.18 1.201 

 

1.195 

 

1 17 

SAW weight=1 

Epsilon=5 

4204.5 

 

1.225 

 

1.164 1.232 

 

1.230 

 

0 18 

SAW weight=1 

Epsilon=10 

4378.4 

 

1.276 

 

1.167 1.239 

 

1.233 

 

0 16 

SAW weight=1 
Epsilon=15 

4370.9 
 

1.274 
 

1.196 1.273 1.272 
 

0 18 

SAW weight=1 

Epsilon=20 

4226.8 

 

1.232 

 

1.176 1.289 1.29 0 17 

SAW 
weight=0.75 

Epsilon=0 

4093.8 
 

1.193 
 

1.188 1.2 
 

1.193 
 

0 15 

SAW 
weight=0.75 

Epsilon=5 

4096.7 
 

1.194 
 

1.153 1.222 1.217 
 

0 18 
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SAW 
weight=0.75 

Epsilon=10 

4080.8 
 

1.189 
 

1.162 1.241 
 

1.243 
 

0 16 

SAW 

weight=0.75 
Epsilon=15 

4621.7 

 

1.347 

 

1.18 1.282 

 

1.278 

 

0 18 

SAW 

weight=0.75 
Epsilon=20 

5041.5 

 

1.469 

 

1.202 1.299 

 

1.288 

 

0 18 

SAW 

weight=0.5 
Epsilon=0 

3934.4 

 

1.147 

 

1.14 1.162 

 

1.149 

 

6 13 

SAW 

weight=0.5 

Epsilon=5 

4298.4 

 

1.253 

 

1.161 1.209 

 

1.194 

 

0 12 

SAW 

weight=0.5 

Epsilon=10 

4322.6 

 

1.26 1.166 1.247 

 

1.243 

 

0 14 

SAW 

weight=0.5 

Epsilon=15 

4261.1 

 

1.242 

 

1.18 1.254 

 

1.245 

 

0 16 

SAW 

weight=0.5 

Epsilon=20 

4229.1 1.233 

 

1.199 1.294 

 

1.284 

 

0 16 

SAW 
weight=0.25 

Epsilon=0 

4001.1 1.166 1.155 1.192 1.187 
 

1 12 

SAW 
weight=0.25 

Epsilon=5 

4092.6 
 

1.193 
 

1.156 1.204 1.204 
 

0 12 

SAW 

weight=0.25 
Epsilon=10 

4088.2 

 

1.191 

 

1.165 1.24 

 

1.235 0 13 

SAW 

weight=0.25 
Epsilon=15 

4305.2 

 

1.255 

 

1.198 1.283 1.275 

 

0 15 

SAW 

weight=0.25 
Epsilon=20 

4313.9 1.257 

 

1.194 1.287 

 

1.295 

 

0 16 

SAW weight=0 

Epsilon=0 

4084.8 1.190 

 

1.147 1.177 

 

1.165 

 

4 9 

SAW weight=0 
Epsilon=5 

4026.6 
 

1.174 
 

1.137 1.201 
 

1.191 0 12 

SAW weight=0 

Epsilon=10 

4149.1 

 

1.209 

 

1.156 1.238 1.231 

 

0 12 

SAW weight=0 

Epsilon=15 

4371.7 

 

1.274 1.199 1.289 

 

1.285 

 

0 15 

SAW weight=0 
Epsilon=20 

4420.7 
 

1.288 
 

1.208 1.298 1.292 
 

0 17 
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5.5.1 Minimum and Median Price of Anarchy 

Figure 7 displays the minimum and median price of anarchy for each set of 

parameters.  The minimum price of anarchy was lowest when epsilon was set to 5 for all 

SAW weights, with the exception of w=0.5, where an epsilon of 0 provided the lowest 

value.  The lowest median occurred where epsilon was 0, regardless of the weight used. 

As with direct experience with no re-routing, the highest median price of anarchy 

was found when an epsilon of 20 was used.  The highest median value with re-routing, 

1.29, is comparable to the highest median with no re-routing, 1.299.  However, the lowest 

median with re-routing, 1.149, is lower than the lowest median with no re-routing, 1.179, 

suggesting that there is a small benefit to using re-routing. 

