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Abstract 

 

Pseudomonas aeruginosa is a Gram-negative organism that is ubiquitous in the 

ecosystem and antibiotic resistant. Capable of long-term survival, it is a common 

cause of hospital-acquired infections. The focus of this thesis is to unveil P. ae-

ruginosa genes interactions and identify those that are pivotal to its mechanisms 

of survival. With unlabeled data collected from P. aeruginosa gene expression in 

response to low nutrient water, a Bayesian Networks Machine Learning method-

ology was implemented, and a static regulatory network of its survival was mod-

eled. Subsequently, node influence techniques were used to infer a dozen genes 

as key orchestrators of the survival phenotype. Among these genes, PA0272 was 

identified to be the root node in the learned network model. Water survival ex-

periments were conducted in the lab on PA0272 mutants, and it was interestingly 

found that their survival declined by 10-fold compared to the wild type PA01; 10-

fold or higher being significant. 

Keywords: Pseudomonas aeruginosa, gene expression, Bayesian Network, Ma-

chine Learning 
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Chapter I - Introduction 

 

A Gram-negative bacterium, Pseudomonas aeruginosa is ubiquitous in the envi-

ronment and known for its ability to inhabit a number of niches, causing disease 

in plants, animals, humans. Due to P. aeruginosa resistance to antibiotics and its 

ability to form biofilms, the diseases caused are very difficult to treat [1, 2]. This 

diverse organism is a common cause of hospital-acquired infections, mostly caus-

ing skin infections in burn patients, infections of indwelling devices, and fatal 

lung infections in patients with cystic fibrosis [2, 3]. According to [4], approxi-

mately 40% of mechanically ventilated patients with P. aeruginosa pneumonia 

succumb to their condition. Studies have shown that P. aeruginosa may survive 

for months on hospital surfaces [5] and can be considered a model organism for 

the study of diverse bacterial mechanisms that contribute to persistence. The pres-

ence of a large number of genes, 50% more genes than E. coli, permits diversity 

and adaptability by the organism [6, 7]. Understanding how this organism is able 

to survive, particularly in water depleted of nutrients, is the primary focus of this 

thesis.  

1. Data Description 

 

An existing transposon library of P. aeruginosa mutants was utilized. This mini-

Tn5-luxCDABE transposon mutant library of P. aeruginosa PAO1 is a collection 

of random transposon mutants, each containing a mutation in a different gene. This 

is the result of insertion of a mini-Tn5 transposon into the gene, which prevents 

effective transcription and eventually translation of the gene into a functional pro-

tein. Each insertion of the mini-Tn5 transposon contains the luxCDABE operon, 
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which results in light production as the gene is being transcribed. This allows the 

determination of gene expression under a variety of conditions. The luxCDABE op-

eron is derived from the bacterium Photorhabdus luminescens, which is a lumines-

cent marine bacterium [8]. The mini-Tn5-luxCDABE library in PAO1 contains 

9,000 mutants, of which 2,500 have been mapped and characterized. Of the 2,500 

characterized mutants, 1,384 were determined to produce light and determined to 

be lux fusions. This collection of 1,384 mutants was screened for gene expression 

in water by measuring the luminescence in counts per second (cps) as well as the 

optical density (OD600) of each well over time points ranging from 8 hours to 2 

months. Gene expression data [9] was analyzed by dividing cps/OD600 for each 

well at each time point and then calculating the fold change of each well at each 

time point compared to time zero. The gene expression data has 15 columns overall, 

the first of which is “well_ID” and represents the array identification of the wells 

in which the mutants have been inoculated. The second column is “gene_name”, 

the third is the “PA_number”, the fourth is “product_name”, the fifth is “origi-

nal_well_ID”, that is the ID of the well before the transfer, and columns 6 to 15 (T4 

– T672) represent the ten different time points (sampling times) of the gene expres-

sion which represents the ratio of the actual measurement (absolute value) at time 

Ti (i>0) by the value for the same gene at time zero (T0). The procedure of estab-

lishing this ratio is known as normalization, that is from the absolute value to a 

relative value. The second dataset that consisted of 18-timepoint was obtained a 

couple months after the collection of the first dataset, for an overall 28 data tuples. 
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2. Research Questions 

The P. aeruginosa genome has a greater genetic and functional diversity [4], which 

explains its versatility. With 8.4% of its genes predicted to be involved in regula-

tion, this percentage for P. aeruginosa is considered to be well above those of all 

sequenced genomes [6]. Both [4] and [10] discussed a comparative genomic study 

of various P. aeruginosa genomes. This led to the paradigm according to which the 

bacterium is of a mosaic composition: a Core Genome, and an Accessory Genome. 

The former is common to all the strains studied and encodes a certain number of 

factors, such as enzymes involved in nutrient uptake and metabolism. The second, 

i.e., the accessory genome, represents about 10% of the genome and varies from 

strain to strain. Works by [4] and [10] attribute to this latter component the niche-

based adaptation of the organism which survives in low nutrient environments. Cer-

tain elements of the accessory genome are thought to promote persistence in hostile 

environments through the encoding of metabolic pathways [11, 12]. In 2010, [4] 

stated the necessity to acquire knowledge of the accessory genome for the applica-

tion of P. aeruginosa in biotechnology and at a more critical level for the develop-

ment of effective treatment or prevention of the virulent infections caused by the 

bacterium. The foregoing provides a substantial rationale and significance to our 

research project which aims to identify and understand the survival mechanism of 

P. aeruginosa in low nutrient environment. Below are formulated the following 

main research questions and hypotheses: 

Q1: Which computational model accurately characterizes P. aeruginosa survival 

mechanism in low nutrient water? 
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Q2: As per a well-defined computational model, which regulatory genes primarily 

contribute to P. aeruginosa survival in low nutrient water? 

H1: If genes are considered as nodes of a graph, a graphical model would describe 

the mechanism of survival, unveiling causal node influences, and functional inter-

plays among gene groups.  

H2: If the bacterium is considered as a population of genes, not all but only some 

key genes would operate as regulators, to orchestrate the survival mechanism. 

Subsequently, additional questions are posed, some of which are partially broached 

in the scope of this work, and recommendations are made to further tackle them in 

future works.  

Q3: What are the functional interplays in P. aeruginosa survival mechanism in the 

absence of nutrients? 

Q4: Could the bacterium temporal states be computationally inferred? 

Q5: Is P. aeruginosa survival solely due to accessory genome or of shared respon-

sibility with core genome? And if so, to which extent (%) is each of the two com-

ponents accountable? 

Designing a methodology to answer these questions will lead to the identification 

of low nutrient response genes, shedding thus light on the survival mechanism. 

Also, it will be instrumental in elucidating temporal direction of interaction (cau-

sality/influence) among P. aeruginosa genes. With an existing transposon library 
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of P. aeruginosa mutants, research experiments were designed to collect gene ex-

pression data [9]. Machine Learning techniques have been applied on this dataset 

to infer information concerning the survival mechanism of P. aeruginosa, thus 

making this a multidisciplinary research. 

3. Thesis Organization 
 

This thesis is organized into five chapters. The first is the introduction to the 

research topic. It summarizes the problem, describes the dataset and announces 

the research questions. The second chapter covers literature review and the third 

traces the research methodology. The fourth chapter shows and discusses the 

results. The fifth chapter offers conclusions and future works. Lastly, the back 

matter of the thesis includes an appendix with additional tables. 
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Chapter II – Literature Review and Theoretical Framework 

2.1 Microarray Data and Bases for Processing Techniques 

 

A microarray concept was used in [13] to introduce gene expression analysis and 

computational genomics. Generally, functional genomics, genome sequencing, and 

gene profiling or gene expression (to identify genes associated with a certain phe-

notype) are frequent topics in this area of study. To these topics, [13] does not pro-

pose specific solutions per se; rather it introduces the microarray structure, its op-

eration, and the general analysis methods of gene expression data. This includes the 

representation of gene expression data and the computation of distance for the eval-

uation of similarity, which is an integral part of clustering methods. Though clus-

tering methods are much more complex in their categorization [14], the literature 

in [13] distinguishes two major types of clustering: Hierarchical and non-hierar-

chical. They further highlight key terminologies that are useful in referencing por-

tions of data in the gene expression matrix. The first is gene expression profile and 

corresponds to the cumulative expression levels for a gene across all experimental 

conditions. The second, sample expression profile is the cumulative expression lev-

els for all genes in a single experimental condition. Another interesting point in [13] 

is the aspect of relating expression data to other biological information for acquiring 

insight on biological processes and making new findings. Of notable interest is also 

[15] where a probabilistic model identifies co-regulated genes with their transcrip-

tional regulators and the conditions that influence their regulation. 
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2.2 Machine Learning in Gene Expression Analysis 

 

In [16], a gene is defined as a segment of DNA which encodes for a protein, and 

gene expression is described as the sequential steps of the DNA transcription into 

RNA and the translation of the RNA into the associated protein. The expression 

level of a gene in an organism is therefore measured through the observation of its 

protein fabrication rate. A microarray allows to capture at once the integral 

biological activities and to generate high-throughput data useful in the inference of 

cell regulatory pathways.  

Discussing the applications of Machine Learning in biology, [16] distinguish 

Supervised Learning and Unsupervised Learning, both of which learn information 

from data. The supervised learning is a feedback-based learning in which for every 

input, the learning agent is provided with a target reference. But in the unsupervised 

learning there is no feedback to the learning algorithm. In gene expression analysis 

as highlighted by [16], unsupervised learning could be achieved with techniques 

such as Clustering or Bayesian Networks (BN). The flexibility of Clustering and its 

intuitiveness make its use common in the domain of bioinformatics [17]. Bayesian 

Networks on the other end has a probabilistic approach and its application in gene 

expression microarray data has drawn much attention due to the insight it provides 

pertaining to the network of interaction among cells that regulate the gene 

expression. BN was applied for the first time in this area by [18], where a probabil-

istic network was learned with a Saccharomyces cerevisiae data matrix, capturing 

the joint probability distribution over the expression levels of the genes. 
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2.3 Bayesian Networks and Structure Learning 

Bayesian networks (BN) combine two well established mathematical areas: Proba-

bility and Graph Theory. Defined as Direct Acyclic Graph (DAG), it is a graphical 

representation that establishes probabilistic relationships among a finite set of dis-

crete random variables of a given domain [19]. Each node in the graph, as illustrated 

in Figure 2.1 [20], represents a domain variable. When a node has a directed arrow 

or arc to another one, the first is said to be the ancestor or parent of the latter. To 

each arrow in the graph is associated a Conditional Probability Distribution (CPD) 

of a node Xi given its parent Pa(Xi). Considering a graph G and its associated CPD, 

the joint distribution of all variables is uniquely represented by the following fac-

torized joint probability distribution:  

����, … , ��� 	 	�����|�������																			�2.1�
�

 

  .    

 

 

 

 

 

 

The link between two variables in a BN is interpreted as correlation or causation. 

In the latter case, the network is called Causal Bayesian Network, and is adopted in 

most gene expression analysis for causality inference. Illustrating a causal 

Chronic bronchitis 

of Smoking 

 

Long cancer 

 

C

H History of Smoking 

 

B

F XFatigue 

 

Mass seen 

on X-ray 

 

Figure 2.1: An example of Bayesian Networks, excerpted from [20] 
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influence, [19] presented the manipulation of an independent variable A while ob-

serving its effect on a dependent variable B. This resulted in different probability 

distributions of B given the values assigned to A, (�[�|�] 	 �� ≠ 	�[�|� 	 ��]).  

