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Abstract
Navigation in a traffic congested city can prove to be a difficult task. Often a path that
may appear to be the fastest option is much slower due to congestion. If we are able to
predict the effects of congestion, it may be possible to develop a better route that allows
us to reach our destination more quickly. This thesis studies the possibility of using a
centralized real-time traffic information system containing travel time data collected from
each road user. This data is made available to all users, such that they may be able to

predict the effects of congestion when building a route.

This method is further enhanced by combining the traffic information system data with
previous routing experiences. We test our method using a multi-agent simulation,
demonstrating that this method produces a lower total route time for all vehicles than when

using either a centralized traffic information system or direct experience alone.

Keywords: multi-agent systems, multiagent systems, reinforcement learning,

traffic congestion, pathfinding
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Chapter 1: Introduction

1.1 Research Motivation

When a driver attempts to navigate in a modern urban environment, they must
overcome many obstacles to reach their destination. Poor weather, road construction, and
accidents are just a few of these. However, while these problems may occur with varying
degrees of frequency, traffic congestion is one which is encountered on a daily basis.
Delays on the morning and evening commute to and from work are familiar to many who
regularly travel in a city. Indeed, in particularly congested cities with high population

densities, the problem of traffic congestion may be a constant condition on many roads.

Delays due to traffic congestion can be the cause of many problems. Drivers
experience increased stress as delays may cause them to miss appointments or arrive late
for work. Environmental damage is also a concern, as traffic delays require vehicles to
operate for longer periods than may otherwise be necessary, resulting in increased
pollution due to automotive exhaust. As well, economic damage can occur as worker
productivity is reduced due to increased stress and work time lost in travel (Mandayam

and Prabhakar, 2014).

When one considers the negative impacts of congestion it is clear that its reduction
would be beneficial both to individuals and society. However, reducing congestion is not
a simple task. Building additional roads to increase the volume of traffic that may be
handled without congestion may not be possible in many locations, due to existing

structures or budget constraints. Increased availability of mass transit can be helpful in
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reducing the number of road users, but this can be expensive to operate and may not be
feasible for users who must travel beyond a short distance to reach their destination.

If we consider that many commuters may opt to drive personal vehicles, either by
preference or necessity, it is worthwhile to investigate how they may be better routed to

reach their destinations while minimizing the negative effects of congestion.

1.1.1 Individually Optimized Routing to a Destination

The simplest approach to routing is to take the shortest path to one’s destination.
While this may seem ideal, the shortest path may not be the best option, as the roads
selected may have a low speed limit and thus be inherently slow. The roads may also be

congested at the time of travel, causing the route to be slower than anticipated.

A more sophisticated approach to routing would involve a consideration of the
speed limit on each road taken. By factoring in how fast we can travel on each road in our
path, we can calculate how long it would take to travel them. As such, a path that uses

faster roads may result in a shorter route time than one that simply selects the shortest path.

These routing methods are examples of user or individually optimized routing
(Bazzan and Chira, 2015). This type of routing focuses on finding the fastest, or optimal,
route to the driver’s destination. As such, there is little regard for the impact on existing

traffic congestion beyond the necessity to limit its effects in delaying the driver.

However, using individually optimized routing can have a detrimental effect when
all drivers attempt to use this method. Referred to as the tragedy of the commons (Hardin,
1968), this problem appears when all vehicles attempt to use the same roads at the same

time. Astheroad is finite in the number of vehicles that may efficiently use it concurrently,
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increasing the number of users will increase the amount of time it takes to travel upon the

road.

1.1.2 System Optimization to Improve Routing to a Destination

An alternate method is to build routes that are system optimized. System
optimization focuses on reducing the total amount of travel time for all vehicles using the
road network (Bazzan and Chira, 2015), with the goal of reducing the impact of each
vehicle on the congestion problem. As such, many road networks are designed to favour
system optimization by operating high capacity and high-speed roads, with the goal of
moving the largest number of vehicles possible through the system. System optimization
can also be attempted through the use of traffic light systems that prioritize traffic on high

capacity roads while also directing vehicles towards them (Bazzan and Chira, 2015).

Unfortunately, system optimization may result in negative effects for some drivers.
When a route is built to take advantage of high capacity roads, the driver may not be using
the best route to reach their destination — they may be required to take a longer path than
otherwise necessary. While this can reduce the total travel time experienced by all drivers
—the modified path reduces congestion on some other road — the individual driver does not

see a benefit.

1.1.3 Hybrid Routing to a Destination

Ideally, we would like to optimize the route for the individual while also optimizing
for the system. A hybrid method, combining both individual and system optimized routing
attempts to use the best components of both methods to achieve this (Bazzan and Chira,
2015). By selecting roads that provide for a fast route for the driver but also work to avoid

congestion, we can avoid building routes that cost the individual too much time while also

3
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working to reduce the total congestion in the road network. The reduction in congestion
may then be enough to offset the extra time that the individual driver must spend reaching

their destination.

However, when routing in congestion, one must consider the following question:
is it better for me to use a road that is short, but congested; or, is it better for me to take a
road that is longer, but uncongested. The answer to this question is not simple when one
does not know how badly congested the road is, as a short but congested road may be a

better option than a longer, uncongested one if the delay due to congestion is small.

1.2 Research Objectives
The purpose of this thesis is to determine if we can develop routes that are better

suited for areas with traffic congestion than existing methods.

When routing in traffic we face the following challenges:

1. Finding the best route while accounting for congestion requires the driver to
search through a number of possible alternatives.

2. The specific amount of congestion that will be encountered on any given road
segment is unknown to the driver.

3. Avoiding the tragedy of the commons to approach a system optimum state.

1.2.1 Finding the Best Route
Finding the fastest route to one’s destination can be accomplished using a number

of pathfinding algorithms, such as Dijkstra’s Algorithm (Dijkstra, 1959) or the A*
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algorithm (Hart et al., 1968). Given a map with sufficient detail of the road segment
lengths and permissible road speeds, these algorithms can provide a route that will get the
driver to their destination. However, given the unknown details of congestion and its

effects on road speed, these algorithms are insufficient by themselves.

If we were to use a pathfinding algorithm to produce a number of possible routes
that our driver could choose from, we may be able to find the fastest route. To do this we
can use reinforcement learning try to learn which route will be the quickest. A Multi-
Armed Bandit algorithm, such as €-Greedy (Thathachar and Sastry, 1985) or Upper
Confidence Bound (UCB) (Auer et al., 2002) may be used to search for the best routing
solution and more reliably select it in the future. However, in order to learn the fastest
route to take, these methods must first explore the possible solutions, resulting in the driver

using some potentially poor routes while trying to find the best one.

This provides us with the first objective for this thesis:

Objective 1: Determine the fastest route for the driver with the least

exploration.

1.2.2 The Amount of Congestion is Unknown
The amount of congestion along a given route affects its speed. If a driver would
like to select the fastest route with a limited number of routing tries, more detailed

information about the congestion on a road segment may be of help.

Software such as Google Traffic (Google, 2017) and Waze (Waze, 2017) offer

information about the traffic conditions on a road. Both operate by collecting data from
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public traffic sensors and user provided travel times (via smartphone application) and use

it to provide routes that account for delays due to congestion.

While a large amount of travel data can be collected from users, we must consider
that the congestion problem will change over time. The number of road users may change,
and the routes they select can result in roads becoming more or less congested over time.
As such, we need a routing method that can adapt to changes in congestion and anticipate

what these changes will do to congestion while building a route.

This provides us with our second objective for this thesis:

Objective 2: The routing method must adapt to changes in congestion over

successive routing actions.

1.2.3 Awvoiding the Tragedy of the Commons

As noted in 1.1.1, the tragedy of the commons occurs when each driver attempts to
select the fastest route without regard for the effects of this selection on congestion.
Ideally, we would like to avoid this issue and reach a system optimum state where the total

travel time is at a minimum while also minimizing the travel time for each driver.

Stackelberg routing (Roughgarden, 2001), where a leader selected to pick an initial
route which is then built upon by others, can be used to solve this issue. However, this
method requires a central authority to select the leader and assign routes, which may or

may not be followed by the other drivers if they consider them to be unfair.

This provides us with our final objective for this thesis:
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Objective 3: The routing method must produce routes that are fair for each

driver but also minimizes the total travel time for all drivers.

1.3 Research Questions
In addition to the three objectives noted in section 1.2, this research we will

attempt to answer the following questions:

1) Will such a multi-agent system achieve user equilibrium with fewer routing
episodes than either a centralized real-time traffic information system or direct
agent experience?