The difference between the minimum and median price of anarchy for each set of 

routing parameters was found to vary between 0.009 and 0.113.  This is comparable to the 

difference found when no re-routing was used, 0.013 and 0.116, indicating that re-routing 

had little effect in reducing the gap between the minimum and median. 
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Figure 7. Minimum/Median Price of Anarchy w Direct Experience, Re-routing 

 

5.5.2 User Equilibrium Points and Minimum Re-routes 

Figure 8 displays the number of occurrences of user equilibrium and minimum re-

routes for each set of parameters.  Equilibrium occurred only where the epsilon value was 

set to 0, with the highest number of equilibrium points being 6 for w=0.5. 

A comparison to direct experience with no re-routing indicates that the use of re-

routing reduces the frequency of equilibrium. 

The minimum number of re-routes was found to be lowest where the SAW weight 

was 0 and epsilon was 0, while the trend across all sets of parameters showed that the 

minimum number of re-routes was highest with larger epsilon values.  This is consistent 

with the equilibrium point data in that lower epsilon values tended to result in fewer poor 

route selections that would require correction through re-routing. 
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Figure 8. Equilibrium Points and Re-routes w Direct Experience 

 

5.6 Run the simulation with a TIS and re-routing 

 Table 4 presents the simulation results for a TIS with re-routing.  Each set of 

simulations is run 60 times.  The first five sets of simulations use a fixed SAW weight, the 

remaining sets allow the agents to change the weight by an amount ranging from 0.1 to 1.0 

between each simulation.  Each agent is allowed to re-route a maximum of 1 time per 

simulation with a performance factor of 1.5.   

The mean and median price of anarchy is calculated using only the 6th through 60th 

simulations as the agents have not yet produced sufficient travel time data to avoid using 

estimated times in the 1st through 5th simulations.  Where travel time data is not available, 

the agent calculates an estimate using the allowed road speed and road segment length. 
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Table 4. 

TIS w Re-routing, Results 

 

5.6.1 Minimum and Median Price of Anarchy 

Figure 9 displays the minimum and median price of anarchy for each set of 

parameters.  The minimum price of anarchy was lowest when the agents could change their 

SAW weights by up to 0.3 between routing episodes.  The median price of anarchy was 

Simulation 

Parameters 

Total 

Time on 
60th Sim 

Price of 

Anarchy 
60th Sim 

Min. 

Price of 
Anarchy 

Mean 

Price of 
Anarchy 

Median 

Price of 
Anarchy 

No. Times at 

Equilibrium 

Min. No. 

Re-routes 

SAW weight=1 

Weight fixed 

3899 1.136 1.106 1.131 1.127 

 

0 12 

SAW 
weight=0.75 

Weight fixed 

3814.9 
 

1.112 
 

1.104 1.127 1.124 
 

0 9 

SAW weight=0.5 
Weight fixed 

3924.7 1.144 
 

1.1 1.128 1.127 
 

0 7 

SAW 

weight=0.25 

Weight fixed 

3862.2 

 

1.126 

 

1.106 1.133 

 

1.131 

 

0 6 

SAW weight=0 

Weight fixed 

4136.9 

 

1.206 

 

1.107 1.144 

 

1.147 

 

0 7 

SAW weight=0.5 
Weight step=0.1 

3867.3 
 

1.127 1.087 1.118 1.116 
 

0 7 

SAW weight=0.5 

Weight step=0.2 

3886.3 

 

1.133 

 

1.094 1.13 

 

1.129 0 18 

SAW weight=0.5 
Weight step=0.3 

3880.5 
 

1.131 
 

1.101 1.124 1.122 0 7 

SAW weight=0.5 

Weight step=0.4 

3955 

 

1.153 

 

1.093 1.129 

 

1.127 

 

0 7 

SAW weight=0.5 

Weight step=0.5 

3889.8 1.134 1.094 1.124 

 

1.123 

 

0 8 

SAW weight=0.5 
Weight step=0.6 

3947.9 1.151 1.091 1.124 
 

1.122 
 

0 8 

SAW weight=0.5 

Weight step=0.7 

3803 

 

1.108 1.094 1.124 1.121 

 

0 7 

SAW weight=0.5 
Weight step=0.8 

3819.9 
 

1.113 1.094 1.121 
 

1.118 0 8 

SAW weight=0.5 

Weight step=0.9 

3801.9 

 

1.108 

 

1.088 1.122 

 

1.123 0 8 

SAW weight=0.5 

Weight step=1.0 

3853.2 

 

1.123 1.088 1.123 

 

1.122 

 

0 7 
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lowest where the agents were allowed to change their SAW weights by up to 0.1 between 

routing episodes. 