In real life applications, the graphs of the BN are initially unknown. Domain 

knowledge is one of the means for constructing Bayesian Networks. It is achieved 

in three main steps: the determination of the number and the meaning of the domain 

variables, the establishment of the influence relationships among the variables, and 

the computation of the conditional probabilities from the BN structure.  

Several domain knowledge-based techniques have been developed [21, 22, 23] to 

aid the construction of Bayesian networks. But these knowledge-based techniques 

are not suitable when it comes to applications requiring a complete construction 

i.e., there is an edge between any pair of nodes in the graph. On the other hand, the 

method of learning from data [23, 24, 25] can achieve a complete construction [19] 

and consists of two main learning tasks: Parameters learning and Structure learning. 

Because the network structure is a priori unknown, learning this structure would 

theoretically precede the learning of the parameters. However, in practice, the pa-

rameters’ learning is generally integrated through an inner loop with the structure 

learning [19]. Learning Bayesian networks structure from data amounts to search-

ing amid the eligible networks, the one that best represents the data. Figure 2.2 

illustrates the general overview. Because this search process is NP-complete [26] 

and therefore is likely to take indeterminate amount of time to complete, heuristic 

approaches have been proposed to learn graph structure from data [27, 28]. These 
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structure learning algorithms are categorized in two majors groups: Score-and-

search-based approach [24, 25, 29] and constraint-based approach [30, 31]. From 

these approaches emerged a third one known as hybrid method, consisting in the 

coupling of the two other methods. 

 

 

 

 

 

 

2.3.1 Definitions and Theorems 

Presented below are key definitions, theorem and remarks to provide some basis 

for structure learning. 

 

Definition 2.3.1: There is an uncoupled head-to-head meeting or v-structure at a 

node X on a chain in a DAG if there is a head-to-head meeting i.e., Y�X Z at X 

and no edge between Y and Z. 

Theorem 2.3.1: Two DAGs G1 and G2 are Markov equivalent1 if and only if they 

have the same links (edges without regard for direction) and the same set of uncou-

pled head-to-head meetings. Also, these DAGs are faithful to the same probability 

distribution. 

Definition 2.3.2: Markov equivalence classes are disjoint classes, each containing 

                                                      
1 Markov equivalence groups DAGs into equivalence classes based on the conditional independen-

cies that they entail [32]. 

Data 

+ 

Prior Information 

Bayesian 

Net 

B 
 

E 
 

A 
 

F 
 

C 
 

D 
 

Figure 2.2: Graphical illustration of Bayesian Network Learning [18] 
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DAGs that are Markov equivalent.  

Definition 2.3.3: A DAG pattern is defined as a unique graph that is used to repre-

sent a given class of Markov equivalence and is characterized by the coexistence of 

directed and undirected edges.  

Remark 2.3.1: In a DAG however, all edges are directed. While for every undirected 

edge between two nodes in a DAG pattern the corresponding edge in any of the 

DAGs of the class is directed, the direction could be either way. But for a directed 

edge in a DAG pattern, the homologous edge is identical for all DAGs in the class. 

Remark 2.3.2: DAG pattern, PDAG (Partially Directed DAG) and CPDAG (Com-

plete Partially Directed DAG) all refer here to Markov equivalence class and would 

be used interchangeably. 

2.3.2 Score-and-Search-based Method 

The score-and-search-based method requires a search space to be defined, a search 

strategy to be devised and a model selection criterion.  

a. Search Space 

The search space a priori contains all eligible Direct Acyclic Graphs (DAGs) in the 

domain. This is known as Network structure search space. Works by [33] have 

been instrumental in determining the number of DAGs in a search space given the 

variables count in the domain under consideration. Formula (2.2) below shows the 

number of DAGs as a highly exponential function of the number of variables. 

���� 	 	��−1�������2��������� − ��
�

� �
																				�2.2� 

When applied to real world domains which usually have substantial number of 
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variables, enumerating and scoring all possible DAGs is infeasible. An alternative 

known as Equivalence classes of network structure search space that considerably 

reduces the number of network candidates is the one in which the networks under 

consideration in the space are Complete Partial DAG (CPDAG) also referred to as 

DAG pattern [28]. This cardinality reduction is corroborated by [34] that demon-

strates that for an increasing number of variables up to n=10, there is an asymptotic 

ratio of number of DAGs over number of CPDAGs:  

lim�→�% &�'(_�*+�,��&�'(_�*+�, = 3.7																	�2.3� 
A CPDAG is a single graphical representation of a group of DAGs which are Mar-

kov equivalent, and DAGs belonging to same CPDAG class imply exactly the same 

set of independence statements among the variables in the domain. While search in 

a space of DAGs results in a DAG as output, the search result for a CPDAGs space 

is a CPDAG - a group of DAGs. Though [19] notes that Markov equivalent struc-

tures cannot model relationship of exact direct influence, this research posits that 

this could still be achieved by decomposition into steps. Basically, one would first 

take advantage of the reduced number of network candidates (CPDAGs) in the 

space for a faster selection of the best CPDAG model. Then the selected CPDAG 

would be expanded into all its DAGs. This set of DAGs thus shortlisted would be 

used as the new DAGs space from which finally the best DAG model would be 

elected. Despite that CPDAG (DAG pattern) is conducive to a reduced search 

space’s cardinality (compared to the corresponding DAGs space), exhaustively 

enumerating and scoring all CPDAGs is also said to be computationally impracti-

cable for non-small number of variables. Heuristic methods are therefore proposed 
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to expedite the finding process of the local maximum in the structure space, be it 

with DAGs or DAG patterns.  

A third space, which has been discussed in the next section, is referred to as Order-

ings over the network variables search space. Typically, the variables in the space 

are ordered prior to the search; and the ordering could either be based on domain 

knowledge or computationally achieved. 

b. Search Strategies 

The search strategies range from brute-force to simulated annealing through the 

firsts (depth-first, width-first, best-first). Referred to as exhaustive search, the prin-

ciple of brute-force in Bayesian networks learning consists in comprehensively enu-

merating all eligible DAGs and respectively assigning a score to each. Thereafter, 

the DAG with the best score is selected. This rigorous method, only computation-

ally feasible for � ≤ 5, is considered gold standard for the evaluation of other al-

gorithms [19], notably the heuristic ones.  

The general search strategy of heuristic algorithms rests on an estimation of the 

cheapest path from a start state to a goal state, without laboriously browsing through 

each state in the space. Among these heuristics is the K2 algorithm which operates 

on a pre-established total causal parents-children ordering variables. This total or-

der not only prevents cycles in structures, it also reduces the search space. At the 

start, K2 considers that each node has no parents. By increments, it adds parents to 

the current node until the score of the corresponding network formed cannot be 

further improved. Where variables are not pre-ordered, a search over orderings will 

be adopted, which is said to be more efficient than search over DAGs [19].  
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Though in certain situations the network structure is known, and one just needs to 

learn its parameters, in real world cases however the structure is unknown, and its 

learning can be generally addressed as an optimization problem in a discrete space. 

Greedy search, which is an intuitive way of tackling such optimization problem, 

proceeds by choosing a certain structure from the space, as the starting point. It then 

moves to the neighbor with the highest score and continues so forth until no struc-

ture is better than the current (see Algorithm 2.1). This means that the local maxi-

mum has been found.  

A neighbor in Bayesian network structures is defined as any graph obtained as a 

result of applying one single operation (add, delete or reverse arc) to the current 

structure. Literature [19] observes three different considerations for an initial state. 

This could be a structure with no arcs (where all nodes are independent, or a struc-

ture where any pair of nodes is connected), a structure with complete arcs, or a 

structure randomly selected from the search space. Though [19] observes that both, 

the “goodness” of the local maximum and the time required to reach that maximum, 

depend on the initial structure, it also recognizes that there is no formalized 

knowledge for mapping best initial structure to best local maximum.  

In default of such knowledge, running the algorithm several times, with a different 

initial structure each time, is an alternative. From all the local maxima found, the 

best model is chosen. In the quest of a good local maximum solution, techniques 

such as simulated annealing and best-first have been proposed. Simulated annealing 

[35] is a stochastic heuristic search that has the ability to overcome the local 
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maximum and further to find the global maximum2. This is possible because instead 

of an exclusively deterministic selection of the neighbor with the highest score, 

simulated annealing concurrently makes systematic neighbor selection with proba-

bility p, and random selection with a probability 1-p. Best-first on the other hand is 

simply a systematic highest score-based search that does not involve probability. 

According to [25], when restarted multiple times with different initial structures, 

greedy search (refer to Algorithm 2.1) achieves better performance in terms of 

model and time, over simulated annealing and best-first. 

Algorithm 2.1: Greedy Search – Excerpted from Bayes Net (2007) 

Input (Dataset) 

1. Generate initial BN, evaluate it and set it as current BN 

2. Evaluate the current BN’s neighbours 

3. If best score of the neighbours > current BN’s score,  

{set the neighbour with best score as the current BN and return to step 2} 

else {Stop} 

Output (BN) 

  

c. Model Selection 

Carvalho [36] categorizes scoring functions for model selection in two groups: 

Bayesian scoring functions and Information-theoretic scoring functions. A model 

is selected based on the result of scoring function whose role is to evaluate the de-

gree to which a generated network represents the dataset D under consideration. 

There are several scoring functions that are classified under the two aforementioned 

categories. The best Bayesian network is the one that produces the highest score 

under the chosen scoring function. One of the bases of scoring function is 

                                                      
2 While the local maximum of a function is its highest value over a local interval, global maximum 

of a function is its absolute highest value over its entire domain of definition. 
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Maximum Likelihood3 (ML), according to which the network that predicts the data 

with the highest probability is selected, and is given by: 

123 = arg7�89: ;<�&|13 , '=�>												�2.4� 
 '= is the hypothesis of the Bayesian Network from the graphs search space, 13 =
�1�, 1�, …	1�� is the vector of parameters where each 1� is also a vector of param-

eters for the variable �� whose distribution is <�8�|���, 1� , '=�, and 123 	is the ML 

among all of the estimated parameters vectors 13 . [19] noted that in some cases, the 

application of ML principle can lead to over fitting as the selected model would suit 

very well the current data but cannot be generalized and would therefore need to be 

relaxed. To achieve this relaxation, the scoring function is coupled with penalty in 

order to dissuade complexity in the model selection function.  

Bayesian Information Criterion (BIC) is one of the well-used functions which while 

scoring also penalize complexity. It is classified under the Information-theoretic 

scoring functions and is defined below, where the component preceded by the mi-

nus is the penalty. N and d are respectively the number of data cases and the number 

of parameters in the network. 