2) Will re-routing while on route result in lower total route times than when no re-
routing is used?

3) Will the weighting factor reach an equilibrium point at which the agent will no

longer make adjustments between routing episodes?

1.4 Thesis Contribution and Significance of Research

This research makes multiple contributions towards solving the congestion
problem in the urban environment. First, we show that the fastest route in a congested
road network can be determined with less exploration than might otherwise be necessary.
This is done by combining the data the driver acquires through experience driving a route

with the data that is collected by all road users.

Second, we show that this method is adaptable to changes in the congestion
problem by using reinforcement learning to teach each driver which travel data best

matches the current congestion.
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Finally, we demonstrate, through the use of a multi-agent simulation, that the

drivers can reach an equilibrium point that approaches the system optimum with being

directed through a control mechanism.

1.5 Definitions and Nomenclature Used

1)

2)

3)

4)

5)

The following language is used in this thesis:

Agent — The term agent will be used to refer to the vehicle’s navigation system.
The agent develops the routes and decides which one the vehicle will take. The
driver of the vehicle managed by the vehicle simulation and will always follow the
route provided by the agent.

Road Segment — The term road segment is used to refer to a section of a road that
lies between two intersections. As the routing agent can only make road selection
decisions at an intersection, the road segment represents the smallest unit of a road
that the agent can perceive.

Travel Time — The travel time refers to the time, in seconds, required for a vehicle
to travel the length of a road segment. The travel time may be that of an individual
vehicle, or may be an average of all vehicles for a specified range of times.

User Equilibrium (UE) — A state in which no agent perceives a possibly faster route
than the one they are currently using. At this point no agent will select a different
route than the one they used in their previous routing instance.

System Optimum (SO) — The road network is considered to be system optimum
when the total amount of time required for all agents to complete their routes is

minimized.
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6) Centralized Real-Time Traffic Information System (TIS) — A system which
collects travel time data from all agents and maintains it in a database. Each

connected agent may request and receive travel time data for any road segment.

1.6 Thesis Organization

This thesis consists of seven chapters. Chapter 1 introduces routing in traffic
congestion and presents the thesis objectives. Chapter 2 discusses the problem in more
detail and reviews the literature on some of the other routing methods used. Chapter 3
discusses the theoretical framework. Chapter 4 covers the design of the solution and the
method of experimentation. Chapter 5 presents our experimental results. Chapter 6
discusses the results of this research and future work. Finally, chapter 7 presents the

conclusions reached.
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Chapter 2: Review of the Literature

2.1 Routing in a City
In this chapter we review the various components involved in finding an efficient
route to one’s destination in a city. We start with some of the previous and current methods

used to build a better path.

2.2 Traffic Planning

Before delving further into the details of building an effective routing solution that
accounts for the effects of urban traffic, we must consider the composition of the traffic
problem. This consists of two components — congestion and bottlenecking (Kutz, 2011).
Congestion is the volume of traffic on a road while bottlenecking is a reduction in road
capacity. A road may be considered to be congested when the volume of vehicles per
section of roadway exceeds its capacity to handle them efficiently — beyond this volume
the average speed of each vehicle is reduced. Bottlenecking can be caused when a road’s
capacity is reduced by either an event — such as construction or an accident closing a lane
— or by slow moving vehicles — such as a bus or truck, or a car attempting a left turn at an
intersection. This thesis is concerned with the alleviating the effects of the former issue,

and as such we will not discuss bottlenecking further.

For city and traffic planners, the issue of traffic congestion is most often viewed as
a network design and management problem. To optimize the road network, they use what
is commonly referred to as an Intelligent Transportation System (ITS) (Desjardins, et al.,

2009; Bazzan, 2009), and focus on using traffic information to make better use of existing

10
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infrastructure. These methods include radio broadcasts and roadside messages to pass
information to drivers, traffic cameras, websites, and variable timed traffic lights (Bazzan,

2009).

Centralized traffic management systems, such as the Sydney Coordinated Adaptive
Traffic System (SCATS) (Wang et al., 2016) can attempt to improve traffic flow by further
managing traffic lights, such that busier roads are given priority to increase the speed of
vehicles travelling along the road when there is high traffic volume. While this technology
can greatly improve traffic flow, it is complex and costly to implement. As well, changing
traffic light timings to favour certain roads will encourage drivers to prefer using them,

resulting in further congestion.

Recent advances in communications technology have also enabled the use of more
advanced techniques. Vehicle-to-roadside (V2R) communications technologies allow for
greater organization of the network by transmitting information about destination and
vehicle status to local traffic management systems (Hong and Cheng, 2016). Intelligent
intersections can sense the volume and direction of traffic passing through them and time
signal changes to improve flow while also providing information to neighbouring
intersections about the volume of traffic headed in their directions (Desjardins et al., 2009;

Hong and Cheng, 2016; de Oliveira and Bazzan, 2009).

2.3 Wardrop’s Principles
While ITS technologies can increase the overall capacity of the road network and
generally work to improve the transit times for users, they do not focus on providing an

efficient routing solution for the individual vehicle. This task falls to routing methodology.

11



ROUTING USING A TRAFFIC INFORMATION SYS. AND DIRECT EXPERIENCE

Many routing methods attempt to solve this problem by focusing on reaching either
a User Equilibrium (UE) or System Optimum (SO) state. These states are defined as two

principles of route choice by Wardrop (1952), which can be summarized as:

1) User equilibrium, a state in which the travel time of routes used by all vehicles is
equal to or less than any alternative route that could be selected by drivers.

2) System optimum, a state in which the total travel time for all drivers is minimized.

Each of these principles may be understood intuitively as the consequences of
either self-interested or altruistic agents (Levy et al., 2017). When self-interested drivers
build routes selfishly, that is, attempt to find the fastest route, regardless of the effect that
selection has on other drivers, the road network will eventually reach UE. When drivers
behave altruistically, they select routes that are perhaps slower, but reduce congestion on

a given road, so a SO state may be reached.

However, to understand Wardrop’s principles more thoroughly, we must look at

the problem of routing in traffic congestion through the use of game theory.

2.4 Routing as Congestion Games

Game theory is the mathematical study of the strategies used when playing games.
It’s important to note that in our case, games are considered to be any activity where there
are multiple players, each of which is attempting to determine the best strategy to use to

achieve the largest reward possible (Shoham and Leyton-Brown, 2009). A strategy is the
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method that is used to determine which action, or set of actions, the player will take to

accomplish this.

While game theory is a broad subject, we are concerned with its use in modelling
the problem of traffic congestion in a city. To do this, the problem can be represented as
a congestion game (Tumer and Proper, 2013; Shoham and Leyton-Brown, 2009).
Congestion games study the problem of maximizing an individual player or agent’s reward
where there are limited resources available. Each player in the game is attempting to own
as many resources as possible, while also paying the lowest cost for them, thus maximizing
their reward. The focus of the game is to determine which strategy will achieve this and
at what point an equilibrium is reached. The game reaches equilibrium when no player
perceives a possibility of improving their reward by changing strategy (Shoham and

Leyton-Brown, 2009).

The game theory analysis of routing in traffic congestion views the problem as a
nonatomic congestion game consisting of a large number of players attempting to use a set
of roads (Shoham and Leyton-Brown, 2009). As the number of players is very large,
although not infinite, the decisions of any individual player on the congestion encountered
is very small — essentially, the decision of any one player to use a particular road at a
particular time will not make a noticeable difference in how fast a vehicle may travel down

that road.

A common example of this class of game is the EI Farol Bar Problem (Shoham
and Leyton-Brown, 2009). In this problem, each player must decide whether to visit the
bar or stay at home. If more than 60% of players visit the bar, the player would have more

fun staying at home. If less than 60% of players visit the bar, the player has more fun
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visiting the bar. As all players must make their decisions at the same time, each must use
a strategy to decide whether most of the other players have decided to go to the bar, or stay
at home. The player maximizes their reward if they make a decision that is the opposite

of that selected by most of the other players.