The difference between the lowest median price of anarchy and the highest was 

0.031.  However, when fixed SAW weights are not included the difference drops to 0.012, 

indicating that, as with using a TIS and no re-routing, there is little difference between 

median price of anarchy when the agents are able to change their weight values. 

The highest median price of anarchy with re-routing, 1.147, is comparable to that 

found with no re-routing, 1.141.  When fixed weight routes are not considered, the highest 

median values are almost identical, at 1.129 with re-routing and 1.128 without.  These 

results suggest that there is no advantage to using re-routing when the agents are able to 

make use of a TIS for travel time data. 

  The difference between the minimum and median price of anarchy for each set of 

routing parameters was found to vary between 0.019 and 0.04.  The highest median price 

of anarchy using a TIS and re-routing, 1.147, was found to be lower than the lowest median 

value when using direct experience with re-routing, 1.149. 
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Figure 9. Minimum/Median Price of Anarchy w TIS, Re-routing 

5.6.2 User Equilibrium Points and Minimum Re-routes 

Figure 10 displays the number of occurrences of user equilibrium and re-routing 

for each set of parameters.  No instances of equilibrium occurred. 

The minimum number of re-routes was found to be lowest where the SAW weight 

was fixed at 0.25.  The highest number of re-routes occurred where the agents could adjust 

their SAW weight by 0.2 between routing episodes.  However, for other simulations where 

the agents were allowed to adjust their weights, the number of minimum re-routes varied 

from 7 to 8. 

A comparison of the average minimum number of re-routes shows that direct 

experience routing used 15, while TIS routing used 8.4, indicating that using a TIS reduced 

the need to re-route while on route. 
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Figure 10. Equilibrium Points and Re-routes w TIS 

 

5.7 Run the simulation with a combination of a TIS and direct experience 

 Table 5 presents the simulation results for a TIS and direct experience with no re-

routing.  Each set of simulations is run 60 times.  The first five sets of simulations use a 

fixed SAW weight, the remaining sets start with a weight of 0.5 but allow the agents to 

change the weight by an amount ranging from 0.1 to 1.0 between each simulation.  Each 

agent also uses its direct routing experience to determine whether to select a different route 

than was used in the previous simulation.   

The mean and median price of anarchy is calculated using only the 6th through 60th 

simulations as the agents have not yet produced sufficient travel time data to avoid using 

estimated times in the 1st through 5th simulations.  Where travel time data is not available, 

the agent calculates an estimate using the allowed road speed and road segment length. 
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Table 5. 

TIS and Direct Experience, Results 

 

5.7.1 Minimum and Median Price of Anarchy 

Figure 11 presents the median and minimum price of anarchy for each set of 

parameters.  The median price of anarchy was found to be lowest where the agents were 

allowed to change their SAW weights by up to 0.9 per routing episode.  The lowest 

minimum price of anarchy was found when the agents could change their SAW weights 

by up to 1.0 per routing episode. 

Simulation 
Parameters 

Total 
Time on 

60th Sim 

Price of 
Anarchy 

60th Sim 

Min. Price 
of Anarchy 

Mean 
Price of 

Anarchy 

Median 
Price of 

Anarchy 

No. Times at 
Equilibrium 

SAW weight=1 

Weight fixed 

3783 

 

1.103 

 

1.102 1.117 

 

1.120 

 

36 

SAW weight=0.75 

Weight fixed 

3777.399 

 

1.101 

 

1.088 1.103 

 

1.101 

 

33 

SAW weight=0.5 
Weight fixed 

3834.099 
 

1.117 
 

1.095 1.107 1.103 
 

37 

SAW weight=0.25 

Weight fixed 

3757.699 

 

