
ATHABASCA UNIVERSITY

A Predictive Workload Balancing Algorithm in Cloud Services

BY

MAHDEE JODAYREE

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE IN INFORMATION SYSTEMS

SCHOOL OF COMPUTING AND INFORMATION SYSTEMS

ATHABASCA UNIVERSITY

August, 2018

© MAHDEE JODAYREE

PREDICTIVE WORKLOAD BALANCING

ii

Approval of Thesis

The undersigned certify that they have read the thesis entitled

Submitted by

Mahdee Jodayree

In partial fulfillment of the requirements for the degree of

Master of Science in Information Systems

The thesis examination committee certifies that the thesis

and the oral examination is approved

Supervisor:

Dr. Mahmoud Abaza

Athabasca University

Committee Member:

Dr. Ching Tan

Athabasca University

External Examiner:

Dr. Ebrahim Bagheri

Ryerson University

August, 2018

The future of learning.

1 University Drive, Athabasca, AB, T9S 3A3 Canada
P: 780.675-6821 | Toll-free (CAN/U.S.) 1.800.788.9041 (ext 6821)

fgs@athabascau.ca | fgs.athabascau.ca | athabascau.ca

A PREDICTIVE WORKLOAD BALANCING ALGORITHM IN CLOUD SERVICES

mailto:fgs@athabascau.ca

PREDICTIVE WORKLOAD BALANCING

iii

Abstract

In today’s business world, many companies and government agencies depend

on the infrastructures of cloud services to host and process their information. Load

processing of many cloud services is distributed in a static manner which can overload

the largest available systems. This paper is an exploratory study on the predictive

approach for dynamic resource distribution of cloud services.

Today, many cloud service providers are exploring the benefit of dynamic

workload-balancing for their resource management. Rather than issuing fixed

resources to each customer, a dynamic hosting alternative offers a way to allocate

resources dynamically and more efficiently to save computational power.

Efficient cloud resource management can be achieved by simulating cloud

services based on the predictions of incoming workloads, which can be more efficient

than static allocation methods (Wolke, Bichler, and Setzer, 2015). Previous

researchers in this area have focused on dynamic load balancing algorithms that are

based on a current workload demanded by a client. These approaches require high

computational power and additional time to meet the demands of dynamic cloud

services. This paper introduces a rule-based workload-balancing algorithm based on

the predictions of an end-to-end system called Cicada. A simulation of cloud services

can be achieved by a cloud service simulator called CloudSim and it will be used to

achieve an algorithm with lower computational demand and a faster workload

balancing. The final result will demonstrate the effectiveness of a predictive workload

balancing approach that can achieve faster workload balancing with a lower

computational power usage.

PREDICTIVE WORKLOAD BALANCING

iv

Acknowledgements

This thesis could not be possible without the help of my supervisor Dr. Abaza and

Dr.Tan. My gratitude to my supervisor, Dr. Mahmoud Abaza, who read my revisions and

advised me towards the completion of my thesis. I also would like to thank committee

member Dr.Tan who offered support and direction for my proposal and my thesis work.

PREDICTIVE WORKLOAD BALANCING

v

TABLE OF CONTENTS

ABSTRACT .. III

ACKNOWLEDGEMENTS .. IV

TABLE OF CONTENTS ... V

LIST OF TABLES ... VIII

LIST OF FIGURES .. IX

1. CHAPTER 1 INTRODUCTION ... 1

1.1 BACKGROUND ... 1

1.2 STATEMENT OF PURPOSE ... 1

1.3 CONTRIBUTION AND SIGNIFICANCE ... 2

1.4 ORGANIZATION OF THESIS .. 3

1.5 RESEARCH CONTRIBUTION .. 3

1.6 HYPOTHESIS .. 4

1.7 RESEARCH QUESTIONS .. 4

2. CHAPTER 2 LITERATURE REVIEW .. 5

2.1 INTRODUCTION TO CLOUD SERVICE AND CLOUD DEPLOYMENT MODELS 6

2.2 DIFFERENCE BETWEEN DYNAMIC AND STATIC RESOURCE ALLOCATION OF CLOUD

SERVICES ... 8

2.1 DYNAMIC CLOUD PROVISIONING .. 9

2.2 PREDICTIVE LOAD BALANCING ALGORITHMS FOR CLOUD 12

2.3 DIFFERENT CLOUD SIMULATION FRAMEWORKS ... 14

2.3.1 CloudSim Simulation Framework ... 14

2.3.2 ICanCloud Simulation Platform ... 15

2.3.3 GreenCloud Simulation Platform ... 15

2.3.4 CloudSched Simulation Platform .. 16

2.4 WORKLOAD BALANCING ALGORITHMS .. 16

2.4.1 Round Robin Algorithm .. 16

2.4.2 Throttled Load Balancer (TLB) load balancing algorithm 20

2.4.3 Active Monitoring Load Balancer (AMLB) algorithm................................ 21

2.4.4 The Central Load Balancing Decision Model (CLBDM) algorithm 22

2.4.5 Min-Min Load Balancing algorithm ... 23

2.4.6 Load Balancing Algorithms in Large-Scale Cloud Computing Service

providers .. 24

2.5 LOAD PREDICTION BASED ON INCOMING NETWORK TRAFFIC 27

2.6 IMPACT OF THE PROBLEM .. 27

2.7 CHOOSING LOAD PREDICTOR: CICADA TOOLKIT FOR ... 28

PREDICTIVE WORKLOAD BALANCING

vi

2.8 CHOOSING CLOUD SIMULATOR: CLOUDSIM FRAMEWORK 28

3. CHAPTER 3 PRESENTING C-RULE ALGORITHM .. 30

3.1 WORKLOAD PREDICTION CONCEPT INTRODUCED BY CICADA AND CHOERO 31

3.2 IMPROVEMENTS OF C-RULE ALGORITHM COMPARE TO ALL PREVIOUS

ALGORITHMS ... 39

3.3 WEBHOSTING ASPECTS OF C-RULE ALGORITHM. .. 41

3.1 COMPARISON OF WORKLOAD PREDICTION AND EFFICIENTLY LEVEL OF C-RULE

ALGORITHM. .. 42

4. CHAPTER 4 METHODOLOGY AND DATA SAMPLE 44

4.1 METHODOLOGY STEP 1: INSTRUMENTS OF PREDICTION 44

4.1.1 Introduction to Cicada and its reliability ... 45

4.2 METHODOLOGY STEP 2: SAMPLE DATA .. 46

4.3 METHODOLOGY STEP 3: IMPORTATION OF SAMPLE DATA 46

4.4 METHODOLOGY STEP 4: INSTRUMENT FOR SIMULATION 47

4.5 METHODOLOGY STEP 5: IMPORTATION OF DATA TO CLOUDSIM 48

4.6 METHODOLOGY STEP 6: SIMULATION OF DATA IN CLOUDSIM 48

4.7 METHODOLOGY STEP 7: IMPLEMENTING HISTORICAL DATA 49

4.8 SUMMARY ... 51

5. CHAPTER 5 IMPLEMENTATION ... 52

5.1 INTRODUCTION TO THE FUNDAMENTALS OF CLOUD SIMULATOR. 52

5.2 CLOUDSIM PROGRAMMING AND IMPLEMENTATION: ... 56

5.2.1 Initializing CloudSim process ... 57

5.2.2 Creating data centers, VM allocation policy and scheduling 58

5.2.3 Creating Broker .. 59

5.2.4 Creating Cloudlets by Defining the Workload.. 60

5.2.5 Creating VMs and Defining the Task Scheduling Algorithm 61

5.2.6 Starting the Simulation ... 61

5.2.7 Printing Results of the Simulation .. 62

5.3 SUMMARY ... 64

6. CHAPTER 5 RESULTS .. 65

6.1 RESULT 1: WITHOUT C-RULE ALGORITHM ... 66

6.2 RESULT 2: WITH C-RULE ALGORITHM .. 67

6.3 CONCLUSION .. 84

6.4 SUMMARY ... 85

REFERENCES ... 86

APPENDIX A - JAVA CLASSES OF CLOUDSIM ... 93

PREDICTIVE WORKLOAD BALANCING

vii

INTRODUCTION TO PROGRAMING LANGUAGE OF CLOUDSIM .. 93

APPENDIX B - TOOLS: INSTALLATION OF CLOUDSIM AND COMMONS MATH

FILES. ... 96

APPENDIX C – JAVA CODE FOR THE SIMULATION.. 100

PREDICTIVE WORKLOAD BALANCING

viii

LIST OF TABLES

Table 1. Comparison of load balancing algorithms (Rajeshkannan, 2016). 24

Table 2: Table of Input parameters from Cicada to CloudSim Simulator. 33

Table 3: Final result of resource reduction after achieving a zero processing wait-time. 41

Table 4: Initial Simulation Result for Space Shared Algorithm 63

Table 5: New Result of simulation with space shared algorithm with the following 66