2.5 The Mathematics of Nonatomic Congestion Games
Mathematically, we can represent the nonatomic congestion game as a tuple,

(N,u, R, A, p, ), with the following properties (Shoham and Leyton-Brown, 2009):
N = {1, ...,n} is a set of players of different types;

u = (uq, ..., uy,) represents the players. Where i € N there is a continuum of

players represented by the interval [0, y;];
R is a set of k roads. Each road segment, r isr € R,

A=A, X..XA,, where 4; € 2R{@} is the set of actions. The action a; € 4; is
selected by all players of type i. The action a; represents a segment of the player’s path

A;;

p = (p1, ., Pn), Where for each i € N, p;: A; X R — R, denotes the amount of
congestion contributed to a given road segment » € R by players of type i selecting an

action a; € A;;

c = (cq, ..., Cx), Where c,: R, +— R s a cost function for road segment r € R, and

c, is nonnegative, continuous and nondecreasing.
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We begin by defining the action distribution for the game. An action is the move
that each agent makes that puts them on a particular road segment at a particular time. The
action distribution, s € S, indicates the number of players that choose each action, and
s(a;) is the element of s that corresponds to the set of players of type i who select action

a; EAi.

As the action distribution represents the actions of each player of type i, we can
arrive at the following:

Z s(a;) =y (1)

a;€EA;
This allows us to determine the amount of congestion, s,., on a given road segment
as a multiplication of the number of players selecting the segment by the amount of
congestion each contributes by their actions:

=) > pilams(a) )

iEN a;€A;

We note from the above formula that, although the effect of any one player on the
congestion problem is very small, it is not 0. Thus, the actions of all players result in

congestion that can be measured and does affect the flow of traffic.

While we can now formulate the amount of congestion on a road segment, we
would still like to know the effect of this on our players. We can calculate the cost function

due to congestion induced on the a given road segment by the players’ actions as:

Ca() = ) panrer(s) ©

rea;
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The utility function for the player may now be determined. The utility function
helps the player determine which of a number of possible actions is of the most ber (4)
them if selected (Shoham and Leyton-Brown, 2009). In this case, the utility function can
be expressed as the cost of selecting a road segment, where the road segment with the least

congestion gives the highest utility:
u;(a;, s) = —cq,(s)

Finally, the social cost to all players choosing an action may be found by
multiplying the action distribution for all players of type i by the cost function due to those
players selecting a given road segment:

€)= ) Y s(a)ca,(s) )

iEN a;€A;

An analysis of the social cost formula reveals that the system optimum is achieved
when the players select actions that sum to the lowest social cost. However, because the
social cost is the sum of the cost incurred by all players, we can achieve this when some
players achieve a lower cost by selecting a given action while other players select an action
that is more costly to them individually. Under these conditions, the player with the more
costly action will select a less costly action to increase their utility. As such, by selecting
an action that is less costly, they increase the congestion on the road segment, thus
increasing the cost for all players selecting the same action. Since the cost increases, this
increases the social cost to all players, although at this point an equilibrium may have been

reached.
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Given the effects of selfish selection of routes, the user equilibrium can, at best,
reach a social optimum. However, often this may not be the case, as the effects of selfish

actions work to increase the impact of congestion for all (Levy et al., 2017).

2.6 Approaches to Routing
There have been a number of different approaches that have been applied to the
routing problem. As noted in chapter 1, these approaches can be separated into attempting

to solve for either of Wardrop’s Principles or both, with varying levels of sophistication.

2.6.1 Dijkstra’s Algorithm and A* Routing

Perhaps the most direct method of routing is to select a path that combines the
fastest allowable road speeds with the shortest possible distance. Provided a map of the
city in which we would like to navigate, we can use a pathfinding algorithm such as

Dijkstra’s Algorithm or A*.

Treating the map as a graph, where each intersection is a node and each road
segment is an edge, Dijkstra’s Algorithm (Dijkstra, 1959) performs a best-first search to
find the shortest path. Starting at an origin point, the algorithm calculates the travel time
to each unvisited node that can be reached directly and selects the fastest one. In successive
iterations, the algorithm selects the closest node to the origin that has not yet been visited.
Given sufficient iterations, this algorithm will provide the user with the fastest route to

their destination.

The A* algorithm (Hart et al., 1968) is a modified version of Dijkstra’s Algorithm

that attempts to improve upon the speed at which an optimal path is determined. Rather
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than selecting the edge that arrives at a neighbouring node the fastest, the algorithm also

considers whether the edge will bring the driver closer to their destination.

Using a heuristic value, such as the Euclidian distance from the edge endpoint node
to the driver’s destination, the algorithm selects the next edge in its path as the shortest
sum of distance travelled so far and the heuristic distance to the destination. This method
allows the algorithm to focus on trying paths that take the driver closer to their destination,

and thus typically arrives at an optimal solution more quickly than Dijkstra’s algorithm.

2.6.2 Route Information Sharing
Route Information Sharing (RIS) (Yamashita et al., 2005) represents one method
to reach a system optimum. By sharing information on the routes chosen by drivers, this

method seeks to enable them to avoid congestion. The method is implemented as follows:

1) Each driver builds a shortest route to the destination. The information is then
transmitted to a server.

2) The server collects route information from all drivers and assigns a weight value to
each road segment for each driver.

3) The weight of each driver on each segment is summed, producing a total weigh for
each segment.

4) The total weight is used to calculate the expected traffic on each segment and, thus,
the expected travel time.

5) The expected travel time is transmitted to each driver for their prospective routes.
The drivers may then revise their routes based on this information.

6) Steps 2 through 5 are repeated until each driver has selected the route they will use.
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7) The drivers travel their routes. At each intersection, the driver transmits their
location and updates their information. If the vehicle encounters congestion the
route is revised.

8) Once at their destination, the vehicle is removed from the problem.

Route Information Sharing has been shown to provide an improvement in the
average travel time for drivers using this method over the average times for drivers routing
using a shortest distance method. This difference was found to increase as the percentage

of vehicles using RIS increased in the road network.

However, while an improvement was found, the number of cycles of route,
transmit, receive, and re-route that must be accomplished before a final set of routes is
reached can be large. As well, it has been noted that, in large cities where there may be
millions of vehicles, such a system may be impractical, as a typical communications
system, such as a cellular network, may not capable of handling the number of connections

required.

2.6.3 Sampling and Weighting Algorithm

While a system optimal method of routing results in faster overall route times,
preventing the system from reverting to a user equilibrium state that is less efficient is
difficult. Route Information Sharing approaches this, but does so at the price of potentially

delayed routing results and a large communications infrastructure cost.

If drivers are selfish in their behaviours — that is, always attempting to achieve the

fastest route for themselves, regardless of the cost to others — perhaps a better approach
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would be to achieve a user equilibrium state that is as close as possible to the social
optimum. Levy, Klein and Ben-Elia (2017), and Levy and Ben-Elia (2016) investigate the

possibility of system optimum being an emergent property of a multi-agent system.

In their research, a group of agents, representing drivers, are given a choice
between two routes of equal length. As both routes are equal, the only factor that affects
the route completion time is the number of agents that select the route. Each agent has the
goal of reaching the end of the route in the shortest time possible and must decide which

route is the best choice to achieve this.

The authors solve this problem applying the agents’ previous routing experience
on each route. A routing simulation was built for the agents with both available routes.
As successive simulations are run, the agents acquired more information as to the amount
of time required to complete each route, which is used to inform the agent’s route selection

in the next simulation.

To determine which route is likely to be the least congested, each agent uses the
Sampling And Weighting (SAW) formula (Levy et al., 2017; Levy and Ben-Elia 2016),

which is an adaptation of the formula used by Erev et al. (2010):

¥_o RouteTime; (i i_x_s RouteTime;(i
i—o Route lme](1)+(1_w)*2l_k_5 outeTime;(i)

(6)
DaysOnRoute )

ESTjj =w *

Where j is the potential route, k is the index of simulations where the agent selected
route j, § is the number of recent simulations used, and w is a unitary weight determining
the agent’s long-term memory. A weight value of 1 results in the agent only using long-

term travel data, while a weight of 0 causes the agent to use only recent travel data. The
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weight value can take any value between and including 0 and 1, giving the agent the ability

to consider both long-term and recent travel data as well.

The experiment was initially performed using a group of agents selecting routes
selfishly — the agents use a utility function that is maximized when their route is the shortest
possible. It was found that the agents converged on a user equilibrium most quickly when

w = 0 and long-term memory was not employed.

After 15000 runs, the agents were modified to become altruistic, where each
agent’s utility function is maximized by the total route time of all agents being minimized.
The researchers found that the agents were able to achieve a SO state without a control

mechanism and that this occurred most quickly when w = 0.

While this work shows that it is possible to reach a user equilibrium and a social
optimum state using a deterministic algorithm, there are some practical limitations. First,
the agents required almost 2000 runs to reach a user equilibrium, and reaching a social
optimum required approximately 500 runs. If such a system were attempted for a group
of drivers, it would require a large number of tries before they saw a significant

improvement in their route times.