@AB CDEFGHI, IJK − LM @ABN													�M. O� 
From this expression, it is apparent that the BIC is independent of the prior, and 

clearly it shows both the expressions of reward and “punishment”. In [37] it is noted 

that the BIC formula is the exact opposite (by minus) of the Minimum Description 

                                                      
3 Likelihood is the conditional probability estimation of certain parameters, given certain observa-

tions; and ML is its maximization. Here, it is the selection, among a list of potential graphs, of the 

one which when observed, produces the highest probability of predicting the data. 
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Length (MDL), which is another well-known model selection criterion and is clas-

sified as Information-theoretic scoring functions according to [36]. In fact, the orig-

inal intent of penalty is to reduce complexity, but it backlashes to the point that as 

result, BIC tends to choose models that are too simple, in order to escape load of 

“punishment”. The other scoring function discussed by [19] is the BDe metric, 

which falls under the Bayesian scoring functions [36]. In this category, the compu-

tation is based on the evaluation of the posterior probability of a graph G given the 

data, and it is expressed as: 

 <�'=|&� = PDQ,3RK
S�Q� 																		�2.6� 

��&� is a normalized constant that is independent of the graph structure G. As such, 

��&� will has no impact the ordering of model options and therefore the relative 

posterior probability,	<�&, '=�, is generally adopted as model selector: 

<�&, '=� = <	�'=� ∗ <�&|'=�													�2.7� 
It is the product of C�IJ�, the prior probability of graph IJ and C�E|IJ�, the 

marginal likelihood. The prior could either be provided by an expert or just uni-

formly set. In the BDe metric which is Bayesian metric with Dirichlet priors and 

equivalence, networks are grouped by equivalence class and scores are assigned 

to groups of networks as opposed to individual network. Though Bayesian score 

is a more accurate criterion, it requires intensive computation [19]. 

2.3.3 Constraint-based-method 

Based on Conditional Independence (CI) statistical tests, this method takes a dif-

ferent approach to the Bayesian Network structure learning problem. It proceeds 
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first by uncovering dependencies and conditional independencies among the varia-

bles. Based on three main assumptions [19], the discovered relationships are then 

used to infer and construct the corresponding BN structure. The first assumption, 

causal sufficiency, assumes that there are no common hidden parents of observed 

variables in the domain. The causal Markov assumption supposes that, given its 

parents, a variable is independent of all other variables that are not its descendants. 

Lastly, for a network structure G and its associated probability distribution P, the 

Faithfulness assumption requires each verified conditional independence relation-

ship in P to be entailed by causal Markov assumption in G. Though with these 

assumptions, existence of an edge between two nodes is certain, there is no guaran-

tee that all edges in the network would be directed. As result, the BN produced by 

Constraint-based method is a Partial DAG (PDAG) which is a set of Markov equiv-

alent DAGs. 

2.3.4 Hybrid Method 

This method simply consists in the coupling of Constraint-based and Score-and-

search-based methods. [37] suggests constraint-based be used as starting point to 

generate variables ordering and subsequently learn the actual Bayesian network 

with Score-and-search-based. This hybrid method is conducive to addressing con-

cerns with datasets presenting large number of attributes and small sample size. 

 

 

 

 

 
 

 

CONSTRAINT-BASED  

(Variables Ordering) 

 

SCORE-AND-SEARCH-BASED  

(Bayesian Nets Learning) 

 

Figure 2.3: Illustration of hybrid method 
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2.4 Bayesian Inference  

Bayesian Network is one of the network models that can be used to reason under 

uncertainty based on the laws of probability. It is a directed acyclic graph model 

containing nodes that correspond to random variables (discrete or continuous) as 

well as directed links that connect pairs of nodes. Each node has a conditional prob-

ability distribution given its parents, P(Xi| Parent(Xi)) which quantifies the effect 

of the parent on the node. Semantically speaking, Bayesian network can be viewed 

in two equivalent ways. The first is through the representation of joint probability 

distribution which is helpful in constructing the network and the second through an 

encoding of a collection of conditional independence formulations which is condu-

cive to the inference procedures design. So, Bayesian network offers a com-

pact/concise way to represent conditional independence relationship in the domain 

under modeling consideration and is mostly exponentially smaller than joint distri-

butions that are explicitly enumerated. 

Bayesian network helps to compute posterior probability distribution for a set of 

query variables for some observed event which consists of assigned values to a set 

of evidence variables. This posterior probability computation is referred to as infer-

ence. Based on the principles and techniques used, it could be exact inference or 

approximate inference [38]. Given the ambition of the first to be exact which turns 

out to be intractable in general, the latter whose principles and technique are sum-

marized here, is therefore the method to consider as it sacrifices accuracy for com-

putation time. The algorithms of approximate inference in Bayesian Networks are 

randomized sampling algorithms (Monte Carlo) and used in several branches of 
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science for the estimation of quantities that are hard to compute to exact values. 

There are in general two families of such algorithms: Direct sampling methods and 

the Inference by Markov chain simulation (MCMC Markov chain Monte Carlo) 

algorithms. In the first method, each sample is generated from scratch. MCMC on 

the other hand generates each of its samples by applying random change to the 

preceding sample. Direct sampling algorithms are indeed the simplest sampling 

methods for Bayesian Network. Basically, events are generated from a network that 

has no evidence associated with it, and each variable is sampled in turn in topolog-

ical order, with probability distribution conditioned on values assigned to the vari-

able’s parents.  

Direct sampling algorithms includes Rejection sampling and Likelihood weighing. 

In rejection sampling, after samples are generated from prior distribution specified 

by the network, all those that do not match the observed/given evidence are rejected 

and the actual estimate of P(X=x|e) is the frequency of X=x among the samples that 

remain. Likelihood is more efficient in that it only generates events that are con-

sistent with the evidence e.  

A particular form of MCMC called Gibbs sampling is well suited for Bayesian Net-

works. It proceeds with an initial state consisting of having evidence variables at 

their observed values and then generates a next state by randomly sampling a value 

for one of the none-evidence variables. 

Bayesian Networks are globally defined by [28] as “graphical structures for repre-

senting the probabilistic relationships among a large number of variables and doing 

probabilistic inference with those variables”. Once the Bayesian Network structure 
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is learned, the subsequent step is usually the Bayesian Inference. In real life appli-

cations, the theoretical scenario of identifying the sample space, determining the 

probabilities of individual events, defining the random variables and then compu-

ting the values of the joint probabilities distributions is not feasible. In such settings, 

the random variables are first identified and the probabilistic relationships among 

them are determined. Because the conditional probabilities of interest are usually 

not those directly computable, Bayesian Inference—which is based on Bayes’ The-

orem—is used to indirectly infer unknown probabilities given of the probabilities 

of other events. Practically, inference is determining the likelihood of a feature to 

be in a particular state. For two events E and F, with P(E) ≠ 0 and P(F) ≠ 0, the 

probability of E given F is given by Bayes’ theorem as:  

��V|W� = ��W|V���V���W� 						�2.7� 
Considering n mutually exclusive and exhaustive events V�, 	V�,…	VX such that 

��V�� ≠ 0	�*Z	1 ≤ � ≤ �, for any other event F, Bayes’ theorem is generalized as:  

��V�|W� = ��W|V����V����W|V����V�� 	+ 	��W|V����V�� 	+ ⋯+ 	��W|V����V��						�2.8� 
Bayes’ theorem is used when one is unable to directly determine the conditional 

probability of interest while the “inverse” conditional probability is known. For 

instance, having at hand—from data or from expert’s knowledge—the probability 

that gene A is expressed given that gene B is expressed, as well as the independent 

probabilities of the expression of gene A and gene B respectively, one can deter-

mine by Bayes’ inference (with equation 2.3) the unknown probability of interest, 

i.e., probability that gene B is expressed given that gene A is expressed.   
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Chapter III - Methodology 

A gene expression matrix resulting from gene response to low nutrient water is 

available from [9] and is based on PAO1 mini-Tn5-luxCDABE transposon mutant 

library. Overall 28 timepoints were measured. The attributes are of numerical type 

and thus confer to this research a quantitative methodology, with some qualitative 

considerations from Microbiology as background knowledge. The dataset, the hy-

pothesis, the research objective and questions, as well as the literature review, all 

together contributed in shaping the architecture in Figure 3.1.  

 

 Figure 3.1: Methodology architecture 
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This architecture has at its center Bayesian Networks, a field of Machine Learning, 

for its capability to explore, to study, and to construct algorithms that can learn and 

make predictions and inference from data. Key technical challenges in this domain 

of research include massive number of variables, small sample size, resulting sparse 

networks, and also computational complexity [18].  

The very first step of this research is knowledge acquisition in Microbiology, par-

ticularly about Pseudomonas aeruginosa and its genome. Among papers reviewed 

at this stage, [2, 6, 4, 39, 40] were fundamental, followed by the exploration of 

literature on genes expression analysis techniques. The publications [13, 16] are 

found to be foundational references on introductory biology and computer science 

tools for bio-analysis techniques. They are the bedrock for broader literature acqui-

sition and literature review that was undertaken as presented in Chapter II. 

3.1 Data Pre-processing 

Pre-processing is of essence in data analysis. A misstep at this stage would propa-

gate through the entire analysis and therefore requires attention. There are two da-

tasets, one of which is illustrated in Table 3.1. 

Table 3.1: Gene expression matrix—sample with timepoint fold-change values 

Genes Exprs_T4 Exp_T8 … Exprs_T672 

PA5398 1.926365 1.427299 … 0.030316 

PA5400 2.138769 1.51678 … 0.048796 

… … … … … 

… … … … … 

Tgt 1.06 0.64 … 0.73 

Table 3.2 shows the two datasets that were combined to form the database used in 



MODELING P. AERUGINOSA SURVIVAL IN WATER 

24 

 

this research. D10, a 10-timepoint was the initial dataset; and D18, an 18-timepoint, 

was collected two month later, as a requirement for additional data samples. 

Table 3.2: Comparison of the two datasets 

Present in 10-timepoint (D10) Present in the 18-timepoint (D18) 

� emr 

� Intergenic point 90844 

� Intergenic point 3418121 

� Intergenic point 3621504 

PA0033 � 

PA2654 � 

PA4103 � 

PA4499 � 

PA5238 � 

PA5346 � 

PA5439 � 

PA5518 � 

� retS 

� sadB 

spuB-spuC � 

Visually parsing the data, one can realize that some genes initially expressed be-

come repressed over time and vice versa. This observation suggests that hierar-

chical “hand passing” exists between genes in their expression in order to ensure 

the agent survives over time. The following tasks were accomplished to ready the 

dataset for analysis. 

Replicas Value Averaging: Each of the two datasets contains replicas of gene 

names. For each dataset respective clusters of variables were created with the same 

gene name. The name was associated to the corresponding cluster. The values of 

the gene replicas within a cluster were examined. In the case where a replica appears 

to demonstrate a wildly different expression in contrast to the other ones (Table 

3.3), that replica was considered an outlier and therefore eliminated. The gene 
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expression values for the remaining replicas showing similar expression tendency 

were averaged for each time point and then labeled with the new cluster name. 

Table 3.3: Outlier identification 

PA0497 0.23 … 0.08 0.07 0.06 0.05 … 0.12 

PA0497 1.40 … 0.08 0.11 0.12 0.61 … 1.20 

PA0497 1.29 … 957.24 2787.51 1403.86 1.75 … 1.28 

Data Integration: The comparison of the two datasets shows that they do not fully 

match up in gene variable. Several genes are exclusively present in either one. This 

can be attributed to a strain successfully growing in one trial and not in the other. 

This difference was captured in Table 3.2 above.  For instance, PA5518 present in 

D10 was absent in D18 while retS present in D18 was absent in D10 . To consolidate 

these two data into a single uniform dataset, only the gene variables that are present 

in both were kept. VD10 and VD18 being gene variable sets, for each dataset, the re-

sulting consolidated variables set is obtained by intersection and concatenated into 

DU (Equation 3.1). This resulted in 971 genes with 28 data samples each, for a 

(971x28) data matrix. 