Table 6: Final Simulation result after applying the C-Algorithm 82

Table 7: T-Test Comparison of final results after applying the C-Rule algorithm 83

Table 8: Important Java Classes of CloudSim Simulator ... 95

PREDICTIVE WORKLOAD BALANCING

ix

LIST OF FIGURES

Figure 1. Generic 3-Layer model of cloud computing (Source: Mahmood, 2011) 6

Figure 2 (Model of Cloud Computing) (Kaur & Luthra, 2014). .. 8

Figure 3: Scalable distributed architecture for Web applications (Oluwatolani, 2012) ... 11

Figure 4. Round Robin Algorithm .. 18

Figure 5. Random Algorithm .. 19

Figure 6. Throttled Algorithm (Source: Patel & Rajawat, 2015) 21

Figure 7. Active Monitoring Load Balancing (Source: Jena & Ahmad, 2013) 22

Figure 8: Cicada Data Gathering Diagram ... 34

Figure 9: Data Importation from Cicada to CloudSim ... 35

Figure 10: Table of results from CloudSim. Adding a new host machine decreases the

total wait-time. .. 36

Figure 11: Chart demonstrating effect of adding a new host on total CPU waiting time. 36

Figure 12. C-Rule Workload balancing diagram .. 37

Figure 13: Random Algorithm .. 38

Figure 14: (LaCurts, 2014) Speed of Predictions of Cicada based on the Size of Dataset39

Figure 15: C-Rule eliminates excessive host machines to eliminate over-provisioning. . 40

Figure 16: Resource Reduction by C-Rule algorithm... 40

Figure 17: Table of parameters required for a CloudSim simulation. 43

Figure 18 CloudSim DataCenter 1 Diagram ... 55

Figure 19 Data center 1 specifications table ... 57

Figure 20: Chart of Final CPU Waiting Time after adding 5 host machines. 83

Figure 21. Screenshot of Java 64-bit... 97

Figure 22. Google Code offers open-source project hosting .. 98

file:///C:/Users/MM/Desktop/Thesis-files-august-2018/Thesis-Sep-02-2018.docx%23_Toc524099793
file:///C:/Users/MM/Desktop/Thesis-files-august-2018/Thesis-Sep-02-2018.docx%23_Toc524099796

PREDICTIVE WORKLOAD BALANCING

1

1. CHAPTER 1 INTRODUCTION

1.1 Background

Cloud computing services play a major role in today’s computing. Leading

information technology companies like Amazon’s AWS, HP, Microsoft, and Google

deploy large data centers with extensive hardware network for effective service

delivery to cloud clients. Cloud service providers require proper resource management

and provisioning to allow clients to access cloud services from the internet (Singh, &

Jangwal, 2012). In recent years, cloud service providers have shifted towards dynamic

resource management to enable sharing of cloud computing resources between

different users. Dynamic cloud computing technique enables resources to be assigned

to different clients based on the current demand of each client turning the cloud to a

limitless computational platform with limitless storage space which improves the

performance of cloud services. To achieve best resource allocation in dynamic hosting

frameworks, cloud service providers should provision resources intelligently to all

clients. This intelligent resource balancing is known as workload balancing in a cloud

service models. Cloud service environments have adapted different provisioning

strategies to improve their service level.

1.2 Statement of Purpose

The main problem with load-balancing in a dynamic cloud environment, is the

overload prevention problem. Today many load-balancing algorithms focus on

balancing the current over-loads rather than preventing it in a first place.

PREDICTIVE WORKLOAD BALANCING

2

To prevent any overloads or any over-provisioning in a dynamic cloud

environment, one must find a reliable method of workload prediction and a reliable

framework for simulating a cloud environment. This paper reviews previous literatures

to presents a reliable prediction

This research explores the effectiveness of different cloud simulators and

different prediction tools to predict a workload of a cloud efficiently. This paper will

explore the cloud service simulation problems and resource management algorithms.

1.3 Contribution and Significance

The use of static resources for cloud services (Sheng, Qiao, Vasilakos, Szabo,

Bourne, & Xu, 2014) has many drawbacks, for instance, static hosting in web-based

platforms has unreliable service level, where a single outage can make the platforms

unusable. It is also very costly and inefficient to assign a static amount of resources to

a specific workload where static resources can remain unused for various periods of

time. The dynamic hosting approach can enable vendors and providers to support

efficient resource allocation and resource management mechanisms for their hosting

platforms, however dynamic resource management for cloud services requires an

efficient and a fast resource allocation algorithm.

The main contribution of this research is a proposed ruled-based algorithm

called C-Rule Algorithm that would use a very efficient prediction tool (LaCurts,

2014) simulation framework to prevent any unbalanced in the system in a dynamic

environment. This unbalance prevention will be achieved by simulating different

resource allocation scenario of a predicted workload, in order to achieve an optimal

resource provisioning for a specific workload with a low computation need.

PREDICTIVE WORKLOAD BALANCING

3

1.4 Organization of Thesis

Chapter 1 introduces the main goal and the layout of the paper. Chapter II

contains a review of literature of previous researches related to workload balancing of

cloud services. Chapter II also provides background information and introduces the

necessary tools for achieving a predictive workload balancing. Chapter III presents the

C-Rule algorithm and the concept behind it. Chapter IV explains the method of

modeling for this paper and it describes the procedures for importing and running data

in CloudSim simulation. Chapter V implements the cloud simulation by CloudSim and

explains each individual step required to achieve simulation in CloudSim. APPENDIX

B provides the result for this research paper including the final output from the

CloudSim. APPENDIX C provides the Java code for a cloud simulation and outlines

the implementation of the newly introduced algorithm. Chapter V contains the final

conclusion of this paper.

1.5 Research Contribution

The core contribution of this paper is an introduction of a new predictive rule

based algorithm which can predict the incoming cloud workloads by analyzing all

incoming network traffics and compare that prediction to historical load balancing

results and decide whether the cloud can handle the incoming workload. The main

contribution of the algorithm will be to prevent any over-provisioning or any under-

provisioning. The new introduced rule-based algorithm will be called Custom-rule

algorithm or C-Rule algorithm.

PREDICTIVE WORKLOAD BALANCING

4

1.6 Hypothesis

The following hypotheses will be proven in this research.

H0: A reliable load balancing is achievable based on the predictions of end-to-end

software toolkit called Cicada

H1: A rule-based workload-balancing algorithm based on prediction of Cicada will

consume less computational power than a non-predictive workload-balancing.

In the next section the research questions of this thesis paper will be discussed.

1.7 Research Questions

With these goals in mind, the following research questions will help the

researcher to explore the most efficient intelligent load balancing algorithm for

dynamic internet hosting.

1. Under what conditions the prediction of Cicada cannot be reliable to predict the

amount of workload in a dynamic internet hosting platforms?

2. Under what conditions CloudSim cannot generate a reliable workload simulation?

PREDICTIVE WORKLOAD BALANCING

5

2. CHAPTER 2 LITERATURE REVIEW

This chapter introduces the literature review of predictive workload balancing

and demonstrates the reasons, which led to a prediction-based workload balancing. An

overview of different algorithms, simulation framework and previous studies on

dynamic provisioning will be covered in this chapter. The main advantage and

disadvantages of previous introduced algorithms and predictions will be also discussed

in this chapter. The main contribution of this research will be discussed in the

Research Contribution and hypothesis section of this chapter.

Today cloud computing enables companies to delivery different computing

services such as storages, software, and databases to their clients over the Internet.

This resource sharing technique enables organizations to focus on their main

objectives rather than on computer infrastructure and maintenance.

There are two resource management models, static and dynamic. Initially,

cloud computing services were introduced as static computing services where a

specific amount of resources were assigned to specific organizations however over the

time with the rapid growth of computing needs for many organizations and business,

dynamic cloud computing was introduced. Dynamic cloud computing allowed cloud

service providers to share and assign resources based on the demand for a specific

workload. The dynamic resource management model enabled limitless computational

platform with unlimited storage which improves the performance of cloud computing.

For instance, in a static computing, any outrages can generate downtime, wherein

dynamic computing, if any outages occur the computing job can be automatically

shifted to another location.

PREDICTIVE WORKLOAD BALANCING

6

2.1 Introduction to Cloud Service and Cloud Deployment Models

There are three types of Cloud computing service model:

 Software As A Service (SaaS)

 Platform As A Service (PaaS)

 Infrastructure As A Service (IaaS)

Figure 1. Generic 3-Layer model of cloud computing (Source: Mahmood, 2011)

Software As A Service is the top layer of cloud computing services where software

applications mainly standard software is offered as a cloud service to the users. An

outstanding example of a SaaS service is Google Docs. Google docs offer a free fully

functional word processor, the spreadsheet application, and presentation creator

software enabling users to collaborate with each other from different locations.