Secondly, the experiments gave the agents the option of two routes, rather than the
hundreds that may be possible in an urban road network. Given the larger number of
options, a weight value that accounts for long-term memory may result in a better result

that was found when only two routes were allowed.
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2.7 Summary
While the methods discussed above may assist in improving travel in a congested
city, there are costs or limitations to each. In chapter 3 an alternative routing method is

introduced that may better manage these issues.

22



ROUTING USING A TRAFFIC INFORMATION SYS. AND DIRECT EXPERIENCE

Chapter 3: The Theoretical Framework

3.1 Multi-Agent Routing Method

In Chapter 1 we noted the following three objectives for this thesis:

1) To determine the fastest route for the driver with the least exploration.

2) To find a routing method to adapt to changes in congestion over successive
routing actions.

3) To find a routing method to produce routes that are fair for each driver but also

minimize the total travel time for all drivers.

We present a multi-agent routing methodology that addresses each of these
objectives when routing in an urban environment. To develop their route, each agent uses

the following steps, which we expand upon later in this chapter.

1) Build a list of routes - The agent builds a list of potential routes to its
destination. The list is built using a modified version of the A* algorithm,
which returns the fastest routes possible based on the map data available to the
agent.

2) Estimate road segment start times - For all potential routes in the list, the
agent estimates the time at which they will start each road segment.

3) Request travel time data from TIS - The agent requests travel time data from
the centralized real-time traffic information system (TIS) for each road segment

in each route. By using TIS, the agent avoids the need to try each route to learn
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4)

5)

6)

7)

the amount of congestion first hand, thus minimizing the exploration required
to estimate its effects.

TIS returns travel times - The TIS returns two average travel times for each
road segment requested, adjusted for the time at which the agent estimates it
will reach the segment. First is the long-term average, which is an average of
all vehicle travel times on the given road segment for all available routing
episodes. Second, the short-term average, comprised of the average travel time
for all vehicles in the 5 most recent routing episodes.

Estimate potential route times - The agent applies the averages to each
potential route using the SAW formula. The agent selects the route with the
fastest estimated time. As the estimates are developed using previous travel
time data, our routing method is able to adapt to changes in congestion — the
effects of any changes will be reflected in the travel times used.

Apply previous routing experience - The agent compares the selected route
to a list of routes it has travelled previously. If the route is the same as the route
used by the agent in the previous routing episode, the agent will select the route.
If it is different, the agent searches the list to determine if it has used the route
before. If not, the agent will use the route. If the agent has used the route
previously, it will only select the new route if it was significantly faster than
the route used in the previous routing episode.

Drive selected route - The agent travels its route. As the agent travels, it
transmits the time required to complete each road segment to the TIS. If re-

routing is enabled for the agent, it compares the time on route to its estimated
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route time to that point. If the route time is significantly higher than the
estimated time it will re-route.

8) Apply learning algorithm - After completing its route, the agent reviews the
route times for each of its potential routes by again querying the TIS to apply
the most recent travel time data to each one. If the fastest route was different
than the one the agent selected, they adjust their selection algorithm to better
reflect the effects of congestion on its routes. As each agent acts to improve its
route selection, the amount of time to complete its routes are reduced and works
to minimize the total travel time for all drivers, while also providing a fair route

for the agent.

Figure 1 presents a flowchart depicting the agent’s routing actions. The algorithm
Agent Routing Process provides an overview of the agent routing steps and calls the

algorithms presented in the following sections.
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Figure 1. Agent Routing Process
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Algorithm Agent Routing Process
Input: Map data, agent origin, agent destination.

Output: Updated SAW weight.

Il Get the list of potential routes (Step 1).

routeList = call ModA*(map data, origin, destination, number of routes requested);

/I Estimate fastest route (Steps 2, 3, 4, 5).
routeL.ist[fastestRoute] = call RouteSelector(routeList, SAW Weight);

// Find route with fastest estimate (Step 6).
fastestRoute = call RouteMemory(routeL.ist[fastestRoute], last completed route,

exploration factor);

/I Agent drives route (Step 7).

/' If re-routing is enabled, determine a new route if current route is too slow at
/I end of each road segment (Step 7).

fastestRoute = call ReRouting(fastestRoute, actual route time, performance factor);

/I Apply the learning algorithm to find new SAW weight (Step 8).
newSAWWeight = call LearnSAWWeight(routeL.ist, actual route time,
previous SAW weight, weight change factor);

Algorithm 1. Agent Routing Process
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3.2 Building the Potential Routes List (Step 1)

Before selecting the fastest path to its destination, the agent must first develop a
list of viable routes. In many cities the number of possible routes can be quite large, given
a multitude of roads to choose from. However, many routes are not good options due to a

combination of allowable road speed and distance.

To accomplish this task, the agent uses a modified version of the A* algorithm
(Hartetal., 1968). While the standard A* algorithm finds the fastest route to a destination,
based on the path length and allowable road speed, this only provides one route. Our
modified version, Mod A*, will continue to build routes until a pre-determined number of

routes has been reached, providing the agent with a list of routes to choose from.
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Algorithm ModA*
Input: Map data, agent origin, agent destination, number of routes requested.

Output: A list of the fastest routes by distance and road speed.

mapData = Map data;
originNode = The origin node location on the map;
destinationNode = The destination node location on the map;
edgeList = null; I/ The list of edges to search.
numberOfRoutes = The number of routes requested,;
currentEdgelndex = 0; Il The index of the edge being
/I searched by the algorithm.
destinationFound = false; // Boolean indicating the
/I destination node was found.
routeList = null; Il The list of potential routes.

routesFound = 0; /I Counts the number of routes.

/I Find every edge from the origin node.

for (each edge from originNode) {
edge.available = true;
edge.g = mapData.edgelLength / mapData.roadSpeed,
edge.h = destinationNode.GPS — edge.endNode.GPS;
edgeL.ist.add(edge);

Algorithm 2. ModA*
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Algorithm ModA* continued

Il Loop through the list of available edges until the requested number of routes
/[ are found.
While (routesFound < numberOfRoutes) {

/l Find the available edge with the lowest f(x) = g(x) + h(x).

shortestEdge = 1000000;

for (each edge in edgeL.ist) {
if (edge.available) {

if (edge.endNode == destinationNode) {
destinationFound = true;
currentEdgelndex = index of edge;

}

edge.f = edge.g + edge.h;

if (edge.f < shortestEdge && !destinationFound) {
shortestEdge = edge.f;

currentEdgelndex = index of edge;

/I We now have the available edge with the shortest f(x).

edgeList[currentEdgelndex].available = false;

Algorithm 2. ModA*
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Algorithm ModA* continued

// If the destination wasn’t found, retrieve all connected edges.
if (destinationFound) {
for (each childEdge in edgeList[currentEdgelndex]) {
childEdge.available = true;
childEdge.g = mapData.edgeLength / mapData.roadSpeed
+ edgeList[currentEdgelndex].g;

childEdge.h = destinationGPS — childEdge.endNode.GPS;
childEdge.parentEdge = currentEdgelndex;
edgeL.ist.add(childEdge);

/1 1f the destination was found, add the route to the route list.

if (destinationFound) {
route = Route built by tracing back from edgeList[currentEdgelndex];
routeList.add(route);
routesFound = routesFound + 1;

destinationFound = false;

/I Return the list of potential routes.

return routeList;

Algorithm 2. ModA*
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3.3 Estimate Route Times (Steps 2, 3, 4, 5)

Given a list of potential routes, the agent must now determine which one to use
while also accounting for the effects of congestion. As shown by Levy et al. (2017),
determining the impact congestion has on a given route can require a large number of tries

before we can be sure we have found the fastest one.

To reduce the amount of searching required to find the fastest route with
congestion, we use a TIS containing travel time data collected from each vehicle. When a
vehicle passes through an intersection, the amount of time required to traverse the road
segment is transmitted to the database, along with the start and completion times on the
segment. As the amount of information is small and only transmitted at the intersection,
we can avoid the RIS communications capacity limitations noted by Yamashita et al.

(2005).

The collected travel time data is used by each agent as a substitute for direct
experience that would have been gathered through the exploration of different route
options. This allows our routing method to be flexible as to the origin and destination of
the agent — they need not have travelled to a destination previously to be able to select a

route that will account for traffic congestion.