1.095 1.076 1.096 

 

1.096 41 

SAW weight=0 
Weight fixed 

3848 1.121 1.089 1.117 1.112 8 

SAW weight=0.5 

Weight step=0.1 

3795.1 

 

1.106 1.09 1.107 1.106 

 

10 

SAW weight=0.5 

Weight step=0.2 

3836.3 

 

1.118 1.081 1.114 1.118 

 

22 

SAW weight=0.5 
Weight step=0.3 

3769.6 
 

1.099 1.096 1.107 
 

1.099 
 

26 

SAW weight=0.5 

Weight step=0.4 

3770.2 

 

1.099 1.083 1.102 1.099 

 

17 

SAW weight=0.5 
Weight step=0.5 

3738.6 1.09 1.09 1.104 
 

1.102 
 

19 

SAW weight=0.5 

Weight step=0.6 

3738.6 1.09 1.09 1.104 1.102 

 

19 

SAW weight=0.5 

Weight step=0.7 

3738.6 1.09 1.09 1.104 

 

1.102 

 

19 

SAW weight=0.5 

Weight step=0.8 

3773.3 1.1 

 

1.1 1.105 1.098 

 

21 

SAW weight=0.5 

Weight step=0.9 

3722.4 1.085 

 

1.073 1.092 1.085 

 

34 

SAW weight=0.5 
Weight step=1.0 

3730.1 
 

1.087 1.071 1.094 1.087 
 

30 
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The difference between the minimum and median price of anarchy for each set of 

routing parameters was found to vary between 0.003 and 0.037.  The highest median using 

a TIS with individual experience, 1.120, was found to be less than the lowest median when 

using individual experience with re-routing, 1.149, but slightly higher than the lowest 

median using a TIS with re-routing, at 1.116. 

The difference between the minimum and median price of anarchy for each set of 

routing parameters was found to vary between 0.003 and 0.037.  This is a smaller variation 

than that found for direct experience with re-routing, 0.009 to 0.113, but larger than when 

using a TIS with re-routing, 0.019 to 0.04. 

 

Figure 11. Minimum/Median Price of Anarchy w TIS and Direct Experience 
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5.7.2 User Equilibrium Points 

Figure 12 presents the number of occurrences of user for each set of parameters.  

Equilibrium occurred with all sets of parameters, but was highest where the SAW weight 

was fixed and weight was not equal to 0.  This method was the only one found to have 

reached equilibrium regardless of the parameters used. 

 

Figure 12. Equilibrium Points w TIS and Direct Experience 
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Chapter 6: Discussion 

 

6.1 Parameters Discussed 

 In chapter 1 we outlined three objectives for our research, while in chapter 4 we 

presented our hypothesis and three questions to study.  In this chapter we analyze our 

research in light of these and discuss its importance. 

 We will reference Table 6, which presents the price of anarchy and total travel time 

data for the set of simulation parameters that produced the lowest median price of anarchy 

for each of our routing methods.  Figure 13 and Figure 14 display the simulation results 

for each of the parameter sets in Table 6. 

Table 6. 

Parameters by Method w Lowest Median Price of Anarchy, Results 

Simulation 
Parameters 

Total Time on 
60th Sim 

Price of Anarchy 
60th Sim 

Mean Price of 
Anarchy 

Median Price of 
Anarchy 

Direct exp.,  

no re-routing 

SAW weight=0.25 
Epsilon=0 

4014.7 1.17 

 

1.182 

 

1.179 

 

TIS, 

no re-routing 
SAW weight=0.5 

Weight step=0.1 

3824.9 

 

1.115 1.118 

 

1.114 

Direct exp.,  

with re-routing 
SAW weight=0.5 

Epsilon=0 

3934.4 

 

1.147 

 

1.162 

 

1.149 

 

TIS,  
with re-routing 

SAW weight=0.5 

Weight step=0.8 

3819.9 
 

1.113 
 

1.121 
 

1.118 
 

TIS with Direct 

exp. 

SAW weight=0.5 

Weight step=0.9 

3722.4 

 

1.085 

 

1.092 

 

1.085 
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Figure 13. Total Route Time by Method using Best Parameters 

 

Figure 14. Total Route Time by Method using Best Parameters - Enlarged 
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6.2 Research Objectives 

 We discuss our results as they pertain to our research objectives. 