If users need to develop their own application on the cloud they must use Platform As

A Service (PaaS). This platform provides a cloud service environment in which

developers can use appropriate APIs to make an application such as Facebook, which

SaaS

PaaS

IaaS

PREDICTIVE WORKLOAD BALANCING

7

can be run and shared in anywhere in the world with any platforms without the risk of

software pirating.

Infrastructure as a Service segment of cloud services provide developing tools

with limitless storage and computing powers to developers and ordinary users. For

example Google drive and Apple iCloud offer cloud storage service for all people

including ordinary users and developers. Allowing them to develop, run, and store

different applications in cloud environments. For example, Amazon EC2 and

Windows Azure are typical IaaS (Sleit, Misk, Badwan, & Khalil, 2013).

Cloud deployment model can be categorized into 5 types:

1. Private clouds

2. Public clouds

3. Community

4. Hybrid

5. Hybrid with Cloud bursting application

A cloud-computing environment is called a private cloud when the provider

and consumer are associated with each other, however, in public clouds, there are no

associations between the provider and the customer. The customer rents machines

from the provider either by the hour or by a different function of time. Hybrid

computing is a mixture of public and private computing models and a community

cloud is computing infrastructure shared between different organizations.

In public cloud computing, workload balancing is needed for both provider and

consumer. In public cloud computing, providers must utilize their resources so that

their consumers can have the assurance of receiving sufficient amount of resources. In

PREDICTIVE WORKLOAD BALANCING

8

addition, there is a monetary exchange between individual consumers and their cloud

providers.

Figure 2 (Model of Cloud Computing) (Kaur & Luthra, 2014).

In a cloud service model, a cloud bursting model is an application deployment

model in which the application is configured to run in a private cloud or data center

computer and when there is a demand for extra computing capacity, the application

burst into a public cloud for extra computing only when it is needed.

2.2 Difference between Dynamic and Static Resource Allocation of Cloud

Services

PREDICTIVE WORKLOAD BALANCING

9

In Cloud computing, the goal of resource allocation is to maximize the possible

number of requests that can be processed to reduce application completion time.

Dynamic environments can easily create a scarcity of resources in the system, creating

a need to find efficient methods of resource allocation. This research will examine the

solutions to these problems.

To achieve a reliable workload balancing, there is a need to ensure that hosted

applications can handle an unpredictable spike in workload (Al-Qudah, Alzoubi,

Allman, Rabinovich, and Liberatore, 2009). Dynamic resources must operate at an

optimal level even when experiencing significantly higher request rates. This means

that it needs to be able to shift resources to where they are needed when they are

needed.

Next section is a literature review on dynamic Cloud provisioning.

2.1 Dynamic Cloud Provisioning

The massive demand for resources in dynamic computing also introduced a

new problem which was a need for intelligent resource management. Dynamic cloud

computing needed a reliable workload balancing to prevent over provisioning and

under provisioning of resources to a client.

Over the years many different technologies have been introduced for resource

management. The most popular and key technology which has been introduced for

resource management of cloud is the utilization of virtual machines (VMs) for

resource scheduling.

PREDICTIVE WORKLOAD BALANCING

10

VM machines allow emulation of a different computer system based on the

specification and computer architectures of a physical computer.VM machines and

virtual process machines first were introduced in the 1960s by IBM. Initially, virtual

machines were created to run multiple operating systems, by allowing time-sharing

between multiple sing-tasking operating systems. There are different kinds of virtual

machines, each designed with different functions.

 System Virtual Machines (full virtualizations VMS), is designed to provide a

substitute for a real machine allowing them to execute entire operating

systems.

 Process virtual machines can execute computer programs in a platform

independent environment.

Today majority of cloud service providers use the full virtualizations VMs to

provide cloud services such as web hosting services. There are also different

kind of VM software, the most popular ones are VirtualBox, Parallels, and

VMware. One example of the dynamic cloud provider is GoDaddy which is a

web hosting service provider which also uses dynamic provisioning for their

cloud services.

Building and operating dynamic cloud services require a deep study of cloud

resource management and understand its fundamentals such as Virtual Machines (VMs)

and different job scheduling policies. Next section introduces the fundamentals of

cloud service and cloud deployment models.

Dynamic Virtual Machines (VMs) offers great potential and benefits in terms of

supporting efficient communication mechanisms between applications. The main

PREDICTIVE WORKLOAD BALANCING

11

benefit is that Dynamic Virtual Machines (VMs) do not require extensive server

maintenance given the inherent capacity to respond to additional workload. A growing

body of research examines the development of a dynamic VM resource allocation cloud

services. In a previous study, Oluwatolani, Babajide, and Philip (2012) presented a

scalable architectural model for Web-based applications to ensure availability and

reliability even during sudden load increases (See Figure 2). The overarching idea in the

proposed architecture is to allow personalization and distributed updating of data

through dynamic web applications.

Figure 3: Scalable distributed architecture for Web applications (Oluwatolani, 2012)

In order for a hosting platform to achieve its goals in terms of handling

workload demands, it should have the capability to distribute its resources among

hosted applications. The main idea is that an experimental platform operating at the

system level (IaaS) could feasibly manage cloud resources based on the following

envisaged mechanisms:

PREDICTIVE WORKLOAD BALANCING

12

Requirement Inference: The mechanism to predict resource requirements accurately

based on workload needs of applications. The requirement predictions should rely on

either analytical models of application or empirical observations

Appropriate resource sharing mechanisms: They should have the mechanism to

support components of hosted applications on the constituent nodes

Workload prediction: they should have the capacity to predict system workloads

(Chase, Anderson, Thakar, Vahdat & Doyle, 2001).

Dynamic capacity provisioning: They should use appropriate mechanisms for resource

allocation to the hosted platforms. These attributes will be used to evaluate hosting

allocation strategies to find the most efficient load-balancing alternative for dynamic

hosting platforms.

2.2 Predictive Load Balancing Algorithms for Cloud

Many research has been conducted to explore the predictive load balancing for the

cloud while introducing many different algorithms. One load balancing method

introduced in (Umadevi, Pranav, 2017) is to use Predictive Load Balancing Algorithm in

both burst and non-burst periods to maintain service quality and minimize energy

consumption of cloud network. (Umadevi, Pranav, 2017) also, suggest the use of Right

Scale Algorithm (RSA) for consolidating Virtual Machines (VM) into physical machines.

Both algorithms use mathematical equations for load balancing and management of cloud

resource, however, the research paper does not provide any simulation or real scenario to

prove the efficiency of the algorithms. The prediction simply predicts the burst time and

PREDICTIVE WORKLOAD BALANCING

13

it caps the cloud resources in burst time for better management and the algorithm uses the

QoS parameters to add or remove virtual machines in order to meet the QoS goal.

Another predictive load balancing research based on ensemble forecasting

(Matthias Sommer, Michael Klink, 2016) uses a reactive overload detection method to

predict any overloads. Reactive overload detection uses different CPU parameters such as

static threshold (ST) value and when CPU utilization exceeds the static threshold value

by 80% or 90% then it will detect it as an overload. This approach also uses various

computation intensive statistical calculations to compare CPU utilization values to

historical data. After detecting an overload, the research paper suggests the use of

CloudSim for forecasting CPU utilization in a theoretical level. The proposed concept in

this paper only detects an overload when it already has happened and it proposed

prediction method is very computationally intensive. The CloudSim simulation proposed

in this paper is only in theoretical level and this paper does not provide any clear

simulation results to prove its method and suggest further study in order to improve the

load balancing results.

Another load prediction study for energy-aware scheduling (Alexandre, Joanna,

Johanne, 2017), suggests training predictors for predicting a load without mentioning any

accurate tool for prediction.

 The literature review of predictive load balancing algorithms for cloud indicates

that all previous literature has used statistical calculations for the prediction that predicts

overloads that have already begun to happen. All the previous methods need high

computational and centralized approaches that need to be configured and trained for

PREDICTIVE WORKLOAD BALANCING

14

overloads. For load balancing all previous literature have used mathematical equations

which needs high computation power for load balancing and management of cloud

resource without offering any simulation or real scenario to prove the efficiency of the

introduced algorithms. This literature tends to introduce a new accurate and reliable and

less computational approach for cloud load prediction which can accurately predict cloud

load. This literature will also investigate all cloud simulation frameworks, in order to find

the most accurate simulation platforms.

Next section reviews the different literature on cloud simulations frameworks in

order to choose the most accurate cloud simulation framework to generate accurate

simulation results.

2.3 Different Cloud Simulation Frameworks

The main step in analyzing a cloud provisioning is to simulate a Cloud computing

model, where simulation enables provisioning of a Cloud computing model. To evaluate

the performance of a workload model, the simulation software must be able to simulate

application models, resources, and policies (Calheiros et al., 2011).

2.3.1 CloudSim Simulation Framework

CloudSim is one of the most popular and well know open-source cloud simulator.