3.3.1 Requesting Travel Times (Step 2)

Although the agents have travel time data available to them for any road segment
they may wish to select, they are faced with a problem. The amount of travel time data
can be very large, as it may be collected from many vehicles over a long period of time,
and the transfer of such a large volume of data would be impractical when a driver is

waiting for their route.
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We manage this issue by limiting the amount of data that is required by the agent
to make its decision. As the agent has a list of potential routes to choose from, they only
require the travel time data relevant to each route. The agent further reduces the required
data by estimating the time at which its vehicle will reach a given road segment, thus only

requesting the travel time data for a limited time frame.

The specification a time frame further aids the agent by accounting for changes in
congestion that may occur while travelling a route. For instance, a road segment may not
have much congestion at the time when the agent begins its route, but a number of
employers located along the route may begin their day as the agent’s vehicle travels,
producing congestion that didn’t exist earlier. Having data that indicates that a given road
segment will become more congested by the time its vehicle reaches it helps the agent

determine if selecting a route with that segment is good option.

3.3.2 Retrieving Travel Times (Steps 3, 4)

The traffic information system, upon receiving a request, must retrieve the data and
format it to send to the requesting agent. However, there are variations in the data that
must first be managed. The travel time data will vary over days and months — a road
segment may have little congestion on a Sunday afternoon, but be very congested on
Monday morning when a large number of drivers are travelling to work. Additionally,
seasonal changes may be expected, such as higher congestion on road segments near

shopping malls in the month of December.

The database accounts for these changes by only returning travel times for the same
day of the week as the day being routed. Thus, if the current date is a Monday, the database

will only retrieve data from previous Mondays.
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Another issue that may arise is travel time variation due to unforeseen conditions.
A driver may encounter a slow-moving vehicle or bottlenecking due to construction, which
may temporarily slow traffic. While these incidents will show in the data as an increased
amount of time required to traverse a road segment, they aren’t representative of the day-

to-day congestion that the driver may be expected to encounter.

The database manages this issue by averaging the travel time data returned. Upon
retrieval, the database will construct two values for the road segment — the long-term and
short-term average. The long-term average consists of the average time required to
complete the segment over all dates available, while the short-term average is that over the
most recent days. The number of recent days used is configured to be consistent for all

data requests.

Finally, when data is returned to the agent, it consists of a long-term and short-term
average for each road segment requested, adjusted for the estimated time of arrival at the

segment.

3.3.3 Building the Route Estimate (Step 5)
Given the list of potential routes and both long and short-term travel time averages
for each road segment, the agent must now make a routing decision. To do this we use the

Sampling And Weighting (SAW) formula from Levy et al. (2017):

*_o RouteTime; (i) i s RouteTime; (i)

ESTj, = w * +(1—w) = (6)

DaysOnRoute 10)

Rewritten, we use the formula as (7):

r
ESTyoute = W * Z

i=

T
Long — Term Avg(i) + (1 —w) * Z Short — Term Avg(i)
0 i=0
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Where EST,qyte 1S the estimated total route time, r is the number of segments on
the route, and w is a weighting factor. The weighting factor allows the agent to choose
which set of averages will have more value in the routing decision — long-term or short-

term.

The SAW formula (6) was selected for the route estimation task as it allows the
agents to easily apply the large amount of travel time data available to them while also
accounting for changes to the congestion problem that will occur over time. The weighting
factor is not a fixed value, but rather is changed by the agent over time as the congestion
problem changes. The selection of the weighting factor is explained further in section 6

of this chapter.

Once the agent has estimated the travel time for each potential route it selects the

one with the lowest estimate.

Steps 2, 3, 4, and 5 are implemented by the Route Selector algorithm.
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Algorithm RouteSelector
Input: List of potential routes, SAW weight.

Output: A route with the fastest estimated time.

routeList = List of routes from ModA*; // Algorithm 2: ModA*
weight = The SAW weight;

/I Calculate the estimated time for each route.
for (each route in routeL.ist) {
for (each roadSegment in route) {
/I Calculate estimated start time at road segment.
estStartTime = routeSegment.EstEndTime — routeSegment.EstTravelTime;
/I Request travel times from database for segment.
roadSegment.LongTermTime = Get Long-term average by estStartTime;
roadSegment.ShortTermTime = Get Short-term average by estStartTime;
/I Add the segment times to the route times.
route.LongTermTime = route.LongTermTime + roadSegment.LongTermTime;
route.ShortTermTime = route.ShortTermTime + roadSegment.ShortTermTime;
}
/I Calculate SAW estimated route time. Formula (7).
route. SAWESst = weight * route.LongTermTime

+ (1 — weight) * route.ShortTermTime;

Algorithm 3. Route Selector
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Algorithm RouteSelector continued

/I Select the route with the fastest estimate.
fastestSAW = 10000000; /I Stores the fastest estimate.
fastestindex = 0; I Stores the route list index of fastest.
for (each route in routeL.ist) {
if (route. SAWESt < fastestSAW) {
fastestSAW = route. SAWEsSt;

fastestindex = routeList.Currentindex;

¥

/I Return the estimated fastest route.

return routeL.ist[fastestIndex];

Algorithm 3. Route Selector

3.4 Apply Direct Experience (Step 6)

Although the agent has made a decision as to the best route to use, we are now
faced with a potential problem. In their research, Levy et al. (2017) required a large
number of routing runs before the agents reached equilibrium. This is partly due to the
agents having to guess the amount of congestion on a given road — an issue which we are
addressing with the use of a traffic information system. However, another issue is the
amount of route switching the agents perform while trying to settle on the fastest one. For

our routing method to produce a good route for each driver, the agents must reach an
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equilibrium where there is no incentive for them to switch routes in consecutive routing

tries.

To reach equilibrium the agents must avoid selecting different routes that have
slightly faster estimated times than the route they most recently completed. For instance,
if an agent were to select a route that is estimated to be one second faster than its previous
route, the agent may find that the new route is not as fast as expected, due to unanticipated
delays, such as a slower moving vehicle. In the next routing instance, the agent would
switch back to its first route, only to find the previous route may have been faster. This

cycle may continue many times before the agent reaches settles on a route.

We manage this issue by including previous experience on the route as the final
step of the routing process. If the agent has never used the estimated fastest route before,
it will always select it, allowing it to explore an option that may well prove be the best
available under current congestion. If the agent has used the route previously it then
compares it to the route it has used most recently for the same origin and destination. If
the route is the same it will continue to use it. If the route is different it must decide if

selecting the new route will be faster than the last used route.

The agent will now retrieve the average completion time for the new route and the
actual completion time for the most recently used route. This time is the agent’s own
experience on the route. If the new route is faster, the agent will select it, as both the
estimated route time and previous experience indicate this is likely to be a good choice. If
the new route’s previous times are slower, the agent will compare the new route’s
estimated time with the previous route’s average multiplied by an exploration factor. The

exploration factor represents the agent’s willingness to switch to a different route rather
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than continue exploiting the one they have most recently used. If the new route’s estimated
time is faster, it will select it, otherwise the agent will stay with the previous route. The

exploration factor static value used by the agent in all routing attempts.

The algorithm, Route Memory, implements step 6 and applies the agent’s direct

experience to the routing problem.
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Algorithm RouteMemory
Input: Estimated fastest route, last completed route, exploration factor.

Output: Selected route.

route = Estimated fastest route;
prevRoute = Last completed route;

explorationFactor = Exploration factor;

Il Check if the agent has used the route before. The agent always uses a new route.
if (route is not new) {
/I Compare the segment list of the new route and previous route.
if (route.segmentL.ist != prevRoute.segmentList) {
// The routes are different. Get the new route’s average route time in the past.
route.avgPastTime = The average of route time in past routing tries.
/I Compare the new route average time to the previous route time.
if (route.avgPastTime > prevRoute.actual Time) {
/I The new route average time is higher than the previous route time.
/I Compare new route estimated time to previous route time with exploration
// factor.
if (route. SAWESst > (prevRoute.actual Time * explorationFactor)) {
/I The agent will use the previous route. Set the selected route to previous.

route = prevRoute;

¥

return route;

Algorithm 4. Route Memory
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3.5 Driving the Route and Re-routing (Step 7)

While its vehicle is travelling its selected route, the agent evaluates its performance
at each intersection. As the vehicle approaches an intersection, the agent compares the
amount of time the vehicle has taken to reach this point in its route and compares it to the
estimated time, multiplied by a performance factor. The performance factor is used to
prevent the agent from evaluating the route time as simply slower than estimated, the
difference between the two must be large enough that the agent has reason to believe that

its route selection was a bad decision.