Q̂_ = Q̂�% 	∩ 	 Q̂�a																		�3.1� 
Discretization: The gene expression values in the original data were normalized 

respectively to the corresponding value at T0. These normalized values represent 

genes expression fold change. According to biological importance in the experi-

ment by [9], a gene is considered induced if it expression value is 2-fold or more, 

repressed if the fold change half or less, and neither expressed nor repressed if the 

fold change is within the rage ]0.5, 2[. On the basis of these three expression states 
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of a gene, this research proposes a ternary discretization {1,0,-1}, by assigning 1 to 

any gene expression value within the range of  [2, +∞[, 0 to values in ]0.5, 2[, and 

-1 to expression values in the interval ]-∞, 0.5]. (See Algorithm 3.1). 

Algorithm 3.1: Gene Expression Discretization Pseudo Code 

Input (Continuous Dataset, Prior Knowledge of Expression Level) 

If '�,b ≥ 2 Then '�,b = 1 

Else if '�,b ≤ 0.5 Then'�,b = −1 

                        Else '�,b = 0. 

Output (Discretized Dataset) 

 

Transposition: The gene expression matrix '�,d of the original dataset has m row 

vectors (gene expression profile '�) and n column vectors (sample expression pro-

file 'b): 
'�	 	�e��, e��, e�X,			. . , e���									�3.2� 

'b =
f
gh
e�be�beXb. .edbi

jk																				�3.3� 

'�,d =
f
gh
e��		e��				e�X								. .		 		e��	e��	e��				e�X								. .		 		e��	eX�	eX�				eXX								. .		 		eX�	. .				 . .								 . .											 . .						 . .ed�	ed�		edX						. .		ed�	 i

jk									�3.4� 

Since the focus of this research is on gene regulatory network and causality between 

genes rather than between experimental conditions, the gene expression profile is 

transformed into column vector and the sample expression profile is transformed 

into row vectors. This consists in applying transposition operation on '�,d to obtain 

the corresponding following transpose matrix: 
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'�,dl = 'd,� =
f
gh
e��		e��				eX�					. .		 		ed�	e��	e��				eX�						. .		 		ed�	e�X	e�X				eXX						. .		 		edX	. .				 . .								 . .							 . .						 . .e��	e��		eX�							. .		 	ed�	i

jk							�3.5� 

Table 3.4: Sample of the discretized transpose matrix 

PA5398 PA5400 … Tgt 

0 1 … 0 

0 0 … 0 

… … … … 

-1 -1 … 0 

3.2 Learning Strategy of Bayesian Network Model 

Though the data & = ;&�, &�… ,&m> is available as a set of temporal tuples, at this 

stage, each time point (Tuple) is treated as an independent observation and not as 

time series data. In this section, we focus on learning and constructing a static 

Bayesian Network B = (G, Ѳ), G being the graph and Ѳ the set of parameters 

characterizing the network. Each node in this BN represents a gene (e.g., Tgt), 

characterized by a conditional probability table that specifies its probability distri-

bution, conditioned on its parents’ values. This distribution over the gene variables 

('�) is defined by the chain rule identity as in Equation 3.6 [38]. 

��'� = e�… , '� = e�� = 	��e�|e���… , e����e���|e���… , e�� …��e�|e����e�� 
									= 	���'� = e�|e���, … , e���

�
							�3.6� 

BN is very suitable for its factorial representation of states. Its probabilistic approach 

is of interest since gene expression is intrinsically a stochastic phenomenon which 

is generally affected by high noise level [41]. Further, [41] states that BN can be 

used for causal reasoning i.e., P(effect|cause), diagnostic reasoning i.e., 
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P(cause|effect), combination of both, or even for “explaining away”. The funda-

mental of Bayesian networks is Bayes’ Rule (Equation 3.7) that enables both causal 

and diagnostic reasoning.   

��n�+(o|o��on,� = ��o��on,|n�+(o���n�+(o�
��o��on,� 																		�3.7� 

In a diagnostic model graph, the links are directed from symptom to cause while 

they are directed from cause to symptom in a causal model graph. This latter repre-

sentation requires fewer dependencies specification than the former in which addi-

tional dependencies are specified on one hand between causes that are actually in-

dependent and on the other hand between symptoms that occur separately [38]. In 

areas such as medical diagnosis, doctors usually have the causal information i.e., 

P(symptoms|disease) and infer diagnosis, which is P(disease|symptom). As cited 

by [38] on page 517, [42] shows that expert physicians preferably adopt causal rules 

over diagnostics rules in their probability judgment. Therefore, in this thesis work, 

the evidence/symptom is bacteria survival in a certain environment with a gene or 

group of genes being the probable cause. This requires the derivation of P(bacteria 

survival in a certain environment | a group of genes) and P(a group of genes | 

bacteria survival in a certain environment). 

The graph model will be learned from data, based on causal rules. The model con-

struction learning task consists of finding a set of parent genes for each gene, in a 

way that the resulting network is acyclic and its score minimal [43]. Figure 3.2, as 

discussed in [36], summarizes the standard skeleton of the learning methodology. 
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3.2.1 Choice of the Search Space 

Table 3.5, excerpt from [41], presents the types of structure learning problems along 

with corresponding applicable methods. As in many real-world cases, the structure 

for this research is unknown and is to be learned. The preprocessed data shows a 

full observability, thus pointing to the type “Unknown Full”. Therefore, Search 

through model space has been selected as the learning method. This corresponds to 

the Network Structure option in Figure 3.2 above. 

Table 3.5: Learning methods based on learning problems  

Structure/Observability Method 

Known, Full Sample statistics 

Known, Partial EM or gradient ascent 

Unknown, Full Search through model space 

Unknown, Partial Structural EM 

Figure 3.2: Standard Bayesian Network learning methodology 
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3.2.2 Choice of the Search Strategy and Model Selection 

Constraint-based algorithms use statistical analysis and learn the network’s struc-

ture with conditional independence tests (e.g., χ2 test) to determine the existence of 

edges between node variables. This results in a unique model based on categorized 

information. Score-based on the other hand examines all possible structures in the 

space and assigns a score that corresponds to the measure of the “goodness” of the 

Bayesian Network’s evaluation of a given dataset. As far as efficiency is concerned, 

constraint-based methods are said to do well with large number of variables dataset 

(≅ 1000 genes as variables) while score-based algorithms give more accurate re-

sults with small sample size dataset (here ≅ 30 gene expression time points). Fur-

thermore, the Bayesian score-based method presents more advantages over con-

straint-based. For instance, it can overcome incorrect conditional independency cat-

egorical decisions, by model averaging. It also deals with missing data and is able 

to find models that constraint-based is incapable of detecting [28]. The third method 

known as Hybrid method consists in the combination of both methods afore-dis-

cussed and is generally suggested as the alternative that offers the advantages from 

both of its constituents. In addition, these constituents are particularly and respec-

tively in adequacy with the two main dimensions of the dataset (i.e., large number 

of variables and small sample size). Consequently, it follows that this research 

adopts the hybrid method: Constraint-based to obtain variables ordering and net-

work skeleton, and Score-based to identify arcs direction. 
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a. Constraint-Based: Genes Ordering 

Depending on the domain and the availability of background information, prior 

knowledge is primarily used to complete variables ordering. Considering domains 

with small number of variables, [37] suggests that grouping the variables into ge-

neric classes such as symptoms or diseases is a practical approach to reduce the 

orderings cardinality of the domain, without recourse to highly greedy heuristics. 

In fact, [44] has shown this in a medical application with 10 nodes, dividing them 

into "blocks." But when expert’s knowledge is unavailable, and the number of var-

iables is very large, ordering is quasi unachievable with brute force search through 

all �! possibilities in the quest of the best combination Order-Network. This is the 

case here, as this research deals with a large number of variables (≅ 1000 genes), 

and to date, there are no available knowledge on existing pre-established genes or-

dering of P. aeruginosa. The authors of [37] implemented and successfully tested 

CB, an algorithm that uses a Conditional Independence (CI) test to suggest a total 

order of the nodes which is then used by a Bayesian algorithm to learn and construct 

the best network.  

b. Score-and-search-based: Taboo Search 

According to [38], search in general is a process of finding a series of actions whose 

execution would lead to the goal of solving a given problem. Based on the applica-

tion and the environment in which a search agent is operating, there are different 

types of search. The two main currents of search algorithms are classical informed 

search which is an offline search, and online search. Informed search, referred to 

as Heuristic, is a category of search algorithms that uses goal-based agent, 
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precisely, a problem-solving agent. Uninformed/Blind search is its counterpart. Un-

like this, informed search uses problem-specific knowledge plus the problem’s def-

inition information. This is in the form of an evaluation function f(n) which esti-

mates the distance/cost to the goal. This function is the source of the efficiency of 

informed search over uninformed search, in the sense that it is guided by the 

knowledge pertaining to where to look for potential solutions.  

Basically, for every node n in the search space, the function f(n) quantifies the de-

sirability (cost effectiveness or more promising state) to expand the node and uses 

the results to decide which node to expand next. A typical example of informed 

search is A* search, the most widely known form of Best-first search. This search 

minimizes the cost f(n) which combines the cost g(n) to reach a node, and h(n) the 

cost to go from the node to the goal, with f(n) = g(n) + h(n). While informed search 

is classified as offline problem-solving search with known, observable, discrete, 

deterministic environment, and complete solution computation prior to execution 

in real world, the Online Search agent in contrast interleaves computation and ac-

tion and operates in an originally unknown state space, with nondeterministic envi-

ronment, thus requiring precepts.  

Online search is appropriate for exploration problem, using its action as experiment 

for learning purpose [38]. Typical example of online search is a robot agent that is 

placed in a new building and tasked to explore it in order to build a map that it can 

use to get from point A to B. Beyond the classical informed search, there is local 

search. The term local here alludes to the neighborhood within which search is 
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operated. It proceeds to its quest of solutions by evaluating and modifying current 

state instead of moving systematically through path exploration from the initial 

state. It relaxes the assumptions made in informed search and is more appropriate 

to problems in which only solution matters and not the path and cost that lead to it. 

Within this family of local search are the following notable algorithms: Genetic 

Algorithms (GA) from evolutionary biology and Simulated Annealing (SA) from 

statistical physics. Both are Hill-Climbing (Figure 3.3) based search which contin-

uously moves to uphill states in the direction of increasing value and stops when it 

attains a peak where none of its neighbour’s states has a higher value. The concern 

with such algorithm is that it never makes “downhill” and is condemned to be in-

complete as it can get stuck on local maximum while global maximum exists. 