CloudSim can simulate large-scale data centers by virtualizing server hosts. CloudSim is

capable of provisioning host resources to virtual machines. CloudSim can also model and

simulate energy-aware computational resources and dynamic provisioning of simulation

elements. In CloudSim simulation can be stopped or resumed at any time. CloudSim can

PREDICTIVE WORKLOAD BALANCING

15

simulate a cloud computing workload efficiently with a set of applications. CloudSim

offers support for system modeling of Cloud systems but also it enables users to simulate

system component behavior for resource provisioning such as simulation of virtual

machines (VMs). CloudSim can support a single cloud as well as inter-networked clouds,

which consists of integrated clouds (Calheiros et al., 2011). CloudSim allows researchers

to investigate Cloud resource provisioning and power consumption of data centers.

2.3.2 ICanCloud Simulation Platform

ICanCloud is another cloud simulation platform, which is capable of modeling

and simulating many cloud computing systems. The main functionality of iCanCloud

is to analyze and predict the trade-offs between performance and cost of different

applications. iCanCloud is capable of simulating multiple applications in different

hardware while considering information about cost. iCanCloud can model and

simulate many different computing architectures with different cloud brokering

policies such as customized VMs with different uni-core and multi-core systems.

2.3.3 GreenCloud Simulation Platform

GreenCloud (Jiang Z 2013) simulator is another cloud simulator which focuses

on energy power consumption and cost of the physical components of a cloud

computing network. With GreenCloud simulator, the workload of cloud computing

scenarios and of all its infrastructural elements of a data center can be simulated in order

to calculate the total cost of energy consumption.

PREDICTIVE WORKLOAD BALANCING

16

2.3.4 CloudSched Simulation Platform

CloudSched is also another simulation platform which can model and simulate

large Cloud computing environments such as VMs, data centers, and physical machines.

CloudSched can also use different resource scheduling policies and algorithms to

simulate a network infrastructure (Jiang, 2017).

An extensive study (Wenhong, 2015) on the most popular open-source cloud

simulators such as ICanCloud, GreenCloud, CloudSched, and CloudSim has proven that

the most efficient cloud simulator for computationally intensive tasks, data interchanges

between data centers and internal network communications is CloudSim.

Next section discusses the literature review of workload balancing algorithms.

2.4 Workload Balancing Algorithms

The main goal of load balancing is to achieve the minimum process execution

wait time with minimum amount of computational resources. In a perfect load

balancing which has a zero execution wait time, all processes are handled

simultaneously and there are no wait-times for processing information. Many

algorithms were introduced to address workload prediction and workload balancing,

the most popular algorithm for workload balancing are Round Robin, Random

Algorithm and least loaded algorithm. The following literature below explains the

most concept behind the popular workload balancing algorithms.

2.4.1 Round Robin Algorithm

PREDICTIVE WORKLOAD BALANCING

17

 Round-Robin (RR) is scheduling technique that achieves load balancing by

assigning equal time quanta to cyclic tasks and processes (Pasha, Agaarwal, &

Rastogi, 2014). In RR, the algorithm divides time quanta is into equal slices and

assigns with the specific time interval. The time scheduling principle describes the

scheduling of the time slides when using the algorithm such that all the nodes are

assigned with a quantum and with an operation. All resources are treated as time

slices. While RR provides an efficient mechanism for load balancing in terms of

meeting peak user demands and providing high quality services, this approach

presents significant challenges in bursty workloads (Issawi, Halees, & Radi, 2015).

Bursty workload refers to uneven pattern of data transmission, a common

problem in large systems such as web-based applications. The problem with bursty

workload is that it can degrade system performance and lead to system unavailability.

Burstiness is a major problem in the context of cloud computing given the increasing

number of cloud users. Static algorithms such as RR have inherent limitations given

that they depend on prior knowledge without considering current state of a node. This

means that the algorithm can degrade system performance. The limitations of RR

algorithms in environments characterized by bursty workloads indicate the need for

enhanced algorithms. The Round Robin (RR) algorithm has two major advantages.

Firstly, the algorithm is easy to implement. Secondly, it requires a simple scheduler.

Thirdly, the RR algorithm is useful for a small and static system. However, the RR

algorithm has its limitations in the context cloud environments. For example, the RR

model does not take into consideration the current load on the VMs such as the

processing capacity and size of tasks being scheduled (Rajeshkannan & Aramudhan,

PREDICTIVE WORKLOAD BALANCING

18

2016). Moreover, the static and centralized nature of RR algorithm makes it unsuitable

for cloud environments.

Figure 4. Round Robin Algorithm

Random Algorithm: Random Algorithm connects cloudlets and servers randomly by

assigning random numbers to each servers. Unlike Round Robin algorithm, Random

algorithm can handle large number of requests and evenly distribute the workload to

each node. Similar to RoundRobin algorithm, another advantage of Random algorithm

is that it is sufficient for machines with similar Ram and CPU specs. Random

algorithm is the most efficient algorithm for peak time traffic and when Cicada cannot

detect a reliable prediction, random algorithm can distribute the workload evenly

between different VMs.

PREDICTIVE WORKLOAD BALANCING

19

Figure 5. Random Algorithm

In a previous study, Issawi et al. (2015) proposed a novel load-balancing

algorithm, Adaptive Algorithm, which can adapt to variations in the request by

combining RR algorithm and Random algorithm. The strategic objective of the

proposed algorithm is to use RR policy in high workload and deploy the Random

policy in low workload. The system comprises a burst detector, which detects

workload state. The Random policy activates when the system detects normal burst

with a fuzzier supplying candidate list of balanced virtual machines in the datacenter.

If the workload state is burst, the fuzzier uses the supplied list of VMs to allocate

workload. Simulation experiments using CloudAnalyst showed that the new algorithm

decreases the response and processing time (Issawi et al., 2015). These findings

suggest the feasibility of using Adaptive Algorithm to achieve improved performance

in cloud systems characterized by bursty workloads.

Another problem in cloud computing environments which needs to be

addressed is the scheduling of non-preemptive tasks. According to Devi and Uthariaraj

(2016), load balancing of non-preemptive tasks on VMs is a vital task-scheduling

feature in cloud environments. The objective is to ensure that share load among the

PREDICTIVE WORKLOAD BALANCING

20

VMs for optimal resource utilization and lower the task completion time. Devi and

Uthariaraj (2016) proposed an improved weighted RR algorithm that takes into

account the capabilities of all the VMs. To achieve this, the proposed system

integrates a static scheduler algorithm that focuses on the initial placement of tasks

and a dynamic scheduler that focuses on the load in the configured VMs. The load

balancer in the proposed algorithm distributes the load evenly across the VMs. Further

experiments to evaluate the performance of the algorithm demonstrated its suitability

in both homogeneous and heterogeneous tasks, but with improved performance

compared to other RR algorithms.

2.4.2 Throttled Load Balancer (TLB) load balancing algorithm

Throttled Load Balancer (TLB) is another load balancing algorithm which

allocates a pre-defined number of cloudlets to a single VM for a specific time (Nema

& Edwin, 2016). If the number of requests is larger than the available VM’s

processing power, the algorithms allocate all incoming requests in a queue and wait

for the next available VM. Patel and Rajawat (2015) presented a Throttled-scheduling

system that maintains load balancing while enabling efficient task scheduling and

resource allocation (See Figure 4). The role of the TLB’s load balancer is to maintain

a table of the entire candidate VMs and denote their status, whether busy or available.

The client or server makes a request to the data center to determine the availability of

a suitable VM to perform a recommended task (Patel and Rajawat (2015). The load

balancer scans the table of VMs to find a suitable VM to load the data.

PREDICTIVE WORKLOAD BALANCING

21

Figure 6. Throttled Algorithm (Source: Patel & Rajawat, 2015)

The proposed model of cloud load balancing combines RR, Throttled, and

ESCE. The purpose of the throttled algorithm is to maintain the map table capturing

all the VMs (Patel & Rajawat, 2015). Simulation experiments showed the feasibility of

the proposed model based on metrics like response time, cost, and request processing

time.

2.4.3 Active Monitoring Load Balancer (AMLB) algorithm

Active Monitoring Load Balancer (AMLB) algorithm stores all information

related to each VM such as the number of requests and their specific location. When a

VM is activated, it is assigned with a VM id and the data controller maintains ids of all

VMs and sends the new location of each VM to AMLB. This algorithm comprises

four main components: clients, Data Center Controller, the AMLB, and the VMs (Jena

& Ahmad, 2013). In order to allocate new VMs, the controller should receive new

Client 1 Client 2

TVM Load Balancer

VM1

.

VM2

VM3

.

VM10

Allocation table

Response Request

PREDICTIVE WORKLOAD BALANCING

22

requests from the clients. The AMLB parses the index table of candidate VMs to find

the least loaded and returns the VM ID to the controller.

Figure 7. Active Monitoring Load Balancing (Source: Jena & Ahmad, 2013)

2.4.4 The Central Load Balancing Decision Model (CLBDM) algorithm

The Central Load Balancing Decision Model (CLBDM) is an algorithm, which

combines the Round Robin Algorithm and session switching of the application layer.