If the agent determines that its route is not performing as expected, they will re-
route, using the next intersection as its origin point and the same method as described in
sections 2 and 3. The next intersection is used to allow the agent time to develop a new
route and position the vehicle to execute it appropriately. The vehicle will then continue

travel using the new route selected.

The agent will only re-route once while on route. This limitation is set to prevent
the agents from attempting to re-route at each intersection, thus reducing the amount of
communication required. This limitation will also aid the agents in reaching an
equilibrium, avoiding large changes in road congestion that may occur if each agent is

constantly changing its routes.

Re-routing is implemented using the ReRouting algorithm.
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Algorithm ReRouting
Input: Agent’s route, Actual route time, Performance factor.

Output: Original route or new route.

route = The agent’s current route;

performanceFactor = Performance factor;

actualTime = Total time the agent’s vehicle has spent on route;

potentialRouteList = null; /I Empty list of potential routes if

I/ re-routing.

/I Check if the actual route time to the end of the road segment is greater than
/I the estimated route time to this point multiplied by the performance factor.
if (actualTime > (route.roadSegment.EstTime * performanceFactor)) {
/I The agent will re-route from the next intersection of the current route.
if (route.nextRoadSegment != route.lastRoadSegment) {
potentialRouteList = Call ModA*; // Algorithm 2: ModA*

route = Call RouteSelector(potentialRouteL.ist);

return route;

Algorithm 5. ReRouting
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3.6 Applying the Learning Algorithm (Step 8)

An agent’s route selection is affected by the weighting value they use in the SAW
formula. This weight must be learned by the agent, as its ideal value may change over
time, as traffic congestion along routes change. The learning process will utilize the

following steps:

1) After the agent’s vehicle completes a route, the agent will request the actual
travel times for its alternate routes from the database. The times used will be the
most recent road segment completion time averages, providing the agent with the
travel time they would likely have achieved if they had selected a given alternate

route.

2) The agent selects the route with the fastest actual travel time - this list includes
the route they just completed - and uses the SAW formula (6) to find the new

weight, wye,

Y¥ s RouteTime; (i)
)

¥ o RouteTime; (i)

ActualTravelTime = Wy, * + (1 — Wyew) *

SimulationDays
Rewritten, we use the formula as:

(FastestActualTravelTime — ShortTermAverage)

= 8
Wnew (LongTermAverage — ShortTermAverage) ®

3) The newly calculated weight represents the weighting value that would have
allowed the agent to select the fastest route, given the previously available travel
time data. However, the agent may choose to adjust it, depending on its learning

strategy.
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The agent’s learning strategy will determine how aggressively it will change its
routing weight. An exploratory strategy (Sutton and Barto, 2014) would cause the agent
to accept the newly calculated weight and use it in their next routing problem. However,
this strategy may not be advisable if patterns of congestion change rapidly from one routing

period to the next.

The agent may also use a strategy of exploitation (Sutton and Barto, 2014), in
which the weight changes very little from one route to the next, hoping to ride out any

fluctuations in road congestion in favour of long-term route stability.

To resolve this issue, the agent will treat the selection of a new weight as a multi-
armed bandit (MAB) problem, where the arms to be chosen are the existing weight being
used by the agent and the new weight calculated. The selection method is similar to that
used by the Upper Confidence Bound 1 (UCB1) MAB algorithm (Sutton and Barto, 2014),

in that it is deterministic in how it selects arms, rather than stochastic.

A deterministic method was chosen due to the large amount of actual travel time
data available to the agent. As the agent has the near perfect ability to determine which
weight would have given the best route in the previous routing episode, the randomness

associated with stochastic methods would not be helpful.

We use a maximum weight change factor to determine whether the agent’s strategy
is one of exploration (a high change) or exploitation (a low change). The weight change
factor remains fixed for the agent over successive routing tries. If the difference between
the new weight and the previous weight is greater than the weight change factor, then the

agent will use the previous weight adjusted by the weight change factor.
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The weight change is adjusted as follows:

(9)

_ maX{WneWJ (Wprev - ch)}r Whew < Wprev
Wysed =

min{WneW' (Wprev + ch)}r Whew = Wprev

Where wcf is the weight change factor, wy,,, is the newly calculated weight, wy,..,,
is the weight used in the recently completed routing episode, and w, .4 Is the adjusted

weight that will be used by the agent.

Algorithm LearnSAWWeight performs the agent SAW weight update.

Algorithm LearnSAWWeight

Input: Potential route list, Actual route time, Previous SAW weight, Weight change

Factor.

Output: Newly calculated SAW weight or previous SAW weight with adjustment.

potentialRouteList = List of potential routes from ModA* algorithm;
routeTime = The total time to complete agent’s current route;

prevWeight = The SAW weight the agent used to determine its recent route;
total TimeList = List of actual total times for each potential route;

wcf = Weight change factor;

Algorithm 6. LearnSAWWeight
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Algorithm LearnSAWWeight continued

// Build a list of actual total times for each potential route.
for (each potentialRoute in potentialRouteL.ist) {
for (each roadSegment in potentialRoute) {
/I Accumulate the average travel time for the road segment in the most recent
// simulation, adjusted for the time the agent’s vehicle would be travelling on it.
totalCurrentTime = totalCurrentTime + averageRoadSegmentTime;

¥
totalTimeList.add(totalCurrentTime);

/I Select the route with the fastest time.
fastestRouteTime = 10000000; /1 Stores the fastest time.
fastestindex = 0; /1 Stores the route list index of fastest.
for (each time in totalTimeList) {
if (time < fastestRouteTime) {
fastestRouteTime = time;

fastestindex = total TimeList.Currentindex;

Algorithm 6. LearnSAWWeight
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Algorithm LearnSAWWeight continued

/I Retrieve the average long and short-term travel times for the fastest route.

for (each roadSegment in potentialRouteL.ist[fastestIndex]) {
/Il Calculate estimated start time at road segment.
estStartTime = routeSegment.EstEndTime — routeSegment.EstTravelTime;
Il Request travel times from database for segment.
roadSegment.LongTermTime = Get Long-term average by estStartTime;
roadSegment.ShortTermTime = Get Short-term average by estStartTime;
/[ Add the segment times to the route times.
longTermTime = longTermTime + roadSegment.LongTermTime;

shortTermTime = shortTermTime + roadSegment.ShortTermTime;

/I Calculate the weight that would have allowed the agent to select the route.
newWeight = (fastestRouteTime — shortTermTime)

/ (longTermTime — shortTermTime); // Formula 8.

/I Adjust the newWeight by the cut-off factor if the difference is too large. Formula 9.
if (jnewWeight — prevWeight| > wcf) {
if (newWeight >= prevWeight) {
newWeight = prevWeight + wcf;
}
else {
newWeight = prevWeight — wcf;
}
}

return newWeight;

Algorithm 6. LearnSAWWeight
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Chapter 4: Experimental Design

4.1 Hypothesis and Research Questions

We propose the following hypothesis:

A multi-agent system using a combination of centralized real-time traffic
information system and direct agent experience will achieve a user equilibrium with a

lower total route time than is possible using either method alone.

Additionally, we would like to answer the following questions:

4) Will such a multi-agent system achieve user equilibrium with fewer routing
episodes than either a centralized real-time traffic information system or direct
agent experience?

5) Will re-routing while on route result in lower total route times than when no re-
routing is used?

6) Will the weighting factor reach an equilibrium point at which the agent will no

longer make adjustments between routing episodes?

4.2 Experimental Design

We tested our hypothesis through the use of simulation. The simulations were run
using a variety of parameters to determine the conditions under which routing would be
most effective at reducing delays due to congestion. As a control, simulations were also
run in which the agents were limited to using only the travel time information they were
able to collect through direct experience, as a typical driver would. The resulting route
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times were then compared to determine if the agents saw an improvement by using either

the TIS or TIS/direct experience method.

4.2.1 Simulation Hardware and Software

The agent software, including the route building and learning components, was
developed in Java 1.8.0_121 using the NetBeans IDE, version 8.2. Individual agent
configurations and data collection were performed using MySQL 8.0. The road
simulations were run using SUMO 0.27.1 (DLR, 2017), an open source traffic simulator.
All simulations were executed on a laptop using four Intel Core i7-7500U CPUs at 2.7Ghz

with 8GB of RAM.