 

Though extremely inefficient, a purely random walk with uniform and random 

moves among a set of successors, is complete [35]. This research does not employ 

GA, a stochastic hill-climbing search in which new states are generated by mutation 

Figure 3.3: Graphical illustration of local maximum issue with hill-climbing 
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and by crossover, combining pairs of states from the population of states. The core 

technique of simulated annealing on the other hand allows it to overcome local 

minimum concerns. Since hill-climbing algorithm can get stuck in a local maxi-

mum/minimum (i.e., incomplete), it is combined with the random walk to take ad-

vantage of its completeness and to make simulated annealing algorithm overcome 

the local minimum concern of hill-climbing. Simulated annealing is inspired from 

metallurgy annealing which is the tempering/hardening of metal or glass by heat to 

a higher temperature and then proceeding to a gradual cooling down allowing the 

material to reach low-energy crystalline state. Another perspective of the core tech-

nique in hill climbing is gradient descent in terms of cost minimization, which is 

similar to the task of getting a Ping-Pong ball into the deepest fissure in a bumpy 

surface. By letting the ball roll, it will come to rest at a local minimum. Now by 

shaking the surface, the ball can be bounced out of that local minimum with the 

trick being, to shake it hard enough as not to get it out of the reach of the global 

minimum. In summary, the procedure is to start by shaking the surface hard (or 

raise the temperature to a higher level in case of metallurgy) and then progressively 

reduce the shaking force (lowering temperature). Assuming a minimization objec-

tive, and considering the stochastic aspect of simulated annealing, the probability 

at the start to move from current state to another one of higher value is near zero. 

But as it evolves, the probability increases for a move to a higher neighbour value, 

to avoid being stuck at a local minimum.  

Practically, simulated annealing is a metaheuristic method used in discrete and very 

large search space environment. According to [33], the cardinality of DAGs search 
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space for a BN selection is function of the number of nodes (Formula 2.2). 

���� = 	��−1�������2��������� − ��
�

� �
										

��2� = 3	
��3� = 25	

��5� ≅ 29 × 10X	
��10� ≅ 4.2 × 10�a 

��47� ≅ 9.0 × 10Xtu	
v�wxxx� ≅	? ? ?× wx??? 

For instance, with n=10 i.e., 4.2 × 10�a as search space size, a brute force approach 

will require years of computation time, even on a supercomputer [43]. Given � ≈
1000 genes in this research, searching within this myriad of possible space DAGs 

can only be effectively tackled as an optimization problem. With this huge cardi-

nality search space problem, the methodology must be grounded on heuristics, spe-

cifically metaheuristic. Like simulated annealing, Taboo Search is a metaheuristic 

iterative algorithm for combinatorial optimization. It considers a potential solution 

candidate to a problem and aspires for possible improved solution in the immediate 

neighbourhood. Though it inherits from the general local search the tendency to get 

stuck in a suboptimum or on plateaus, it escapes this trap by accepting solutions 

worse than the current. The other key aspect to which it owes its name is the prohi-

bition (taboo in Polynesian) for the algorithm to go back to previously explored 

solutions within a defined time frame or number of iterations. Cycle is thus pre-

vented through the maintenance of a Taboo list. Taboo search has proven successful 
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in a wide range of applications, from resource planning to molecular engineering, 

through biomedical analysis. Several comparatives studies have demonstrated that 

it outperforms simulated annealing and GA. For instance [45] experimentally 

proved that Taboo Search presents the best performance for the quality of solution 

and the quality of the solution subspace. It is said to require less implementation 

complexity and parameters tuning. This is corroborated by [46] in their 2006 em-

pirical study. Considering all these, this research adopts Taboo search. 

c. MDL as Scoring functions for learning Bayesian networks 

Table 3.6 captures the elimination process in the selection of scoring function. The 

dataset available for this research is raw data with  unknown underlying prior 

probability distribution. According to [36] and [47], all Bayesian Scoring functions 

require prior probability distribution this restricting the selection to Information-

Theoritic scoring functions.  

 Table 3.6: Summary of scoring functions for learning BN 

Scoring Functions 
 

Name PPDD4 BoEC5 Formula 
Decomposable 

/Score-Equiv. 

Network 

Tendency 

Bayes-

ian Scor-

ing 

BD � � - - - 

K2 � � - - - 

BDe � � - - - 

BDeu � � - - - 

 

Info-the-

oretic 

Scoring 

LL6 

AIC � � LL(B|T) − |B| Yes/Yes Over-fitting 

BIC � � LL(B|T) − 
12 log(N)|B| Yes/Yes Under-fitting 

MDL � � −( BIC) Yes/Yes Trade-off 

NML � � LL(B|T) − CN(BG) No/Yes - 

MIT � � - Yes/No - 

                                                      
4 Prior Probability Distribution Dependant 
5 Based on Encoding Compression 
6 Log-Likelihood 
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AIC stands for Akaike Information Criterion, and BIC for Bayesian Information 

Criterion. Both have the disavantage respectively of over-fitting and under-fitting 

while MDL, which stands for Minimum Description Length, offers a trade-off. 

Though MDL and BIC are additive inverses, their respective derivation principles 

are different. In addition to the trade-off advantage, [47] justified the use MDL in 

the presence of raw data, as it does not require known prior distribution assumption. 

NML—Normalized Minimum Likelihood—which is based on MDL, is not 

decomposable over network structure and involves an exponential sum over all 

possible data of size N, with no hope for efficiently computing CN(BG) [36]. Be-

cause decomposability is a key computational requirement factor, overall it comes 

down to MDL and MIT—Mutual Information Test. Though score-equivalence is 

not demanded for this research, MDL has been opted over MIT which is not score-

equivalent.  

As per formula column in Table 3.6, MDL has two components. The first is the 

number of bits to represent the model i.e., graph + probabilities in the Bayesian 

Network B. The minimum value of this component corresponds to the simplest 

network, which is the fully unconnected network, all genes being independant from 

each other. The second component is the number of bits to represent the learning 

data D, given B. In other words, it is the likelihood of data D given the model. The 

minimum value for this latter component represents a fully connected notwork. The 

goal of MDL is to minimize the sum of its two components. Practically this amounts 

to finding a trade-off between the two terms.  
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3.3 Data Perturbation 

To further ensure that the search methodology escapes local minimum during the 

learning process, Taboo search is supplemented with Data Perturbation, where ran-

dom noise is added to the weight of each observation in the dataset. This provides 

a reasonable confidence of finding the optimal network, i.e., the most compact rep-

resentation of the joint probability distribution over the 954 genes.  

3.4 Summary of the Algorithm 

Algorithm 3.2 below summarizes the overall BN learning methodology. 

Algorithm 3.2: Hybrid search (Nodes ordering + Taboo Search + Data Perturbation) 

Input: pre-processed Dataset D(n genes, N data samples) 

[G1 ... Gn] <- generate best node order with heuristic  

CI test over n! possible nodes ordering space;  

For i = n...2 {{Pa(Gi) <- k parents ϵ {Gi-1...G1} :  

P(D| Pa(Gi)) is max & P(Gi|Gi-1 ...G1) = P(Gi| Pa(Gi));} 

For j = 1...k { Edges[] <- Connect(Pa(Gi)j -> Gi); 

  CPT(Gi)<- P(Gi| Pa(Gi)j;}//CPT = Cond. Prob. Table 

gInitCandidate <- graph({G1 ... Gn},Edges[],CPT(Gi)); 

f(n) <- #(Candidates in search space) function of n; 

H(f(n))<- TabooListSize from Heuristic evaluation H; 

TDP(H(f(n))<- Taboo(H(f(n))) + DataPerturbation(D);  

Output: gBest = TDP(H(f(n)), gCandidate, MDL)) 

  

 

First, the data is preprocessed, and the resulting n gene variables are ordered by 

heuristic conditional independence test over n! possible nodes ordering space. 

Then, in the order thus established, each gene Gi (as a graph node) respectively is 

assigned a set of k parents denoted Pa(Gi) and chosen from {Gi-1...G1}. For a 

parents set Pa(Gi)to be assigned as such to a gene Gi, the probability of the data D 

given Pa(Gi)should be the maximum possible (P�D|	Pa�Gi��d~�) and the probabil-

ity of the gene Gi given the set of all the other genes that precede it should be equal 
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to the probability of that gene Gi given his parent set, i.e.; P(Gi|Gi-1 ...G1) = 

P(Gi| Pa(Gi)). A directed link connects each parent from the parents set to Gi, and 

a Conditional Probability Table (CPT) is associated to the gene Gi. The CPT for a 

gene Gi is an array of its respective probabilities given each of its k parents. The 

graph thus formed by the connections between genes is the initial Bayesian Net-

work candidate which is optimized through Taboo search by heuristic evaluation. 

The number of all possible candidates for the search is a function f(n) of the number 

of genes n as in formula 2.2. The Taboo search, a combinatorial optimization—

combined with Data Perturbation—considers, in the immediate neighborhood of 

the current graph candidate, a potential solution candidate that yields a better score 

according to the MDL metric. A neighbor is any graph obtained by one single op-

eration, i.e., adding, deleting or reversing an arc on the current graph structure. At 

the end of the iterative heuristic search, the optimal Bayesian Network is returned 

as output. 

3.5 Inference from Learned Model: Identifying Low Nutrient Re-

sponse Genes 

Pseudomonas aeruginosa survival in water was measured several times and it is 

known that it survives in water without nutrients for a very long time, even up to 8 

weeks [5]. Some researchers [48] have tested 148 bacterial strains including P. ae-

ruginosa—a Gram-negative organism—and found that almost all the Gram-nega-

tive bacteria survived in water for at least 30 weeks and up to 16 years. This research 

had access to gene expression from P. aeruginosa existence in nutrient depleted 

water for over 4 weeks period, and it had been experimentally shown that the 
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bacterium was alive at one-month timepoint [9]. Also, survival experiments were 

completed up to 3-4 months whereby the concentration of cells was very close to 

the concentration used at the start of the experiment (1 x 107 colony forming 

units/milliliter).  

A colony starts from a single cell. It is generally difficult to measure single cells, 

so the samples had been plated and colonies counted on a petri plate. It had been 

shown that there was some variability within the population of cells and this had 

been demonstrated by flow cytometry whereby the characteristics of single cells 

could almost be determined with fluorescent dyes. With this, it had also been shown 

that the cells were dormant [9], but not dead over time, and 28 timepoints were 

recorded in the current data.  

Due to the variability afore mentioned some cells that were likely dead near the 

beginning of the time course appeared to transition and adapt to being more dormant 

over time. It had been proven that the cells were still alive and viable as well, even 

though they are not metabolically active or replicating. So, one could hypothesize 

low, medium, and high life states for the cells. High state would likely be growing 

and replicating cells, which was not much observed in water. Given it was experi-

mentally proven that PA was alive (but possibly at various stages e.g., high, low, 

dormant) the phenotype embodied in the data is “survival”. Having learned the BN, 

the next step is to identify major contributors to the survival phenotype. 

Among all nodes in the network, the strongest genes that, in one way or another 

contribute to the survival of P. aeruginosa are determined. Norsys [49] terms the 
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nodes in a network that are at the very top (root) as “predispositions”, to whom the 

likelihood of an observed phenotype is attributed. All root nodes are considered as 

potential cause of survival and from these the strongest would be identified. Also, 

any non-root nodes appearing to be pivotal in the maintenance of the observed phe-

notype will also be considered as potential cause of survival. To achieve this, the 

notion of node influence has been applied. The weight of a node’s influence in a 

network is directly related to the strength of its incoming and outgoing arc(s).  