6.2.1 Objective 1 

 Our first research objective is the following: Determine the fastest route for the 

driver with the least exploration. 

We note that all routing methods produced an initial simulation with a total route 

time of 4524.8 seconds.  This is due to each method using the same modified A* algorithm, 

ModA*, to build each agent’s list of potential routes.  As the algorithm relies upon map 

data alone, it always provides the same fastest route, and as the agents have no initial travel 

time data beyond that provided by the map, they always select the same route. 

 Once the agents have completed their first simulation the methods diverge.  

Reviewing Figure 13, shows that the both the TIS and TIS with direct experience methods 

were able to quickly reduce their total route times from the initial simulation, while the 

methods that rely on direct experience alone see a large increase in route times before 

dropping in the 6th simulation. 

 This increase in route times is due to the agents’ need to explore alternative routes 

to develop an initial set of travel time data to apply to the potential route list.  Once the 

agents have completed their initial exploration, they use the travel time data collected to 

develop routes that improve upon the total route time found in the initial simulation. 

 The cost of exploration – that the agents must try potentially worse routes to 

determine which is better with congestion – shows us a drawback to relying on direct 

experience alone.  If the agent must rely on their own experiences to determine which route 
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is most likely to be the fastest on congested roads, then they will always see poorer routing 

results while acquiring this experience.  As the TIS methods use the collective travel time 

data of all agents, each agent is able to avoid this period of exploration and see routing 

improvements immediately. 

6.2.2 Objective 2 

 The second research objective is: The routing method must adapt to changes in 

congestion over successive routing actions. 

 Each of the routing methods showed adaptation to changes in congestion.  When 

using direct experience alone, with fixed SAW weights, the agents were able to produce a 

lower median price of anarchy when using a lower weight value.  As well, Figure 4 and 

Figure 7 show that, with or without re-routing, a weight value of 1.0 resulted in the highest 

median price of anarchy. 

 The poorer performance when using a high SAW weight is due to the agent’s 

reliance upon long-term travel time data, which would be used exclusively when the 

weight is set to 1.0.  As the long-term travel times used by the agents are averages from all 

previous simulations, the agent is less able to adapt to recent changes in congestion which 

comprise a relatively small component of this value.  When combined with the agent’s 

limited ability to gather travel time data, this results in slower route times. 

 Connecting the agents to a TIS produced greater adaptability to changes in 

congestion.  As each agent had access to the travel time data produced by all other agents, 

they were able to select the route that was predicted to give the fastest route time, regardless 

of whether they had used it previously. 
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 Under these conditions, the agents were found to produce the lowest median price 

of anarchy where the SAW weight was not fixed.  During simulation, many agents were 

observed to change their weight values between routing episodes, often by as much as they 

were allowed to by the step limit.  However, some agents rarely changed their SAW 

weights.  This shows us that it is better for the agents to be able to modify their weight 

value to adapt to changes in the congestion problem. 

 Finally, when the agents were able to combine both a TIS and direct experience, 

they were best able to adapt to changes in congestion.  This is reflected in this method 

having the lowest median price of anarchy.  The use of direct experience prevents the 

agents from chasing the fastest route without regard for past results, allowing the 

congestion on each road segment to stabilize and become more predictable. 

6.2.3 Objective 3 

 The final objective for this research is: The routing method must produce routes 

that are fair for each driver but also minimizes the total travel time for all drivers. 

 The multi-agent routing methods produced routes that were fair to the drivers, as 

each agent had the goal of selecting the fastest route to reach their destination.  However, 

while each method proved successful at reducing the median price of anarchy and the price 

of anarchy on the 60th simulation, the combined TIS with direct experience method showed 

the lowest values. 

 Figure 14 shows that the TIS with direct experience method provided a total route 

time on the 60th simulation that was 100 seconds lower than when using a TIS alone, and 

212 seconds lower than direct experience with re-routing.  As well, user equilibrium was 
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maintained from the 34th simulation, demonstrating that all agents had found the fastest 

route possible, given the existing congestion. 