CLBDM is the improved version of Round Robin Algorithm and threshold time is

added to the algorithm. In this new approach the difference between the client and the

node in the cloud is calculated and if this round is greater than the threshold time then

the connection between the client and node will be disconnected and that specific task

will be moved. Round Robin will be used to determine the new node for this task.

That is, CLBDM uses RR but it relies on the measurement of the execution time of

tasks in a cloud resource calculated as the duration of connections between server and

client (Lee & Jeng, 2011).

Data Center Controller

AMLB

VM1 VM2 VMn

Client 1 Client 2 Client 3

Request to allocate VM Send the VM ID

PREDICTIVE WORKLOAD BALANCING

23

2.4.5 Min-Min Load Balancing algorithm

The existing load balancing algorithm for cloud computing differ in a number of

ways. The Min-Min Load Balancing algorithm provides remarkable performance

regarding task scheduling as it assigns tasks to resources starting with the tasks that

require the minimum execution time (Rajeshkannan & Aramudhan, 2016). The Max-Max

Load Balancing algorithm is similar to the Min-Min algorithm in that it calculates the

execution completion time of tasks. It performs well in a static environment. According

to Mathur, Larji, and Goyal (2017), Min-Min algorithms are efficient when the resources

require less execution time but the Max-Min algorithm works better when handling tasks

with higher time requirements. RR is a static algorithm that does not use task

prioritization. The algorithm is unaware of the running time of processes. The Genetic

Load Balancing algorithm provides better performance compared to RR as it has vast

search space. The Game Theory algorithm works best in public clouds, but it lacks the

capacity to predict the arrival of tasks (Rajeshkannan & Aramudhan, 2016).

Algorithm Category Parameters Processing

Power

Response

Time

Advantages Disadvantages

Round

Robin

Static Waiting

time

Optimal

power

allocation

381.05 ms

(average)

No task

prioritization

Reduced

response

time

Poor resource

utilization

Max-Min Static Waiting

time

Uses

Minimum

Execution

Time (MET)

Uses

Minimum

Execution

Time (MET)

Executes

tasks with

MCT

Starvation

Min-min Static Waiting

time

Uses

Minimum

Execution

Time (MET)

Uses

Minimum

Execution

Time (MET)

Good

performance

for multiple

small tasks

Starvation

PREDICTIVE WORKLOAD BALANCING

24

Table 1. Comparison of load balancing algorithms (Rajeshkannan, 2016).

2.4.6 Load Balancing Algorithms in Large-Scale Cloud Computing

Service providers

The conventional load balancing algorithms feature severe limitations and

drawbacks in cloud environments. In order to address these challenges, researchers

have proposed prediction algorithms using genetic algorithms and genetic

programming (Wang et al., 2014: Zhou et al., 2016). These algorithms aim to simplify

task scheduling in cloud platforms characterized by a large volume of users. In

particular, Wang et al. (2014) presented a novel adaptive algorithm to improve on the

original adaptive algorithm (AGA). The proposed scheme meets the requirements for

inter-nodes load balancing. Simulations to compare the performance of the proposed

scheme and the AGA demonstrated the effectiveness and validity of the proposed

method in cloud computing. The GA method has advantages related to limited

parameter setting and ability to initialize from possible solutions. However, the

application of GA comes with drawbacks such as the paucity of fast convergence

towards optimal values given that crossover and mutation exist as random events

(Wahab, Mexiani, & Atyabi, 2015).

Genetic

Algorithm

Dynamic Process

utilization

- - Finds

optimal

solutions

Assumes

same priority

for all tasks

Stochastic

Hill

Climbing

Dynamic Scalability Better than

RR

Improvements

required

C-Rule

(Custome

rule)

Dynamic predictably Less

computational

Power is

needed

Uses less

VM (less

resources)

Historical

data can

help.

Faster load

balancing.

Requires

reliable

prediction

PREDICTIVE WORKLOAD BALANCING

25

Zhou et al (2016) proposed a method for predicting cloud storage based on a

technique called analytic hierarchy process (AHPGD) and hybrid hierarchical genetic

algorithm (HHGA). The AHPGD evaluates the load state of server nodes while the

role of the HHGA is to train the algorithm to optimize a radial basis function neural

network (RBFNN). The centralized load-balancing algorithm consists of three steps:

centering nodes to predict the load of service nodes per periodic time (T), calculation

of polling weight value for back-end service nodes, and central node allocation using

the polling weight value after receiving request tasks. While GA provides capabilities

for dynamic load balancing, the main limitation is that they are centralized.

The use of SI algorithms is expected to ameliorate some of the challenges

associated with the GA. Hashem, Nashaat, Rizk (2017) proposed a load balancing

algorithm based on the Honey Been Behavior. The proposed method is based on the

natural foraging behavior of honey bees. That is, in hives, foraging bees give

information to other bees about the location of food sources they visit. The allocated

tasks update other tasks about the status of VM in the same way bees find food

sources. The main goal of the proposed scheme is to distribute workload in a manner

to optimize the utilization of cloud resources. The researchers evaluated the

performance of the proposed method by simulating on CloudSim (Hashem et al.,

2017). In addition, the authors compared the performance of the novel HB technique

with the performance of two conventional algorithms: the RR algorithm and the

Modified Throttle algorithm. The simulation results showed that the HB method

achieves up to 50% increase in the response time compared to other algorithms, with

PREDICTIVE WORKLOAD BALANCING

26

an average response time of about 60 seconds when executing 1000 tasks. The

superior performance is associated with the ability of the HB method to take into

account least load and VM availability when assigning tasks. While the Artificial Bee

Colony algorithms are typically simple and easy to implement, algorithms using this

approach have two inherent disadvantages. Firstly, the need for new fitness tests when

adding additional parameters to improve performance makes unsuitable in certain

cloud environments (Wahab, Mexiani, & Atyabi, 2015). Secondly, methods that

exploit this approach tend to be slow when applied for serial processing.

Nema and Sharma (2016) proposed a similar load balancing technique that

uses the honeybee method in cloud computing. The researchers modified the typical

HB method as a strategy to achieve balanced load across VMs to maximize

throughput. Instead of using tasks, the proposed methodology relies on dynamic

loading of instructions to define load distribution. The overarching idea in this method

is to recognize idle machines and resources by calculating the load earlier. The cloud

partition envisaged in the proposed method can be separated into three steps. The first

step is the idle mode in which the system changes to idle status if the inactive nodes

exceed. The second step is the normal mode, in which the system changes to normal

load operations of the usual nodes exceed. The third step is the overload status in

which the system changed to overloaded operation when the overloaded nodes exceed.

The main advantage of the proposed method is the performance in terms of execution

time.

Previous studies focus on algorithms that load balance a cloud-based on

current load, which demands time and high computational power to calculate and load

PREDICTIVE WORKLOAD BALANCING

27

balance a cloud. These algorithms cannot prevent any over-loads, they can simply

react to a current overload scenario. In this paper, the most reliable workload

prediction and cloud simulation method will be used to introduce a rule-based

algorithm for a predictive workload balancing. This research explores the resource

management in the IaaS level and will work based on the prediction of incoming

workload rather than load-balancing of current overloads.

2.5 Load Prediction Based On Incoming Network Traffic

There is a relationship between network traffic and processing load of a cloud

(Blaszczyszyn, Javonavic, & Karray, 2014). Cloud computing computers receive and

forward packets via physical interfaces, typically Layer 2 technologies like the Ethernet.

These technologies, or so-called network links, have their characteristics defined in

terms of parameters such as bandwidth. Therefore, the amount of network traffic

determines the required capacity of the network links due to the nexus between

bandwidth and packet forwarding rate. The relationship between the network traffic and

processing workload in any region of a network is often expressed using Little’s Law,

which is derived from queuing systems theory (Blaszczyszyn et al., 2014). The Little’s

Law states that the average number of items in a queue system is a product of the

average rate at which the items arrive and the average time that an item spends in the

system. The Little’s Law expresses the ratio of the mean traffic demand to the mean

number of users in a network segment (Hwang, 2017).

2.6 Impact of the Problem

PREDICTIVE WORKLOAD BALANCING

28

Finding the most efficient resource allocation strategy depends on resolving

the major challenges in dynamic server provisioning. The resolution of these problems

will have an impact on the ability of businesses to allocate their resources effectively

and to provide an efficient load-balancing alternative for the more cost effective

delivery of hosting services.

Three challenges hinder the deployment of dynamic server provisioning

policies. The resolution of these challenges is the key to reaching the goals of this

research study. The challenges include:

 Uncertainty in workload predictions

 Challenges in simulating network resources and load.

 Challenges of intelligent load balancing in dynamic Internet Hosting Platforms.