In [50] two ways of assessing the strength or importance of an arc were discussed:  

- Conditional probability tables in the definition of the model are used to 

determine the importance/thicknesses [51] of the arcs. In this, the magnitude 

of the influence transmitted by a directed edge from node A to node B is 

given by: 

max� [max� [��� ≥ ��|��� − ��� ≥ ��|�%�]]																					�3.8� 

- Kullback-Leibler Divergence measure [52] defined by equation 17: 

&�������||����� =����� log� ��������																														�3.9��
 

This latter measure is a generalization, to the abstract case, of the definition of in-

formation according to Claude Shannon. On a broader scale, it concerns with the 

evaluation of statistical distance or divergence between populations. In Bayesian 

statistics, it is used to evaluate the amount of information gained, from a prior dis-

tribution to a posterior distribution. This was used in [53] to evaluate the strength 

of an arc in a network and is named Arc Force. It compares a current network P 

with a hypothetically identical network Q but minus the arc whose force is under 
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evaluation. Mutual Information is a particular case of arc force when the descendant 

node only has one parent. Also arc force supersedes mutual information because in 

its computation it operates with global network distribution as opposed single biva-

riate relationship. While [51] provides a good view of how two directly connected 

variable nodes interact, the relevance of the information rendered is not only just 

local but also static in that observations or indirect influences are not considered. 

The Arc Force on the other hand is dynamic, factoring in observations and indirect 

influence. Arc Force, i.e., node Force, has been adopted to evaluate the genes’ par-

ticipating force in the regulatory network of the survival. Technically, given a di-

rected edge Ei->j between two genes, P(G) the probability distribution of our learned 

network model, and Q(G) = P(G) - Ei->j, then the Arcforce(Ei->j) = DKL (Equation 

3.10) is the measure of information gained from Q(G) to P(G). In summary, the 

identification of low nutrient response genes approach consisted first in searching 

through the graph to identify all root nodes, i.e., all nodes with no parents but having 

children, denoted as RG. Then for each gene Gi in the entire network, its force(Gi) 

was considered as the sum of all its associated Arcforce(Ei->j). With SG, the set of 

the top strongest genes in force, the viability genes set has been inferred as: VG = RG 

∪ SG. The choice of using both root node and node force as criteria is based on the 

hypothesis that there exists a hierarchical “hand passing” among genes in their ex-

pression to ensure P. aeruginosa survival. 

3.6 Development Environment and Configurations  

A list of development/analysis platforms have been explored and four of them have 

been tested as shown in Table 3.7. Though Netica could handle a large number of 
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variables, it cuts off any variable number beyond 250. The choice criteria of the 

four platforms are also summarized in Table 3.7.  

Table 3.7: Summary of analysis platform selection 

Implementation 

Platforms 
BN DBN Learning Inference 

Scalability 

#variables  

Visualization & 

interactivity 

WEKA � � � � � � 

R Studio � � � � � � 

Netica � � � � �* �* 

BayesiaLab � � � � � � 

BayesiaLab is a virtual lab environment platform, with Bayesian Networks at its 

center. It supports research process through modeling, analysis, simulation and op-

timization. Developed by a pair of French Professors in early 2000s, it provides the 

scientists and researchers with litheness in manipulation and movement between 

the different tasks of the overall investigative work. The most valuable and deter-

minant aspect of BayesiaLab for this research is the impeccable visualization and 

interactive capabilities it features. This research uses BayesiaLab for development 

and analysis. 

3.6.1 Determining optimal number of parents per node  

To determine the analysis’ parameter pertaining to the number of precursors (par-

ents) per gene, Theorem 3.5.1 [54] has been used. 

 Theorem 3.5.1: In an optimal Bayesian network based on MDL scoring function, 

each variable has at most �*e � �m
���m� parents, N being the number of data points.  
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The number of data samples in this research is N=28. If �~�'�� is the parents set for 

a gene '�, the cardinality of �~�'�� should respect the following inequality: 

|�~�'��| / �*e �2 ∗ 28�*e 28� ≅ 1.60																		�3.10� 

This means that the scores for any parents set size larger than “1” will not be com-

puted given that here one parent in the parents set is guaranteed to be suboptimal. 

3.6.2 Data Import and Variables Elimination 

 

Figure 3.4: Data import screen capture 

After the dataset has been imported as illustrated in Figure 3.4, a group of 17 genes 

was eliminated because they were not distributed in the data. As one can observe 

for alg8, each of its 28 discretized values is equal to zero, and therefore not distrib-

uted. As result the 971 gene variables initially input have been brought down to 
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954. Table 3.8 shows the possible discretized states of a few gene variables. 

Table 3.8: Discretized states of some gene variables 

Nodes 954 

cyoB Discrete 

States Aggregates 

-1 -1 

0 0 

aspA Discrete 

States Aggregates 

-1 -1 

0 0 

PA0272 Discrete 

States Aggregates 

-1 -1 

0 0 

1 1 

PA5507 Discrete 

States Aggregates 

-1 -1 

0 0 

1 1 

cupC2 Discrete 

States Aggregates 

0 0 

1 1 

PA0377 Discrete 

States Aggregates 

-1 -1 

0 0 

PA3265 Discrete 

States Aggregates 

-1 -1 

0 0 

cysW Discrete 

States Aggregates 

-1 -1 

0 0 

1 1 

PA4715 Discrete 

States Aggregates 

-1 -1 

0 0 

1 1 

PA5270-PA5271 Discrete 

States Aggregates 

-1 -1 

0 0 

1 1 

PA0752 Discrete 

States Aggregates 

-1 -1 

0 0 

PA5001 Discrete 

States Aggregates 

-1 -1 

0 0 

 ….. …… … … 
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3.6.3 Networks Structural Coefficient Setting 

The formula of the MDL scoring function in BayesiaLab [52] is given by: 

�&���, &� = 	�&���� + &��&|��							�3.11� 
In this equation (3.11), the factor α represents BayesiaLab structural coefficient. 

DL(B) and DL(D|B) respectively are the structural complexity of the network graph, 

and the adequacy of Bayesian network to the data. Associated to the structural com-

plexity term of MDL, the parameter (α) which ranges in [0-150], is by default set 

to 1. Smaller α implies greater complexity requirement for the graph. Conversely, 

the complexity requirement is lower for higher α values.  

The structural learning commenced with α =1. Due to this complexity stringency 

and a very small 28 data samples coupled with the 954 variables, the algorithm ran 

continuously for 5 days till it was aborted. The experimental selections of values 

then were set in the interval of α є [3-150] that produced the least complex graph 

i.e., fully unconnected graph, for structure learning. This was followed an increment 

of structural coefficient value from 1 to 1.2884025 as shown in Figure 3.5. 

 

Figure 3.5 Structural coefficient selection  
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3.7 Explorative Approach to the Additional Research Questions 

3.7.1 Exploring Functional Modules in P. aeruginosa Survival  

Genes expression is not only an inherent stochastic phenomenon, but also is hierar-

chical in nature. This led to the postulation of the existence of higher-level “latent” 

variables—not directly measured in the gene expression trials—that would repre-

sent genes functional modules. To investigate these modules, by Multiple Cluster-

ing, relationships were further analyzed within groups of genes that made up the 

learned survival mechanism model. From the learned BN model, through Variable 

Clustering, groups of strongly connected genes were computationally segregated 

and then it was posited that some hidden common causes, respectively, were the 

underlying factors of the strong intra-cluster connections obtained in the gene clus-

ters. Thereafter, for each cluster, Data Cluster was used to induce a latent variable 

that is to represent the common cause. The newly obtained variables—Factor_i—

were then hypothesized to be the genes functional modules (e.g., 107 in Table A.2) 

and are to be further studied with domain experts in future works. 

3.7.2 Exploring P. aeruginosa States 

The dataset of this research is the collection of the representation of the expression 

level of P. aeruginosa genes. So, the expression level is a factor that characterizes 

the gene’s state as an entity. This perspective instigated the speculation of the ex-

istence of an overarching factor which would characterize the bacterium as a 

higher-level entity. Namely a factor which by computation would indicate the bac-

terium’ states over time (e.g., active or dormant). These two states were assumed 

to be the only states, followed by data clustering (See Figure A.3 and Table A.3).  
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Chapter IV – Results, Evaluations and Discussions 

4.1 Learned Network Model and Analysis  

The computation time to learn the BN model lasted ~ 300 hours on a 4 GB RAM 

Windows computer. Figure 4.1 shows the overall BN learned from data and Figure 

4.2 presents its evaluation. As it can be observed, the network is fragmented with 

one fragment conspicuously standing out (see green oval in Figure 4.1). The other 

fragments include very small networks of 2-10 nodes and almost 70% of the genes 

are unconnected and regarded as noise. One of the original assumptions was that 

not all the genes would participate in the survival phenotype. That is, not all genes 

would be included in the model. Initial plans included the use of PCA for dimen-

sionality reduction, which at a closer look was not adequate for the purpose. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1: P. aeruginosa overall learned Bayesian Network—fragmented 
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With the Bayesian learning, there were ~25% of the overall 954 genes in the main 

network. Gene expression networks are generally sparse [18], i.e., only a small 

number of genes directly affect each other. So, the BN learning reduced the dimen-

sionality to ~ 250 informative gene variables in the actual P. aeruginosa survival 

mechanism model (Figure 4.3). In most applications of gene expression, the num-

ber of data instances is relatively small. Because of the statistical challenge of large 

number of variables and small number of samples, one cannot discriminate among 

all possible models, since the small amount of data is not enough to identify one 

single most probable model. Though the study in [18], which is based on score-

and-search method, uses 48 more data samples (76 instances for 800 genes) than 

in this research, the hybrid approach adopted here theoretically compensates for 

that difference—constraint-based methods do well on large number of variables 

Figure 4.2: Evaluation of the overall network with the Contingency Table Fit criterion 
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dataset while score-based gives more accurate results on small sample size dataset. 

Even so, one should note that larger sample sizes confer more reliability to models. 

 

Figure 4.3: P. aeruginosa BN learned model—node is gene and link is dependency. 

 

Contingency Table Fit (CTF) is the measure of the degree of fit between network's 

joint probability distribution and data. The better the network represents the data, 

cyoB cupC2 

PA0377 

PA5507 

aspA 

PA0752 

PA0272 

PA326

5 

PA5001 

PA5270-PA5271 

cysW 

PA4715 
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the closer the CTF is to 100 %. Deviance is calculated from the difference between 

the mean log-likelihoods of network and of the data. The smaller this value, the 

closer the network represents the database used. 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 shows the evaluation of the goodness of the learned BN model (Figure 

4.3). CTF = 82.21% and Deviance = 1,7590.7928 for the learned BN, both of which 

are in sharp contrast with the respective corresponding values of 32.74% and 

21,524.8795 (Figure 4.2) for the global network that comprises all fragmented 

genes network (Figure 4.1). This shows that the optimal graph with the 249 genes 

is a good representation of the dataset as opposed to the global fragmented network. 

 

Figure 4.4: Evaluation of the goodness of the survival mechanism with 

Contingency Fit criterion network 
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4.2 Low Nutrient Genes Identification: Results and Discussions 

The methodology established in section 3.4 concerning the root node(s) and the 

node force was applied. Seeking for root node(s) in the network of Figure 4.3 iden-

tified one single node as root (PA0272). Below in decreasing order (Table 4.1) is 

the first dozen most influential nodes of the network according to their nodes force 

score. These genes are computationally inferred as key orchestrators of P. aeru-

ginosa viability in low nutrient water. Table A.1 shows the next 4 dozen of genes. 