 

6.3 Research Questions 

 We discuss our results in answer to our three research questions. 

6.3.1 Research Question 1 

 Our first research question: Will a multi-agent system using a combination of 

central database and direct agent experience achieve user equilibrium with fewer 

routing episodes than either a centralized real-time traffic information system or 

direct agent experience? 

 User equilibrium was found to occur where the agents used direct experience alone, 

with or without re-routing, and where the agents used a combination of a TIS with direct 

experience.  User equilibrium was not observed where only the TIS was used. 

6.3.1.1 User Equilibrium with Direct Experience Alone 

Figure 5 and Figure 8 show that where direct experience alone was used, the agents 

reached equilibrium more often when they were unable to re-route.  This was due to the 

effect of re-routing on the congestion problem.  Where many agents re-route, the 

congestion on any given road segment may change from routing episode to routing 

episode.  As the congestion changes, the agents adapt their paths to produce better route 

times, resulting in fewer instances of user equilibrium. 
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6.3.1.2 User Equilibrium with the TIS Alone 

 The number of agents changing routes in consecutive simulations ranged between 

10 to 20 percent, regardless of whether re-routing was. 

 This is due to the agents adjusting their paths to select the fastest route given the 

existing congestion pattern.  As the agents are not including their direct experiences routing 

– relying only on the collective experience of the TIS – they select the fastest route 

recommended by their application of the SAW formula (6).  While many agents change 

their routes, the congestion pattern changes, thus the agents never reach a point of user 

equilibrium.  It should be noted, however, that most agents will use the same route in 

consecutive routing episodes. 

6.3.1.3 User Equilibrium with the TIS and Direct Experience 

 User equilibrium was found to occur most often when using a combination of TIS 

and direct experience.  Figure 12 shows that user equilibrium occurred for all parameter 

sets and many more times than when direct experience alone was used. 

 This was due to the agents use of past routing experiences to guide their selection 

of future routes.  As the agents only selected routes that had been shown to be fast in the 

past, they were less likely to change routes between routing episodes.  As such, once a fast 

route was found, the agents stayed with it, resulting in more instances of user equilibrium.   

 The earliest point of equilibrium was found to occur by the 10th simulation for most 

sets of parameters, although this was not held for more than two consecutive simulations.  

The agents in Figure 14 reached a point of consistent equilibrium by the 26th simulation, 
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however, the equilibrium point does change at the 28th and 34th simulations, where some 

agents adjust their routes. 

 As using a TIS with direct experience produces user equilibrium points that last 

across many simulations, and does so earlier than direct experience alone, we can say that 

this method does achieve user equilibrium with fewer routing episodes than either of our 

other methods. 

6.3.2 Research Question 2 

 Our next research question: Will re-routing while on route result in lower total 

route times than when no re-route is used? 

 Re-routing while on route lowered total route times for agents using direct 

experience alone but had little effect when using a TIS. 

 When agents had no access to a TIS, the ability to re-route allowed the agents to 

correct for a poor routing decision given the congestion encountered on its route.  This is 

reflected in a lower median price of anarchy when re-routing is used. 

 Using a TIS removed the advantage given by re-routing, as the agents are relying 

upon travel time data provided by all agents and are able to make better routing choices. 

 The difference between the two methods shows that there is no advantage to using 

re-routing where a TIS is available.  However, in instances where the TIS becomes 

unavailable – for example, in the case of a communications failure – the ability to re-route 

would be beneficial to the agents. 
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6.3.3 Research Question 3 

 Our final research question: Will the weighting factor reach an equilibrium 

point at which the agent will no longer make adjustments between routing episodes? 

 When simulation parameters were set to allow the agents to adjust their SAW 

weights, it was found that many agents did not reach an equilibrium point and continued 

to make changes to their weighting factor.  This was observed as the agents were making 

changes to their routes and at user equilibrium. 

 We discuss the reasons for this below. 

6.3.3.1 Localization of the SAW Weight 

 The ideal SAW weight is localized to the road segment to which it is applied.  Over 

many simulations, congestion on a road segment may change, depending on the routing 

decisions of the agents using it.  As changes in congestion on one road segment may be 

different than on another segment, the weighting factor that produces the most accurate 

estimate of the time to travel any given segment may be different than for another segment. 