& GridMap.sumocfg - SUMO 0.27.1 — ) X
B File Edit Settings Locate Simulation Windows Help =
& o =TT

SEO||P LD rme I | oo e[ 0T | =

$ QA [ @ P| standard ~® =

- 87| x:51.09, y:276.58 x51.09, y:276.58

Figure 2. SUMO Traffic Simulator
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4.2.2 Simulation Configurations

All simulations use the same map lattice — 25 standard city blocks of 100 metres to
aside, arranged in a 5x5 grid. A grid was selected to provide a consistent distance between
all intersections, allowing the agent a choice of paths that may have varying amounts of
congestion, but not a significant difference in length. As the agent has several possible
equal length routes available to it, the selection of a route becomes one of how much
congestion is acceptable, rather than distance. A diagram of the map grid is presented in

Figure 3.

100 Metres

Figure 3. 5x5 Lattice Map

Each simulation, with the exception of the first set below, simulates 100 agents
using the map simultaneously. Although configuration parameters are changed between

simulations, all simulations use the same set of origin and destination locations for the
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agents. As well, each agent is limited to starting and ending their route at an intersection,

rather than in the middle of a road segment.

We limit the number of simulation runs to 60 per set of parameters in each scenario,
with the exception of the first. This limit is selected as each simulation run represents the
same day in repeated weeks. As such, for the routing method to be of value to a driver, it
must produce improved routing results over a small number of attempts, leading us to use

a limited number of runs for each scenario.

The following six sets of simulation scenarios are used:

1) Each agent simulated individually

Each agent is provided with the five fastest routes from the modified A*
algorithm and allowed to run through each as the sole agent in the simulation. The
fastest of the five is then selected as the fastest possible route time for the agent to

travel from its origin to its destination without delays due to traffic congestion.

2) Run the simulation with direct experience but no re-routing

The simulation is run using 100 agents that are limited to using only the
travel time data they can collect directly. The agents start by exploring the five
fastest potential routes from the modified A* algorithm to determine the fastest one
and then select a route as they gain further experience. The SAW formula is used
to estimate the fastest route, but each agent uses an epsilon-greedy algorithm
(Sutton and Barto, 2014) to make their selection, with the epsilon value varied as

one of the simulation parameters.
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The simulations are run 60 times with the SAW weight fixed such that the

same weight value is used for all simulations for a given set of parameters.

3) Run the simulation with a TIS but no re-routing

The simulation is run using 100 agents that are allowed to learn a new SAW
weight at varying rates using all travel time data available from the TIS. The SAW
formula is used to estimate the fastest routes from a list of potential routes and the
agents select the fastest estimate. After each simulation, the agent reviews the
actual travel time for each potential route and determines what the SAW weight

would need to be for the agent to have selected the fastest route.

The simulations are run 60 times for each set of parameters.

4) Run the simulation with direct experience and re-routing

The simulation is run using 100 agents that are limited to using only the
travel time data they can collect directly. This set of simulations is identical to the
simulations in method 2, with the exception that a route performance factor of 1.5
is set for each set of simulations. The performance factor is a setting that allows
the agent to calculate a new route from the next intersection they will occupy, to
their destination. In the case of these simulations, the agent will only attempt to re-
route if the total time they’ve experienced on a route is greater than 1.5 times the
expected route time to that point. While an agent can consider re-routing at each

intersection, each agent is only allowed to select a re-route once in each simulation.

The simulations are run 60 times for each set of parameters.
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5) Run the simulation with a TIS and re-routing

The simulation is run using 100 agents that are allowed to learn a new SAW
weight at varying rates using all travel time data available from the TIS. This set
of simulations is identical to simulations in method 3, with the exception that a

route performance factor of 1.5 is set for each set of simulations.

The simulations are run 60 times for each set of parameters.

6) Run the simulation with a combination of a TIS and direct experience

The simulation is run using 100 agents that are allowed to learn a new SAW
weight at varying rates using all travel time data available from the TIS. Re-routing

is not allowed for the agents.

This set of simulations differs from method 3 in that agents are also able to
learn from direct experience. After an agent is provided a list of potential routes
with estimated route times from applying the SAW formula, it reviews its previous
route experience. If the route with the fastest estimated route time has not been
used before, the agent will always select it. If the best estimated route is the same
as the route used in the previous simulation, the agent selects the same route again.
If the best estimated route is different from the route used in the previous
simulation, the agent compares the estimated route time to the actual route time
from the previous simulation. The previous route’s travel time is modified by an
exploration factor of 0.5. If the estimated route is faster than the adjusted previous

route time, the agent selects the new route.

The simulations are run 60 times for each set of parameters.

53



ROUTING USING A TRAFFIC INFORMATION SYS. AND DIRECT EXPERIENCE

4.3 Experimental Analysis

To measure the effectiveness of routing with a TIS we measure the price of anarchy
(Shoham and Leyton-Brown, 2009). The price of anarchy is the social cost due to
congestion. In the case of vehicle routing it can be measured as the increase in route times

that wouldn’t otherwise be experienced if congestion was non-existent.

The price of anarchy is calculated as the ratio of the social cost of congestion to the
social cost at a minimizing action distribution s* (Shoham and Leyton-Brown, 2009).
From chapter 2, the social cost is measured as:

€)= > s(@)a(s)

iEN a;€EA;

Where:
N = {1, ...,n} is a set of players of different types;

A=A, X..XA,, where 4; € 2R{@} is the set of actions. The action a; € 4; is
selected by all players of type i. The action a; represents a segment of the player’s path

A;;

c = (cq,...,Cx), Where c,: R, — R s a cost function for road segment r € R, and

c, is nonnegative, continuous and nondecreasing;

s(a;) is the element of s that corresponds to the set of players of type i who select

action a; € A;.
The price of anarchy is thus:

C(s)
C(s*)

Price of Anarchy =
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In our research, the value of C(s*) is calculated by summing the fastest route time
for each agent when no other agents are being simulated. This data is collected using
simulation scenario 1. As such, the minimized action distribution represents the fastest

route time possible, given the list of origins and destinations being used.

The value of C(s) is calculated as the sum of the route times when all agents are
simulated simultaneously. The price of anarchy ratio will always give a value greater than
or equal to 1, where 1 indicates the agents have found a set of routes that provides the
fastest possible route times. The method with the lowest price of anarchy for a given set
of parameters at user equilibrium will be considered to provide the fastest routing solutions

for all agents.
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Chapter 5: Results

5.1 Results Measured

For all simulation methods, with the exception of the first, the following data are

presented for each set of parameters:

1)

2)

3)

4)

5)

6)

7)

The total route time for all agents on the 60" simulation. As this is the final
simulation run for a given set of parameters, it represents the point at which the
agents will no longer be able to modify their routes.

The price of anarchy at the 60" simulation.

The minimum price of anarchy across all simulations.

The mean price of anarchy. This value is presented to show the difference
between the final simulation results and the average for the method.

The median price of anarchy. This value is presented to show the overall
effectiveness of the method across all simulations.

The number of times user equilibrium was achieved. Equilibrium may last for
a single pair of simulations, or may be repeated across multiple simulations.
Where re-routing is used, the minimum number of re-routes across all

simulations.

5.2 Each agent simulated individually

The total travel time for all agents using their best route is: 3431.4 seconds. This

number is used as the C(s*) value when calculating the price of anarchy.
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5.3 Run the simulation with direct experience but no re-routing

Table 1 presents the simulation results for direct experience with no re-routing.
Each set of simulations is run 60 times and has a fixed SAW weight, such that the agent
does not change the weight between simulations. The mean and median price of anarchy
is calculated using only the 6" through 60" simulations as the agents are still exploring

potential routes in the 1 through 5" simulations, which would skew the values.

The epsilon values determine the percentage chance that the epsilon-greedy
algorithm will select a route other than the fastest provided by the ModA* algorithm and
their previous experience. Thus, an epsilon of 10 represents a 10 percent chance that the
agent will select a random alternate route in an attempt to find a faster route along traffic

congested roads.

Table 1.