Table 4.1: Top 12 genes inferred as P. aeruginosa contributors to survival  

 
Gene 

Node 

Force 
Gene Type Description/Function 

1 
cyoB 29.15 Protein Coding 

cytochrome o ubiquinol oxidase subunit 

I, energy generation 

2 aspA 20.41 Protein Coding aspartate ammonia-lyase 

3 PA0272 10.72 Protein Coding transcriptional regulator, gene regulation 

4 PA5507 10.11 Protein Coding hypothetical protein 

5 
cupC2 8.61 Protein Coding 

chaperone CupC2, pilus assembly and 

biofilm formation 

6 PA0377 7.79 Protein Coding hypothetical protein 

7 PA3265 6.31 Protein Coding Small molecule transporter 

8 cysW 6.12 Protein Coding sulfate transporter 

9 PA4715 5.59 Protein Coding aminotransferase 

10 PA5270-

PA5271 

5.14 
Protein Coding hypothetical protein 

11 PA0752 4.77 Protein Coding hypothetical protein 

12 
PA5001 

4.52 
Protein Coding 

cell surface-sugar biosynthetic glycosyl-

transferase, LPS synthesis 

The genes are ordered from the top most influential to the least. All of these genes 

are protein coding, similar to the case of S. cerevisiae in [18]. Four of these genes, 

i.e., 33%, are hypothetical proteins which are characteristic of accessory genes. This 

particular gene, PA0272, is actually the only one found to be a root node, i.e., node 

at the top of the network’s hierarchy. A look up of its functional description—in 

the genomics expert knowledge database—showed that it is a transcriptional 
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regulator which is an orchestrator of gene activity, i.e., bacterium’s life. It is an 

originator and directly turns on many other genes (Figure 4.3). Though cyoB is not 

a root node, it has the highest force (29.15 bits) and is reported to be an oxygen 

active site. Also, cupC2 appears to be involved, to a certain extent, in the formation 

of biofilms—results of complex clusters of microorganisms surrounded by a pro-

tective and adhesive matrix—that provide resistance to antibiotics. 

4.3 Experimental Validation of our Results 

The results were subjected to validation in the Microbiology lab at the University 

of Calgary under the supervision of Dr. Shauna Reckseidler-Zenteno and Dr. 

Shawn Lewenza, Professors at Athabasca University, and also at the University of 

Calgary. This experimental verification involved a fastidious procedure that re-

quired significant amount of time, and only few genes could be tested at a time. 

PA0272, a transcriptional regulator, is an originator—root node in the learned net-

work model—according to the computational analysis. It turned on algU which in-

terestingly encodes for a transcriptional regulator of the polysaccharide alginate and 

other polysaccharide genes involved in survival. PA0272 was tested for survival in 

water according to the procedure below:  

• The strains (mutant PA0272, wild type PAO1) were inoculated into Luria Broth 

(LB) and grown overnight at 37°C with shaking at 250 rpm for ~ 18 hrs. 

• The next day, 100 µl of the overnight culture was inoculated (sub-cultured) into 

3ml of fresh LB and incubated for 3 hours at 37°C and 250 rpm to an optical 

density (OD600) of 0.5 to obtain cells in the mid-log phase of growth. 
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• One ml of cells from the mid-log culture of each strain was obtained and cen-

trifuged at 13,000 rpm for 3 min. The supernatant was removed, and the cell 

pellet was re-suspended in 1 ml sterile distilled water (sdH2O). the cells were 

then centrifuged again; the supernatant was removed, and the cells were re-sus-

pended again in 1 ml sdH2O. This wash step was repeated 1 more time (3 times 

in total) to remove any nutrients remaining from the LB.  

• One ml of the washed cells (concentration of 5 x 108 cfu/ml) were inoculated 

into 9 ml of sdH2O for a final concentration of approximately 5 x 107 cfu/ml. 

The water samples were incubated at room temperature and bacterial quantita-

tion was performed by serial dilutions and plating on LB agar. The bacterial 

quantitation was performed by taking 100 µl of the sample and preparing 10-

fold serial dilutions in a series of tubes followed by plating of dilutions 10-4, 10-

5, and 10-6 on LB agar plates. 

The quantitation was performed at Time 0 to verify the number of bacteria initially 

added to the water.  Thereafter it was then performed every week for a number of 

weeks to determine the survival of each strain in water, a low nutrient environment. 

The samples were prepared in triplicate and in some cases where more volume of 

sample was required, a higher volume of cells and water was used, maintaining the 

concentration at approximately 107 cfu/ml. Since 0.5 is equal to 5 x 108 colony 

forming units per ml (cfu/ml) and cells are put in water for survival experiments at 

a concentration of 1 x 107 cfu/ml cells were diluted 1:10 in the final sample.          

Figure 4.5 below shows the experiment results of water survival for PA01 vs 

PA0272 mutants. According to this, PA0272 survival declined by 10-fold compared 
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to wild type (PA01) after ~1 month of incubation in water. Overall it was 10 to 100-

fold reduced, 10-fold or greater being significant by student’s T-test7. The reduction 

here is in reference to survival essays and not gene expression essays. A reduction 

in survival is of interest because it is an indication of a mutation in the gene, i.e., 

the gene is non-functional and therefore is needed for survival. In other words, if 

the gene was not mutated and was functional then the organism would survive 

properly. This is a common assumption in molecular biology. A reduction or 

change that occurs when a gene is mutated means that the gene contributes to the 

phenotype. In this research results, PA0272 was predicted to be correlated to the 

expression of other genes when PAO1 is in water. Based on this, PA0272 is as-

sumed to have an important role in water survival. Thus, having the strain die in 

water because it is carrying a mutation in that gene means that PA0272 must be 

required for survival. 

 

Figure 4.5: Graph of survival test in water over time of PA0272 vs wild type PA01 

 

                                                      
7 Inferential statistics used to gauge the significance of difference between the means of 2 groups. 
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Chapter V – Conclusions and Further Research 

5.1 Conclusions 

The thesis research concerned Pseudomonas aeruginosa, an environmental bacterium 

with long-term survival, which resists antibiotics and is a common cause of severe noso-

comial infections. The pervasiveness of this agent and the high-level death risk that it rep-

resents instigated the overarching objective of this research—investigate the mechanism 

undergirding P. aeruginosa survival in a water medium depleted of nutrient.  

A 28 timepoints gene expression matrix dataset, resulting from P. aeruginosa genes 

response to low nutrient water was used. The collection of the data was based on 

PAO1 mini-Tn5-luxCDABE transposon mutant library.  

This research started with the study of the data and Microbiology literature review, 

particularly on P. aeruginosa and its genome. P aeruginosa has a great genetic and 

a rich functional diversity, which both justify its versatility. Some comparative ge-

nomic studies in the literature revealed that P aeruginosa genome is of mosaic com-

position, consisting of Core genome and Accessory genome. While the former is 

common to almost all strains, the latter, which is about 10% of the entire genome, 

varies between strains and is designated as the niche-based adaptation of the organ-

ism. Interests in the literature have been expressed to further the knowledge of this 

accessory genome. The hypothesis of this research is that P aeruginosa is capable 

of long-term survival in water due to the presence of particular genes which encode 

for protein that facilitate persistence. This research explored a computational model 

that would well characterize the survival mechanism of this organism, and identify 

potential genes involved in the survival mechanism.  

The computational approach of this research is based on Machine Learning and 
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began with the focus on the exploration of gene expression analysis literature which 

asserted that the phenomenon of gene expression is intrinsically stochastic. This led 

to the selection of Bayesian Networks for its probabilistic nature, to analyze this 

probabilistic phenomenon. The literature study continued further with Bayesian 

Networks learning and construction, as well as heuristic search techniques. Upon 

these rests the research methodology.  

With this methodology, an optimal P. aeruginosa survival mechanism model has 

been established through a probabilistic graph model that was learned and con-

structed solely from the gene expression data. The graphical representation permits 

an easy visual reading of the network of interaction among the genes that regulate 

the gene expression of P. aeruginosa. The model revealed that PA0272, a transcrip-

tional regulator, is a root node and therefore an originator. This gene has a directed 

arc to algU which interestingly is also a transcriptional regulator of the polysaccha-

ride alginate and other polysaccharide genes involved in survival.  

From this model, node influence techniques were applied to infer a dozen distinct 

genes, as the principal orchestrators of P. aeruginosa viability maintenance in low 

nutrient water. All the genes inferred are found to be of protein coding type. Also, 

their associated functional descriptions were identified which biologically aligned 

with the bacterium’s survival. The computational findings are supported by the the-

ory, and the results have been experimentally lab-tested for validation. It is found 

that the survival of PA0272 in water was 10 to 100-fold reduced compared to PA01, 

the wild type; 10-fold or greater being significant. 
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5.2 Additional Works Recommendations 

The functional interplay involved in P. aeruginosa survival mechanism was also 

explored to determine the influence of certain combinations of gene states on spe-

cific states of the bacterium. Regarding the functional interplay, by Multiple Clus-

tering technique, 33 clusters (Figure A.1) were made on one hand and 107 clusters 

(Figure A.2 and Table A.2) were made on the other, which suggest that these could 

be the representations of the functional modules involved in the survival mecha-

nism. In fact, [6] found that 45.8% of P. aeruginosa ORFs8 are genes with unknown 

functions and were able to assign 54.2% to 25 functional categories derived from 

those used for E. coli functional classification. On this basis, one can postulate that 

when all the functions are identified, the number of functional categories in P. ae-

ruginosa would be between 33 and 107. This research recommends further com-

parative studies between the dendrograms of the 33-cluster and the 107-cluster to 

check and verify if each cluster indeed carries out a function. Also, one can com-

putationally determine the optimal number of functional categories within the range 

33-107. 

As far as the bacterium states exploration is concerned, by Data clustering, a factor 

Factor_0 (Figure A.3 and Table A.3) has been obtained, to represent the bacterium 

as an entity. The states of this factor are denoted C1 and C2 as in Table A.3. In this 

case as well, this research recommends further studies to investigate if Factor_0 

can be a computational representation of the bacterium and see if a relation can be 

inferred between its states and the experimental states of the P. aeruginosa.  