2.7 Choosing Load predictor: Cicada Toolkit For

Previously, LaCurts (2014) presented Cicada, which is an end-to-end toolkit

software that can predict an applications workload and model the application’s

workload based on prediction. Cicada can minimize the application completion time

when a Cloud provider uses it; it will guarantee specific network performance. To

minimize the completion time of applications and load balancing, Cicada minimizes

the completion time in load balancing by enabling efficient variation in the underlying

network based on the concept of the fastest path (LaCurts, 2014).

Cicada toolkit and an extension called Choreo will be used in this paper for

predicting incoming workload (LaCurts, 2014).

2.8 Choosing Cloud Simulator: CloudSim Framework

PREDICTIVE WORKLOAD BALANCING

29

Calheiros, Ranja, Beloglazov, DeRose and Buyya (2011) suggest that

CloudSim has the ability to reliably model and simulate cloud computing

infrastructure and services. CloudSim is framework that can be used to simulate and

model a cloud computing infrastructure services very efficiently, this is one of the

platforms that will be explored in relation to the research questions. Timeline analysis

and model building are the two most frequently used methods for predicting

concurrent database workloads (Duggan, Cetintemel, Papaemmanouil, & Upfal,

2011). CloudSim has proven to improve QoS requirement of applications by the

fluctuation of resource and service demand patterns and CloudSim is a framework that

has proven to be a valuable tool in the simulation of cloud environments and the

evaluation of resource allocation methods/algorithms (Calheiros et al., 2011).

CloudSim extensible simulation toolkit was introduced to simulate a workload

efficiently and to model Cloud computing systems and applications. CloudSim not

only offers support for system modeling of Cloud systems but also it enables users to

simulate system component behavior for resource provisioning such as simulation of

virtual machines (VMs). CloudSim supports a single cloud as well as inter-networked

clouds, which consists of integrated clouds (Calheiros et al., 2011). CloudSim allows

researchers to investigate Cloud resource provisioning and power consumption of data

centers. CloudSim has proven to improve QoS requirement of applications by

fluctuation of resource and service demand patterns and CloudSim is a framework that

has proven to be a valuable tool in the simulation of cloud environments and the

evaluation of resource allocation methods/algorithms (Calheiros et al., 2011).

PREDICTIVE WORKLOAD BALANCING

30

3. Chapter 3 Presenting C-Rule Algorithm

The core contribution of this paper is a new predictive load balancing of

running tasks, for the purpose of resource allocation. Predictive workload balancing

enables cloud service providers to prepare their resource allocation for all different

scenarios beforehand of any events. We will call the algorithm of allocating resources

based on Cicada predictions C-Rule algorithm.

The previous chapter introduced the most reliable (in our estimation) load

prediction tool called Cicada and a reliable cloud simulation framework called

CloudSim, which allows researchers to investigate Cloud resource provisioning and

power consumption of data centers and its efficiency has been proven in previous

research papers. C-Rule algorithm first predicts workloads during the early stage by

a predictor called Cicada. Then, Cicada uses CloudSim framework to simulate the

workload balancing by our rule-based algorithm. C-Rule Algorithm focuses on

preventing over-loads in a first place rather than balancing current over-loads. In this

new approach, a prediction can be achieved in a less than 20 milliseconds (LaCurts,

2014) and with a help of a Cloud simulator, an overload can be in a matter of seconds. If C-

Rule algorithm detects any over-loads, CloudSim can find the most accurate resource

allocation in a matter of seconds which is faster than all previous algorithms. Resource

allocation with a CloudSim requires less computational power than using complex statistical

and mathematical formulas for resource allocation.

C-Rule algorithm can achieve the most efficient cloud resource allocation

which includes number of host machines and the required number of virtual machines

for each host machine with minimal resources. After finding the most system

PREDICTIVE WORKLOAD BALANCING

31

configuration for a specific workload, C-Rule algorithm will lower number of virtual

machines and amount of physical memory for every given task, up until it finds the

minimum resource requirement for a specific workload.

C-Rule algorithm needs to receive efficient prediction data and if there are no

historical prediction data then CloudSim will use the random algorithm for workload

balancing until it receives a reliable workload data. Previous researches have proven

that Random algorithm is the most efficient algorithm for peak time traffic and when

Cicada cannot detect a reliable prediction, random algorithm can distribute the

workload evenly between different VMs. Unlike other algorithms Random Algorithm

connects cloudlets and servers randomly by assigning random numbers to each servers

and can handle large number of requests and evenly distribute the workload to each

node. In a load balancing dependent on the Random algorithm each client can be given

list of available servers which can eliminate the need for a centralized broker.

The main purpose of a predictive workload balancing with C-Rule is that,

cloud service providers can install SFlow-enabled devices on their cloud network and

gather workload data from a traffic link of their cloud network and use C-Rule to

simulate the workload on a simulated network based on a specific workload and later

increase the amount of workload to test the maximum handling of their workload. This

method of the provisioning can also prevent any overprovisioning by finding the

minimum amount of computing resources for a workload.

3.1 Workload Prediction Concept Introduced by Cicada and Choero

PREDICTIVE WORKLOAD BALANCING

32

Cicada uses the data gathered from the SFlow-enabled devices to predict incoming

workload.

The data collection process will comprise of the following three steps:

1. Firstly, the SFlow-enabled devices will transmit the samples to a

centralized server.

2. Secondly, the centralized server will collect detailed information about

the data sample including the IP address, timestamp, and transferred

bytes.

3. Thirdly, the aggregate dataset will be exported to Cicada for further

estimation.

After completing the first three phases.

1. Cicada imports data from sFlow-enabled device and compares it to

historical traffic data generating a workload prediction.

2. Cicada exports the prediction data to a file, which can be exported to

Cloud Simulator framework.

3. C-Rule algorithm can compare the prediction data to historical

predictions and if it finds any similar overload-scenario in the historical

data then it can execute the previous resource allocation policy rather

than a new load balancing scenario.

Both Cicada system and CloudSim framework can be installed on a same computer.

The following parameters must be transferred from Cicada to CloudSim in order to

stablish a reliable simulation.

PREDICTIVE WORKLOAD BALANCING

33

Table 2: Table of Input parameters from Cicada to CloudSim Simulator.

TaskCPUNum // Number of the CPU of the task and
workload /

cloudletLength This variable contain the length of

each cloudlet (the actual

workload)

cloudletInputFileSize This variable will import //input
file size from the (task and
workloads) section

cloudletOutputSize //output file from the (task and
workloads) section
Length of Instruction from the (task
and workloads) section

PREDICTIVE WORKLOAD BALANCING

34

Cicada

End-to-end system

SFlow-enabled devices

 Datagrams

 Source IP

 Destination IPs

 Timestamps

 MAC Address

Centralized Server

Saved Data

Sample Aggregate Data

Workload Prediction (.swf file)

SFlow-enabled devices

Figure 8: Cicada Data Gathering Diagram

PREDICTIVE WORKLOAD BALANCING

35

All predictions are transmitted from Cicada to Cloud. CloudSim will run a

simulation and detect any possible overloads.

Figure 9: Data Importation from Cicada to CloudSim

If the simulation detects any overloads, it will simulate different scenarios by

adding more host machines or virtual machines to achieve zero CPU waiting time.

Cloud Simulation can also generate list of CPU wait times for each cloudlet each time

that CloudSim adds or removes different cloud resources. All waiting times can stored

as set and compared by Paired t-test to the previous data set of CPY waiting times.

In the following example the number of host machines has been increased

from 1 hosts to 2 hosts. The sum of the waiting times have been decreased from

200020.38 to 40003.75. To make a statistical comparison, all waiting times will be

added into a list and will be compared by Paired t-test.

In the following example the final values for t is 6.98 which indicates there has

been a significant change.

Cicada

Workload Prediction (.swf file)

CloudSim

Overload Detection and Solution

PREDICTIVE WORKLOAD BALANCING

36

Total # of Virtual Machines:
Total Number of Host Machines

19
1 Hosts

19
2 Hosts

CloudletID STATUS VmID
 3 Success 4
 1 Success 2
 0 Success 1
 2 Success 3
 7 Success 4
 5 Success 2
 4 Success 1
 6 Success 3
 9 Success 2
 11 Success 4
 10 Success 3
 8 Success 1
 13 Success 2
 14 Success 3
 15 Success 4
 12 Success 1
 17 Success 2
 18 Success 3
 19 Success 4
 16 Success 1

WaitTime
0.00
0.00
0.00
0.00
5000.06
5000.62
5000.75
5000.86
10000.88
10000.77
10000.99
10000.99
15000.91
15001.69
15001.55
15001.95
20001.13
20001.91
20002.43
20002.88

CloudletID STATUS VmID
 7 Success 8
 3 Success 4
 1 Success 2
 5 Success 6
 11 Success 12
 2 Success 3
 8 Success 9
 0 Success 1
 9 Success 10
 6 Success 7
 4 Success 5
 10 Success 11
 19 Success 8
 15 Success 4
 17 Success 6
 13 Success 2
 18 Success 7
 14 Success 3
 12 Success 1
 16 Success 5

WaitTime
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
5000.24
5000.13
5000.24
5000.94
5000.94
5000.49
5000.94
5000.84
10000.46
10001.53
10001.31
10001.53

Figure 10: Table of results from CloudSim. Adding a new host

machine decreases the total wait-time.

t-Test: Paired Two Sample for Means

 1 Hosts 2 Hosts

Mean 10001.0185 4000.48

Variance 52642374.38 14740394

Observations 20 20

Pearson Correlation 0.944917784
Hypothesized Mean Difference 0
df 19
t Stat 6.989885375
P(T<=t) one-tail 5.85249E-07
t Critical one-tail 1.729132812
P(T<=t) two-tail 1.1705E-06
t Critical two-tail 2.093024054

0

10000

20000

30000

1 3 5 7 9 11 13 15 17 19

CPU Waiting Time

1 Hosts 2 Hosts

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 1011121314151617181920

CPU Waiting Time

1 Hosts 2 Hosts

Figure 11: Chart demonstrating effect of adding a new host on total CPU waiting time.