 As the SAW weight used by an agent represents an aggregation of the weight for 

each road segment on a route, the ideal weight for an agent depends on the route used.  

When building a route, there is often little difference between fastest paths for the agent – 

the geography of the map is such that these routes may vary by only a few road segments.  

Thus, as the agent is learning which weighting factor is best, they will find a value that 

may differ significantly from the weighting factor used by an agent that is routing in a 

different part of the city.  As such, while there were agents that were observed having the 
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same weighting factor, often many agents used weights that were unique to their origin 

and destination. 

6.3.3.2 Changes in Weighting Factor at User Equilibrium 

 Many agents were found to change their weighting factor when at user equilibrium.  

Often the changes were the largest allowed by the SAW weight step limit, such that an 

agent might select a weight of 0 in one simulation and then a weight of 1 in the next. 

 When using a TIS with direct experience the agents will only select a route that is 

different than that used in the previous routing episode if the route is new to the agent or 

is significantly faster than route they used previously.  As displayed in Figure 14, this 

eventually allows the agents to reach a user equilibrium.  It also has the effect of stabilizing 

the congestion problem, as the agents always use the same road segments in the same 

order. 

 The stability of the congestion problem affects the travel time data provided to the 

agents.  As the agents use a combination of short-term and long-term travel time averages 

to calculate their weighting factor, the longer congestion remains consistent, the more 

similar the short-term and long-term averages become.  This results in there being little 

difference in estimated route times, regardless of the SAW weight used, and the agent 

makes changes to the weight value based on smaller differences between the two averages. 

 As such, we see that stabilization of the congestion problem is more important than 

selecting the most appropriate SAW weight when an agent is attempting to select the 

fastest route to their destination. 
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Chapter 7: Conclusions and Future Work 

 

7.1 Discussion and Conclusions 

 In this research we have studied the use of a centralized real-time traffic 

information system (TIS) as a method to improve vehicle routing in a congested city. 

We found that the combination of a TIS and direct agent experience allowed our 

agents to achieve a total route time that is significantly lower than when using either a TIS 

or direct experience alone.  The combined system produced a lower median price of 

anarchy than either of the other methods, with or without re-routing, while also achieving 

a lower price of anarchy on the 60th simulation. 

The research makes the following contributions: 

 1) Avoidance of poor route choices while improving a route.  Agents using 

either TIS alone or in combination with direct experience are able to avoid exploring routes 

that perform poorly on congested roads by using travel time data collected from all agents.  

In comparison, agents that select routes using only their own previous routing experiences 

are required to explore many routes that perform poorly to collect enough travel time data 

to begin selecting routes that are faster on congested roads. 

 2) Using TIS allows adaptation to changes in congestion.  The TIS provides each 

agent access to up-to-date travel time data for all road segments.  As such, an agent using 

TIS can adapt its route to account for changes in congestion that may occur over time.  An 

agent relying solely upon its own routing experiences does not know that congestion may 
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have changed on road segments it has not travelled upon recently, causing the agent to 

miss opportunities to reduce its route time. 

 3) Applying travel time data from vehicles allows for a simpler routing 

method.  While the use of a centralized system is not unique to this method, the TIS offers 

advantages over previous research.  As the system focuses on providing travel time data 

for each road segment, agents can simply apply the data to their routes without concern for 

the additional effects of congestion – it is already a part of the data they are using.  This is 

an improvement over the Route Information Sharing (RIS) method studied by Yamashita 

et al. (2005), which required a server to estimate the effects of congestion based on routes 

provided by participating agents, without access to congestion data from non-participating 

agents. 

 As well, agents using a TIS can retrieve all travel time data required in one request 

to the central system, while RIS agents often require multiple calls to the server to develop 

a faster route.  When developing a route, limiting communication with the central system 

is desirable, as it reduces the wait time for an impatient driver. 

 4) Rapid convergence upon a user equilibrium.  The achievement of user 

equilibrium is an indicator of the fairness of the routing system as well as the amount of 

change in congestion that is occurring between routing episodes.  When change in 

congestion is small each agent is able to better determine the fastest route to their 

destination and the total route time of all agents is reduced. 