                                                      
8 Open Reading Frame: It is the portion of a reading frame that can be translated. 
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5.3 Future works with Inductive Logic Programming 

According to [38], Decision-tree-learning and Inductive Logic Programming (ILP) 

are both predictive models based on learning techniques and are very useful in AI 

(Artificial Intelligence) especially in Machine Learning. While attribute-based, the 

first, though still among the most powerful, is the simplest. The second is an inte-

gration of inductive methods with great potentials of first-order logic representa-

tion. It focuses on representing hypotheses as logic programs. One of the key dif-

ferences between these two models is the background knowledge. Albeit in certain 

cases of decision-tree-learning, prior knowledge could be incorporated, in ILP 

which presents a rigorous approach to the general knowledge-based inductive learn-

ing, prior knowledge is integral part of its execution, namely its hypothesis deter-

mination through the entailment equation (Background ˄ Hypothesis ˄ Descrip-

tions ╞ Classifications). Because ILP is relational and based on first-order theories, 

it accomplishes successful learning in domains where attributes-based, i.e., Deci-

sion-tree-learning, hardly succeeds. An example of such domain is protein folding 

which intrinsically rests on relationships between objects. Another example is that 

decision-tree-learning will flounder in the resolution of a problem involving binary 

predicate that would require a transformation into unary predicate (attribute-based); 

this is characteristic of decision-tree-learning which is unable to learn relational 

predicates. ILP being based on such types of predicates, it has a wider range of 

problem solving applications. The decision tree is a tree-based learning representa-

tion which starts and gradually grows until it fits the data observations. Similarly, 

ILP begins with general rules and progressively tightens up to suitably be consistent 
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with the data. Overall, ILP outperforms decision-tree (and others), and this comes 

from its ability represent relations and also to use prior/background knowledge. Its 

human friendly readable rules made it to be adopted in various disciplines notably 

bioinformatics which is in fact we are dealing with here. Now, beyond the identifi-

cation of genes responsible for the persistence of Pseudomonas aeruginosa, it will 

be of interest to know what other knowledge can be gained from the data. And we 

suggest the power of induction logic programming (ILP). Its rules are easily inter-

preted by human and this makes it popular and well accepted in domains beyond 

computer science. Work by [55] is a good example of the power of ILP which they 

used to include experiment design and therefore devising an autonomous scientist 

which discovered new knowledge about functional genomic of yeast. So ILP con-

sideration to investigate unknown environmental factors (stimuli, temperature, aer-

ation, PH, biological etc.…) shaping P. aeruginosa survival mechanisms is sug-

gested for future work. 

5.4 Future works with Dynamic Bayesian Networks 

In this thesis, static Bayesian Networks, which describe a probability distribution 

over fixed variables, has been implemented. Dynamic Bayesian Networks (DBN) 

are an extension of static BN to a temporal dynamic process. The next step in fur-

thering the understanding of P. aeruginosa survival is to establish a temporal genes 

interactions regulatory network that will give deeper insight on how the ineluctable 

time factor affects the mechanism. This will require a prior network model Bo that 

specifies the distribution over gene expression at time T0 and a transition network 

BT that would specify the transition model. 
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Appendix – Additional Tables and Figures 

 

Table A.1: List of the next 4 dozen genes with higher node force 

 
 Gene Arc Force 

13 PA5179-PA5180 4.404549 

14 ahpF 4.196446 

15 aruE 4.192155 

16 holB 4.061651 

17 PA3185-oprB 3.614821 

18 PA4041 3.446179 

19 queA 3.386628 

20 PA0112 3.322634 

21 kdpA 3.064861 

22 PA3423 3.060869 

23 PA4675 3.047076 

24 pbpG 2.959627 

25 PA4886 2.955684 

26 PA5099 2.909747 

27 PA3432 2.888731 

28 PA3044 2.872886 

29 PA3170 2.870031 

30 PA1022 2.781305 

31 tyrS-PA4139 2.780358 

32 fumC2 2.696253 

33 PA3312 2.684043 

34 PA1824 2.669281 

35 PA0181 2.608916 

36 algU 2.581298 

37 fabF1 2.432385 

38 pilC 2.413293 

39 PA3444 2.267929 

40 PA3130 2.248786 

41 PA1033 2.225171 

42 soj 2.14114 

43 PA0461 2.140365 

44 PA4635-PA4636 2.123005 

45 PA5370 2.081975 

46 aqpZ-PA4035 1.996317 

47 PA4734 1.951847 

48 PA3187 1.951017 

49 putP 1.928699 

50 PA4108-ampR 1.909877 

51 rph 1.904199 

52 argF 1.846952 

53 PA0310 1.810984 

53 PA2125-PA2126 1.807017 

55 PA5388 1.803333 

56 PA11.64 1.788807 

57 PA0565 1.768052 

58 PA0144 1.766551 

59 PA2745 1.716449 
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Figure A.1: 33-cluster dendrogram of P. aeruginosa possible functional interplay 
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Figure A.2: 107-cluster dendrogram of P. aeruginosa possible functional interplay 
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Table A.2: 107-cluster suggested functional genes classification list 

 

Classes Nodes  

[Factor_8] 

aspA  

[Factor_18] 

PA0752 

[Factor_0] 

PA0112  PA0749  PA5088 

PA0877  PA1057  PA2773 

PA3177  PA0716  pgi 

ilvI-PA4697  PA0562  

[Factor_19] 

PA3444 

PA5234-glpT  

[Factor_9] 

PA0272  PA4799 

[Factor_1] 

PA5001  PA5411  PA0626 

PA1164  glpR-glpD  arcD 

PA4659  PA4516-PA4517  

[Factor_20] 

PA4675 

PA5317  PA0217-PA0218  PA1116 

PA5080  

[Factor_10] 

pbpG  PA0674 

[Factor_2] 

fabF1  aotP  ltaA 

PA3966-PA3967  aruD  

[Factor_21] 

PA3130 

galE  wspD  metX 

PA4339  

[Factor_11] 

PA1022  braC 

PA4620  PA3185-oprB  PA2911 

[Factor_3] 

PA0377  PA0034  

[Factor_22] 

PA2125-PA2126 

PA3340  PA3739  PA5388 

PA0810  

[Factor_12] 

PA1824  argR 

PA3950  wspA  PA5094 

PA0881  PA0748  

[Factor_23] 

PA3265 

[Factor_4] 

PA4715 
 

PA0574-PA0574.1 
 

dgt 

PA5179-PA5180  

[Factor_13] 

aruE  PA3044 

PA3579  estA  PA5078 

PA4140  PA0158  

[Factor_24] 

ahpF 

PA4983  PA3715  lldD 

[Factor_5] 

cupC2  

[Factor_14] 

kdpA  xcpY 

PA0804  aqpZ-PA4035  PA4093 

PA1526  PA3961  

[Factor_25] 

PA5270-PA5271 

flgI  PA1623  glcB 

PA0708  

[Factor_15] 

PA0726  PA1678 

[Factor_6] 

cysW  soj  uraA 

PA3187  PA3925  

[Factor_26] 

PA3170 

PA1809  PA5343  PA0144 

PA1015  

[Factor_16] 

holB  PA5099 

PA5545  PA0249  PA4928 

[Factor_7] 

cyoB  PA1076  
[Factor_27] 

PA5370 

mexI  cti  PA4359 

hisH1  

[Factor_17] 

PA3432  PA5127 

aruC  PA3132-PA3133  

[Factor_28] 

PA3436 

PA0321  PA3064  PA4734 

    PA5234  PA4977 
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[Factor_29] 

PA1033  
[Factor_43] 

PA4886  [Factor_66] PA0498 

PA4108-ampR  PA0808  [Factor_67] PA0591 

oruR-PA0832  PA4075  [Factor_68] PA0604-PA0605 

[Factor_30] 

putP  
[Factor_44] 

PA5507  [Factor_69] PA0659 

bioD  plsB  [Factor_70] PA0847 

tyrS-PA4139  PA2793  [Factor_71] PA1037 

[Factor_31] 

PA3423  [Factor_45] 
PA5528-PA5529  [Factor_72] PA1201-PA1202 

katA  rnd  [Factor_73] PA1400 

PA0063  [Factor_46] 
PA0485  [Factor_74] PA1753 

[Factor_32] 

rph  PA3969  [Factor_75] PA1935 

mutS  [Factor_47] 
PA2813  [Factor_76] PA2816 

micA  PA3272  [Factor_77] PA2828 

[Factor_33] 

oprG  [Factor_48] 
PA4440-PA4441  [Factor_78] PA3024 

PA2745  PA1031  [Factor_79] PA3094 

PA4912  [Factor_49] 
PA3697  [Factor_80] PA3211 

[Factor_34] 

PA0461  anr  [Factor_81] PA3321 

cyoC  [Factor_50] 
PA3676  [Factor_82] PA3460 

PA5508  PA4691  [Factor_83] PA3733 

[Factor_35] 

fumC2  [Factor_51] 
PA0147  [Factor_84] PA3895 

PA3075  PA5165  [Factor_85] PA3951 

PA5113  [Factor_52] 
PA0354  [Factor_86] PA4184 

[Factor_36] 

pilC  PA0861  [Factor_87] PA4196 

PA4521  [Factor_53] 
leuA  [Factor_88] PA4294 

spuF  ccpR  [Factor_89] PA4300 

[Factor_37] 

PA3312  [Factor_54] 
PA4879  [Factor_90] PA4398 

PA4517  PA3913  [Factor_91] PA4658 

PA4888  [Factor_55] 
sucD  [Factor_92] PA4716 

[Factor_38] 

PA3927  PA0310  [Factor_93] PA4923-PA4924 

plcH 
 [Factor_56] 

PA0535 
 

[Factor_94] 
PA5149-

PA5149.1 

PA3597  PA4686-hitA  [Factor_95] PA5201 

[Factor_39] 

PA0181  [Factor_57] 
pilT  [Factor_96] PA5403 

sbp  argF  [Factor_97] PA5438 

omlA-PA4766  [Factor_58] 
PA0565  [Factor_98] pchC 

[Factor_40] 

algU  PA4332  [Factor_99] pheA 

PA4735  [Factor_59] 
PA1427-PA1428  [Factor_100] pilB 

cyaA  PA4635-PA4636  [Factor_101] polA 

[Factor_41] 

PA4041  [Factor_60] fis-purH  [Factor_102] pta 

PA5231  [Factor_61] flgJ  [Factor_103] purN 

PA2042-PA2043  [Factor_62] ftsX  [Factor_104] recQ 

[Factor_42] 

queA  [Factor_63] lon  [Factor_105] serA-PA0317 

PA3890  [Factor_64] lpxO1  [Factor_106] xcpS 

PA3595  [Factor_65] PA0421    
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Figure A.3: Data cluster of the 249 genes, with Factor_0 as computational representation 

of P. aeruginosa 
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Table A.3: The 2-states targeted clustering evaluations information 

 

Target: [Factor_0] 

Value C1 (-0.6753) C2 (-0.1013) 

Gini Index 39.08% 60.39% 

Relative Gini Index 99.47% 99.47% 

Lift Index 1.4876 1.9073 

Relative Lift Index 100.00% 100.00% 

ROC Index 100.00% 100.00% 

Calibration Index 100.00% 100.00% 

Binary LogLoss 0 0 

Statistics 

R 1 

R2 1 

RMSE 0 

NRMSE 0.00% 

Overall Precision 100.00% 

Mean Precision 100.00% 

Overall Reliability 100.00% 

Mean Reliability 100.00% 

Overall Relative Gini Index 99.47% 

Mean Relative Gini Index 99.47% 

Overall Relative Lift Index 100.00% 

Mean Relative Lift Index 100.00% 

Overall ROC Index 100.00% 

Mean ROC Index 100.00% 

Overall Calibration Index 100.00% 

Mean Calibration Index 100.00% 

Overall LogLoss 0 

Mean Binary LogLoss 0 

Occurrences 

Value 
C1 (-0.6753) 

(17) 
C2 (-0.1013) (11) 

C1 (-0.6753) (17) 17 0 

C2 (-0.1013) (11) 0 11 

Reliability 

Value 
C1 (-0.6753) 

(17) 
C2 (-0.1013) (11) 

C1 (-0.6753) (17) 100.00% 0.00% 

C2 (-0.1013) (11) 0.00% 100.00% 

Precision 

Value 
C1 (-0.6753) 

(17) 
C2 (-0.1013) (11) 

C1 (-0.6753) (17) 100.00% 0.00% 

C2 (-0.1013) (11) 0.00% 100.00% 

 
 