PREDICTIVE WORKLOAD BALANCING

37

Figure 12. C-Rule Workload balancing diagram

The above diagram demonstrates the overall concept of C-Rule algorithm. Initially,

Cicada generates a load prediction and if the prediction is unreliable, then it will use the

random algorithm for load balancing until it receives a reliable prediction. The literature

in Chapter 2, indicates that Cicada cannot provide any prediction for any burstiness of a

workload and the only algorithm that can efficiently handle load balancing of a burstiness

workload is the Random algorithm. Random Algorithm connects cloudlets and servers

randomly by assigning random numbers to each server. Unlike Round Robin algorithm,

Random algorithm can handle a large number of requests and evenly distribute the

workload to each node. Similar to the RoundRobin algorithm, another advantage of the

Random algorithm is that it is sufficient for machines with similar Ram and CPU specs.

PREDICTIVE WORKLOAD BALANCING

38

The Random algorithm is the most efficient algorithm for peak time traffic and when

Cicada cannot detect a reliable prediction, The Random algorithm can distribute the

workload evenly between different VMs.

Figure 13: Random Algorithm

In the C-Rule algorithm, any unreliable prediction can be handled with the

random algorithm and when a reliable workload arrives, the C-Rule algorithm can

compare the incoming workload with historical workloads. If a similar historical

workload is detected, the C-Rule can detect whether current resource management policy

is suitable for that specific workload. If C-Rule algorithm does not find any historical

data related to the incoming workload then it will begin simulating the workload in the

CloudSim simulator.

Initially, C-Rule will find the optimal number for physical machines and virtual

machines to achieve minimum CPU waiting time. The ideal CPU waiting time is

always zero. Each time C-rule algorithm can also use the paired t-test to compare the

new result to the previous one.

PREDICTIVE WORKLOAD BALANCING

39

3.2 Improvements of C-Rule Algorithm Compare to All Previous Algorithms

Previously introduced load-balancing algorithms, C-Rule Algorithm focuses on

preventing over-loads in a first place rather than balancing current over-loads. C-Rule

Algorithm can find a solution for any workloads in a fraction of a second. In most cases,

Cicada can make a prediction in less than a 25 milliseconds and it needs a minimum of

only 1 hour of historical data to make a prediction. In some cases, the speed of

predictions is less than 5 milliseconds. The figure below demonstrates the speed of

Cicada’s prediction based on the size of the Dataset.

Figure 14: (LaCurts, 2014) Speed of Predictions of Cicada based on the Size of Dataset

CloudSim can also simulate a workload of less than a second depending on the

processing power of the centralized server. All previously introduced algorithms need

complicated mathematical and statistical computation and demand a very high

computational power, where the C-Rule algorithm can require a very small processing

power.

PREDICTIVE WORKLOAD BALANCING

40

After achieving the minimum CPU waiting time. C-Rule algorithm will reduce the

amount of resources in the simulations to find the minimum number of required resources

for that workload to prevent any over-provisioning.

Figure 15: C-Rule eliminates excessive host machines to eliminate over-provisioning.

The following figure is an example of resource reduction by a C-Rule algorithm.

Figure 16: Resource Reduction by C-Rule algorithm

Host reduction

PREDICTIVE WORKLOAD BALANCING

41

The following chart demonstrates a simulation result for host reduction in a successful

load balancing. CPU waiting time is zero whether service provider uses 7 host machines

or 5 hot machines.

Total # of Virtual Machines:
Total Number of Host
Machines

20
7 Hosts

20
5 Hosts

CloudletID STATUS VmID
 3 Success 9
 1 Success 14
 0 Success 15
 2 Success 12
 7 Success 5
 5 Success 1
 4 Success 11
 6 Success 3
 9 Success 8
 11 Success 13
 10 Success 10
 8 Success 17
 13 Success 18
 14 Success 20
 15 Success 6
 12 Success 7
 17 Success 4
 18 Success 16
 19 Success 2
 16 Success 19

WaitTime
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

CloudletID STATUS VmID
 7 Success 8
 3 Success 4
 1 Success 2
 5 Success 6
 11 Success 12
 2 Success 3
 8 Success 9
 0 Success 1
 9 Success 10
 6 Success 7
 4 Success 5
 10 Success 11
 19 Success 8
 15 Success 4
 17 Success 6
 13 Success 2
 18 Success 7
 14 Success 3
 12 Success 1
 16 Success 5

WaitTime
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Table 3: Final result of resource reduction after achieving a zero processing wait-time.

3.3 Webhosting aspects of C-Rule Algorithm.

Webhosting service providers often use Virtual Machines (VMs) to provide service to

their customers. Webhosting platforms use dynamic clouds to offer cloud services which

require a very efficient load balancing algorithm. In web hosting services, the objective

is to ensure that share load among the VMs for optimal resource utilization and lower the

task completion time. C-Rule can improve web hosting service level by preventing any

under-providing and over-provisioning. C-rule algorithm can simulate the workload in a

PREDICTIVE WORKLOAD BALANCING

42

matter of seconds and find the minimum amount of memory needed for each virtual

machines reducing the memory ram usage.

To implement the C-Rule algorithm in web hosting environment, the space-sharing

algorithm will be used to reuse memory space between different virtual machines. The

following literature, explains the difference between the space-sharing algorithm and

time-sharing algorithms. Little’s Law is helpful in explaining the concept of load

balancing in distributed environments in which task scheduling remains an open problem.

The task scheduler maps tasks to allocated resources. Scheduling refers to the process of

controlling the order in which a computing system performs work (Kumar & Mishra,

2015). Task scheduling occurs via two primary modes: space-shared and time-shared. In

space-shared scheduling, the system executes a cloudlet to completion before releasing

the VM to execute another cloudlet. In time-shared scheduling, multiple cloudlets may

execute in different time slots on the same VM (Kumar & Mishra, 2015). Therefore,

space-sharing algorithms may reuse memory space but time-sharing algorithms may

involve sharing execution power. More importantly, load balancing in cloud

environments can use a space-sharing algorithm or time-sharing algorithms.

3.1 Comparison of Workload Prediction and Efficiently Level of C-Rule

Algorithm.

The following parameters must be transferred from Cicada to CloudSim in order to

stablish a reliable simulation.

TaskCPUNum // Number of the CPU of the task and
workload /

PREDICTIVE WORKLOAD BALANCING

43

cloudletLength This variable contain the length of

each cloudlet (the actual

workload)

cloudletInputFileSize This variable will import //input
file size from the (task and
workloads) section

cloudletOutputSize //output file from the (task and
workloads) section
Length of Instruction from the (task
and workloads) section

Figure 17: Table of parameters required for a CloudSim simulation.

C-Rule algorithm can initially use the cloudletLength variable to find the most similar

workload and use the Paired t-test to compare multiple historical workloads and choose

the most similar workload for a simulation. C-Rule algorithm requires accurate load

predictions to operate efficiently and any inaccurate prediction can also lower the

efficient of C-Rule algorithm. For example Cicada cannot provide any efficient load

balancing in burstiness time or when the number of connected machines are less than 5.

PREDICTIVE WORKLOAD BALANCING

44

4. CHAPTER 4 METHODOLOGY AND DATA SAMPLE

This chapter discusses the methodology for cloud workloads prediction and

simulation for developing a load balancing algorithm. The main goal of the

methodology is to develop an efficient load balancing algorithm which would require

less processing power. The first step for predictive workload balancing is to find and

define a reliable method of prediction.