Levy et al. (2017) found that convergence upon a user equilibrium required 

approximately 2000 simulated routing episodes when using direct experience alone.  While 
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this shows that user equilibrium is achievable without directly controlling agent routing 

decisions, it is not practical for the average driver.  Our method converged upon a user 

equilibrium state quickly – often as early as the 26th routing episode – making the use of a 

TIS with direct experience more practical than relying upon direct experience alone. 

 

7.2 Limitations of this Research 

While routing with a TIS and direct experience offers a number of advantages to 

the driver, we note some of the limitations of this research: 

1) Experimentation was limited to fixed origins and destinations.  Each agent 

used the same origin and destination point for all simulations.   This allows for a 

comparison of the different routing parameters, but is a limited representation of real-world 

driving.  While a driver may indeed travel between the same origin and destination at the 

same time each day – such as travelling from home to work – it is to be expected that there 

would be variation in driver’s routine, particularly on weekends.  This may limit the 

effectiveness of our method to predict congestion and we would not expect the same 

amount of route time improvement in an actual city that we saw in our simulations. 

Additionally, as the agent’s SAW weight is a reflection of the congestion 

encountered on its previous routes, the addition of novel destinations may cause the agent 

to modify their weight such that it is no longer best suited for its previous origin and 

destination.  However, it is possible that the agents may account for this issue by 

maintaining different weight values for each origin and destination combinations. 
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2) Higher traffic density may limit the effectiveness of a TIS.  Our experiments 

were limited to 100 vehicles in 25 city blocks.  While this allowed us to determine how the 

agents would route with options that included a variety of congested and uncongested 

roads, many cities are highly congested on most roads (Mandayam and Prabhakar, 2014; 

Bazzan, 2009).  The effectiveness of a TIS may be limited in this case, as an agent may 

not find a good route to their destination, regardless of the travel time data available to 

them. 

As well, using a TIS may have a limited ability to modify congestion.  In our 

experiments we showed that the agents could achieve user equilibrium and, thus, the 

congestion adjusted to all agent decisions and became more predictable.  When high levels 

of congestion are encountered all road segments may be at capacity and any routing 

choices made by the agents cannot make an improvement. 

 

7.3 Future Work 

 We have demonstrated that combining a TIS with direct experience allows agents 

to build routes that are faster than when using either method alone, however, there is further 

research that may improve upon these results. 

7.3.1 Additional Information Sharing 

 Our research demonstrated that the largest improvements in route times were found 

when agents used a TIS in combination with direct experience.  However, when an agent 

travels to a novel destination, it lacks this previous experience.  If each agent transmits its 
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updated SAW weight and route travelled to the TIS upon completing its route, other agents 

may be able to use this data to more quickly improve their routes. 

 While this may be of value, including route information in the data sent to agents 

raises concerns over privacy and the ability to track the movements of other users.  

Yamashita et al. (2005) note that methods developed for anonymous auctions may be used 

to anonymize the route data, but this would not guarantee the user’s identity could not be 

determined using origin and destination points.  Additional research into ways to 

anonymize the route data, such as the use of a geofencing approach to remove specific 

origin and destination locations, is needed to allow for the safe use of this data. 

7.3.2 Intentional Travel Time Data Modification 

 As the agents make decisions based partly upon the travel time data that they 

receive from the TIS, there is an opportunity to affect their decisions by making 

modifications to the travel times provided to them.  If we consider that sending an 

arbitrarily large travel time to an agent would effectively cause them to avoid a route using 

the affected road segment, we see a number of potentially useful possibilities. 

 In the case of road closure due to an accident, temporarily increasing the travel time 

along the road would cause agents to route around the affected area.  This technique may 

also be useful in reducing the number of vehicles that attempt to use a road that is under 

construction.  As well, in the case of evacuations, vehicles could be encouraged to use 

some roads but not others by modifying the travel times provided. 

 While modifying travel times could be useful in managing the flow of vehicles, it 

has been noted by Wang et al. (2016) that simply closing a road segment will affect 
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congestion on surrounding road segments.  Further research must be done to understand 

how to best make modifications to travel time data to account for this effect. 
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