Direct Experience w No Re-routing, Results

Simulation Total Price of Min. Mean Median No. Times at

Parameters Timeon  Anarchy  Price of Price of Price of Equilibrium
60" Sim 60" Sim  Anarchy  Anarchy  Anarchy

SAW weight=1 4190.8 1.221 1.161 1.203 1.207 2

Epsilon=0

SAW weight=1 4088.9 1.192 1.152 1.214 1.211 0

Epsilon=5

SAW weight=1 4306.3 1.255 1.152 1.22 1.214 0

Epsilon=10

SAW weight=1 4161.3 1.213 1.17 1.268 1.268 0

Epsilon=15

SAW weight=1 4327.7 1.261 1.226 1.306 1.299 0

Epsilon=20

SAW weight=0.75  4046.6 1.179 1.169 1.186 1.182 8

Epsilon=0

SAW weight=0.75  3983.3 1.161 1.161 1.209 1.206 0

Epsilon=5

SAW weight=0.75  4337.3 1.264 1.168 1.242 1.242 0

Epsilon=10

SAW weight=0.75  4488.8 1.308 1.205 1.287 1.281 0

Epsilon=15
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SAW weight=0.75  4478.3 1.305 1.196 1.301 1.297 0
Epsilon=20

SAW weight=0.5 4083.5 1.190 1.175 1.199 1.194 6
Epsilon=0

SAW weight=0.5 4219 1.23 1.165 1.216 1.214 0
Epsilon=5

SAW weight=0.5 3980.9 1.160 1.16 1.236 1.227 0
Epsilon=10

SAW weight=0.5 4613.8 1.345 1.158 1.267 1.274 0
Epsilon=15

SAW weight=0.5 4367 1.273 1.196 1.287 1.289 0
Epsilon=20

SAW weight=0.25 4014.7 1.17 1.149 1.182 1.179 8
Epsilon=0

SAW weight=0.25 4014.5 1.17 1.15 1.214 1.211 0
Epsilon=5

SAW weight=0.25 4106.7 1.197 1.179 1.256 1.250 0
Epsilon=10

SAW weight=0.25  4140.8 1.207 1.183 1.253 1.250 0
Epsilon=15

SAW weight=0.25 4272.2 1.245 1.195 1.294 1.294 0
Epsilon=20

SAW weight=0 4019.4 1.171 1.169 1.196 1.187 5
Epsilon=0

SAW weight=0 4250.2 1.239 1.163 1.206 1.195 0
Epsilon=5

SAW weight=0 4563.8 1.330 1.169 1.242 1.242 0
Epsilon=10

SAW weight=0 4335.9 1.264 1.185 1.264 1.253 0
Epsilon=15

SAW weight=0 4342.8 1.266 1.195 1.288 1.285 0
Epsilon=20

5.3.1 Minimum and Median Price of Anarchy

Figure 4 displays the minimum and median price of anarchy for each set of
parameters. The minimum price of anarchy was lowest when epsilon was set to 5 for all
SAW weights, with the exception of w=0.5, where an epsilon of 15 provided the lowest

value. The lowest median occurred where epsilon was 0, regardless of the weight used.

That the median price of anarchy was consistently lowest when epsilon is 0, while
also being highest at an epsilon of 20, shows us that agents are able to exploit their known
routes more effectively when other agents are less likely to explore novel routes.
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The difference between the minimum and median price of anarchy for each set of
routing parameters was found to vary between 0.013 and 0.116, with the largest differences

occurring where higher epsilon values were used.

Minimum/Median Price of Anarchy with Direct Experience,
No Re-routing
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Figure 4. Minimum/Median Price of Anarchy w Direct Experience, No Re-routing

5.3.2 User Equilibrium Points

Figure 5 displays the number of occurrences of user equilibrium for each set of
parameters. Equilibrium occurred only where the epsilon value was set to 0 as the agents
would randomly select alternative routes when using higher epsilon values, regardless of
their perceived likelihood of producing a better route time, preventing equilibrium from

being achieved.
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Equilibrium Points with Direct Experience,
No Re-routing
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Figure 5. Equilibrium Points w Direct Experience, No Re-routing

5.4 Run the simulation with a TIS but no re-routing

Table 2 presents the simulation results for a TIS with no re-routing. Each set of
simulations is run 60 times. The first five sets of simulations use a fixed SAW weight, the
remaining sets allow the agents to change the weight by an amount ranging from 0.1t0 1.0

between each simulation.

The mean and median price of anarchy is calculated using only the 6™ through 60"
simulations as the agents have not yet produced sufficient travel time data to avoid using
estimated times in the 1% through 5" simulations. Where travel time data is not available,

the agent calculates an estimate using the allowed road speed and road segment length.
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Table 2.

TIS w No Re-routing, Results

Simulation Total Price of Min. Mean Median No. Times at

Parameters Timeon  Anarchy  Price of Price of Price of Equilibrium
60" Sim 60" Sim  Anarchy  Anarchy  Anarchy

SAW weight=1 3920.8 1.143 1.089 1.123 1.123 0

Weight fixed

SAW weight=0.75  3897.7 1.136 1.097 1.122 1.118 0

Weight fixed

SAW weight=0.5 3932.2 1.146 1.098 1.120 1.117 0

Weight fixed

SAW weight=0.25  3920.5 1.143 1.092 1.127 1.126 0

Weight fixed

SAW weight=0 3848 1.121 1.11 1.144 1.141 0

Weight fixed

SAW weight=0.5 3824.9 1.115 1.089 1.118 1114 0

Weight step=0.1

SAW weight=0.5 3788 1.104 1.094 1.121 1121 0

Weight step=0.2

SAW weight=0.5 3784.4 1.103 1.079 1.118 1.117 0

Weight step=0.3

SAW weight=0.5 3893.4 1.135 1.096 1.122 1.122 0

Weight step=0.4

SAW weight=0.5 3911.3 1.14 1.093 1.125 1.125 0

Weight step=0.5

SAW weight=0.5 3847.2 1.121 1.099 1.128 1.128 0

Weight step=0.6

SAW weight=0.5 3777.8 1.101 1.093 1.123 1.12 0

Weight step=0.7

SAW weight=0.5 3856.5 1.124 1.098 1.123 1.122 0

Weight step=0.8

SAW weight=0.5 3939.5 1.148 1.097 1.122 1.119 0

Weight step=0.9

SAW weight=0.5 3910.5 1.14 1.089 1.120 1.120 0

Weight step=1.0

5.4.1 Minimum and Median Price of Anarchy
Figure 6 displays the minimum and median price of anarchy for each set of
parameters. The minimum price of anarchy was lowest when the agents could change their

SAW weights by up to 0.3 between routing episodes. The median price of anarchy was
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lowest where the agents were allowed to change their SAW weights by up to 0.1 between

routing episodes.

The difference between the lowest median price of anarchy and the highest was
0.027. However, when fixed SAW weights are not included the difference drops to 0.014,
indicating that there is greater similarity in the median price of anarchy when the agents

are able to change their weight values, regardless of the amount of change allowed.

The difference between the minimum and median price of anarchy for each set of
routing parameters was found to vary between 0.019 and 0.038. This is a smaller range of
differences than was found using direct experience only. As well, the highest median price
of anarchy, 1.141, was found be lower than the lowest median value when using direct

experience, 1.179.

Minimum/Median Price of Anarchy with TIS, No Re-routing
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Figure 6. Minimum/Median Price of Anarchy w TIS, No Re-routing
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5.5 Run the simulation with direct experience and re-routing

Table 3 presents the simulation results for direct experience with re-routing. Each
set of simulations is run 60 times and has a fixed SAW weight, such that the agent does
not change the weight between simulations. The mean and median price of anarchy is
calculated using only the 6™ through 60" simulations as the agents are still exploring

potential routes in the 1 through 5" simulations, which would skew the values.

Each agent is allowed to re-route a maximum of 1 time per simulation with a
performance factor of 1.5. The re-route decision is made at the end of each road segment
by multiplying the estimated route time to the end of the segment by 1.5 and comparing
the actual route time to that point. If the actual time is greater than this value and the agent

has not re-routed, the agent will re-route.

Table 3.

Direct Experience w Re-routing, Results

Simulation Total Price of Min. Mean Median No. Timesat Min. No.

Parameters Timeon Anarchy  Price of Price of Price of Equilibrium  Re-routes
60" Sim 60" Sim  Anarchy  Anarchy  Anarchy

SAW weight=1 40835 1.190 1.18 1.201 1.195 1 17

Epsilon=0

SAW weight=1 42045  1.225 1.164 1.232 1.230 0 18

Epsilon=5

SAW weight=1  4378.4  1.276 1.167 1.239 1.233 0 16

Epsilon=10

SAW weight=1 43709 1.274 1.196 1.273 1.272 0 18

Epsilon=15

SAW weight=1  4226.8  1.232 1.176 1.289 1.29 0 17

Epsilon=20

SAW 4093.8  1.193 1.188 1.2 1.193 0 15

weight=0.75

Epsilon=0

SAW 4096.7  1.194 1.153 1.222 1.217 0 18

weight=0.75

Epsilon=5
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