4.1 Methodology Step 1: Instruments of Prediction

The first step of the methodology is to prove that whether Cicada and Choero

extension can generate reliable prediction data. Choero is a network measurement

extension to Cicada which allows users to perform network measurement without access

to the network infrastructure (LaCurts, 2014). Workload prediction of a cloud demands a

highly efficient tool that can predict workload of a cloud network within a few minutes

and can be compatible with Cicada. This paper presents a network measurement

extension to Cicada called Choreo. This network measurement tool estimates TCP

throughput by simply analyzing packet trains. In this paper, data collected from

hypothetical deployed networks will be used to simulate CloudSim.

To demonstrate that Cicada can detect whether its predictions are reliable and can

generate an alert in case if the prediction is unreliable. The following literature will

describe the fundamental of Cicada and Choero extension.

PREDICTIVE WORKLOAD BALANCING

45

4.1.1 Introduction to Cicada and its reliability

According to the research, state-of-the-art [3] Cicada’s workload prediction

algorithm has success rate up to 90% for static placement because for workload

prediction, Cicada load balances applications traffic by measuring both spatial and

temporal variations of every application. Cicada is capable of workload prediction for

different type and class of cloud applications and can provide a reliable feedback

indicating whether the prediction is incorrect or the prediction is reliable saving users

from uncertainty. Cicada is capable of improving the average completion time of

application from 8% to 14% per cent in some cases up to 61%. All these

improvements are achieved without any modifications of network infrastructure.

According to paper (LaCurts, 2014), Cicada predictions for networks less than 5 virtual

machines are unreliable. To eliminate the possibility of any unreliable predictions

networks with more than 15 VMs will be considered for predictions and any with less

than 15 will not be considered. In the data sample of this paper, a minimum of 20 virtual

machines will be used for each host machines. Another research paper objects the

reliability of Cicada and suggests that Cicada predictions can be unreliable during the

peak hours (Katrina 2014).

In all cases, Cicada can provide a reliable feedback of its own predictions (LaCurts 2014)

and detect whether or not its predictions are reliable. The conditions mentioned above

address the first research question.

It is important to understand that Cicada predictions focus on individual pairs,

which require VM-to-VM traffic matrices in the cloud infrastructure. It is expected

that this type of data from IaaS clouds might provide rich applications compared to

PREDICTIVE WORKLOAD BALANCING

46

data centers or other cloud computing environments (LaCurts, 2014). The dataset

(sFlow) will be collected from a hypothetical data gathered from Cicada predicted

data. The dataset collection process requires sFlow-enabled network switches to gather

datagrams that come with the information such as the source and destination IPs,

sample timestamp, and MAC address.

The data collection process entails three primary steps:

i. The sFlow-enabled switches send the samples to a centralized server

ii. The centralized server collects sample information such as the source

and destination IPs, timestamp, and transferred bytes

iii. The database stores sample aggregate data

4.2 Methodology Step 2: Sample Data

The second step of the methodology the gathering of sufficient workload data

get enrage a simulation in CloudSim and different data of real parallel workloads are

available from this link http://www.cs.huji.ac.il/labs/parallel/workload/logs.html,

however, due to the fact that the mentioned data demands a massive and a

complicated simulation, in this, a hypothetical set of small data will be used for

CloudSim to generate a feasible algorithm for workload balancing. The hypothetical

data consists of a predicted amount of workload gathered by Cicada.

4.3 Methodology Step 3: Importation of sample data

The 3rd step of the methodology is to import sample data into CloudSim. This can

be achieved by exporting the data into a file and later that file can be imported by

http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

PREDICTIVE WORKLOAD BALANCING

47

CloudSim simulator. All predictions of Cicada and Choero can be exported into a .swf

file. At the end of the prediction, that file can be imported into CloudSim.

4.4 Methodology Step 4: Instrument for simulation

The 4th step of the methodology is to simulate the data in the CloudSim simulator. In

this paper, CloudSim will be used to predict and simulate the network.

Generally, CloudSim refers to a set of simulation tools that can assess the

performance of cloud services within a controllable or a rule-based environment. The

simulation toolkit provides classes for describing users, applications, computational

purposes, resources management, and data centers in order to facilitate the

management and utilization of these components. That is, CloudSim provides a system

and a behavior modelling cloud computing environments (Calheiros, Ranjan, De Rose,

& Buyya, 2009). The simulation of cloud environments and applications can facilitate

the evaluation of performance in dynamic and distributed environments. The main

advantages of simulation include enhanced flexibility in terms of defining cloud

configurations, ease of customization, and the cost savings that come with customized

simulations.

The CloudSim framework is a layered architecture comprising of three layers

of components. The lowest layer comprises of the SimJava simulation engine, which

implements the core functionalities for enabling simulation of queuing and processing

of events and enabling creation and communication among system components. The

next layer is the GridSim layer, which consists of a toolkit for modelling Grid

networks and components. This layer comprises of two sets of components: grid

services such as datasets, grid information service, resource allocation, workload

PREDICTIVE WORKLOAD BALANCING

48

traces, and core elements such as resources, traffic generator and the network

(Calheiros et al., 2009). The next layer is the CloudSim, which extends the

functionalities of the GridSim layer. The CloudSim enables the modelling and

simulation functions in virtualized cloud environments. It also manages the execution

of the core entities such as Virtual Machines (VM), applications, data centers and

hosts during simulation. The CloudSim layer comprises user interface structures, VM

services, cloud services, and cloud resources. The top layer is the User Code layer, a

simulation stack supporting the configuration of hosts, VMs, and applications

(Calheiros et al., 2009).

4.5 Methodology Step 5: Importation of data to CloudSim

The fifth step of the methodology is to import data to Cloud for simulation. The sample

workload data can be imported to CloudSim with the following Java command

The main java class of the simulations must be modified to throw a

FileNotFoundEception.

private static List<Cloudlet> createCloudLets() throws FileNotFoundException{

//The following command reads the sample swf file.

WorkloadFileReader workloadFileReader = new

WorkloadFileReader("C:\CodeRespository\ HPC2N-2002-2.1-cln2.swf", 1);

//The following command can generate cloudlets from imported workload file

cloudletList = workloadFileReader.generateWorkload();

return cloudletList;}

4.6 Methodology Step 6: Simulation of Data In CloudSim

PREDICTIVE WORKLOAD BALANCING

49

The sixth step of the methodology is the simulation of data in CloudSim,

(LaCurts., 2014) proposed a toolkit for simulating cloud computing systems by

supporting system and behavior modeling of VMs and other cloud system

components. This study envisages using the CloudSim simulation of the cloud-based

data to model the VM component. CloudSim will be configured to use spaces-shared

policy for VM workload balancing which all resources will be shared equally among

all VMs. One the simulation of workload is completed, the results will be printed and

saved. Afterwards, CloudSim will assign the specific lower amount of resources such

as VMs for the clouds based on the historical workload and simulation data. The intent

will be to model the behavior of cloud computing environments. Sample workload

data will be imported into the CloudSim using Java command and simulation

conditions will establish the desired parameters.

CloudSim will be configured to use a lower number of VMs, memory and

other resources. The result of the first and the second simulation will be compared to

achieve an optimal level of resources for a workload.

4.7 Methodology Step 7: Implementing Historical Data

The 7th step of the methodology is to use the C-Rule to analyze whether it is

beneficial to use prediction and historical data to assign resources to a data center.

This phase will entail developing a generic space-shared algorithm (C-algorithm)

using historical data to simulate the workload and assign a lower amount of resources.

The premise is that the proposed algorithm will achieve lower computational cost and

faster load balancing for the same amount of resources as previously predicted.

PREDICTIVE WORKLOAD BALANCING

50

 The conditions for generating a reliable simulation by CloudSim the

parameters of the CloudSim architecture must be clearly defined in the following

order.

Step 1: Initializing CloudSim process

Step 2: Creating Data Centers, VM Allocation Policy and Scheduling

Step 3: Creating Broker

Step 4: Creating Cloudlets by Defining the Workload

Step 5: Creating VMs and Defining the Task Scheduling Algorithm

Step 6: Starting the Simulation

Step 7: Printing the Results of the Simulation

It is important to note that CloudSim cannot support the priority of cloud services (Jun-

Kwon., 2012) and can only use precomputed topology to apply network delay

(Jun-Kwon., 2012), CloudSim will be unreliable when there is a need to calculate priority

of cloud services and when there are not precomputed information regarding of network

delay.

PREDICTIVE WORKLOAD BALANCING

51

4.8 Summary

Chapter 4 introduced the sample data and design principle for a predictive workload

balancing. Chapter 4 also covered the first research question. An efficient method of

workload prediction and simulation was explained in this chapter. Chapter 4 addressed

all the possibilities of an unreliable workload prediction and an unreliable cloud

simulation. The source of the input data and the programing language for cloud

simulation were provided in this chapter. To ease the simulation process, a small set of

hypothetical data and hypothetical size datacenter will be simulated in chapter 5.

Chapter 4 covered research question 1,2 and the first hypothesis were answered in

chapter 4. In the next chapter a sample data center and a hypothetical workload data

will be simulated in CloudSim. In the initial step, simulation will use a space-shared

policy to simulate and balance a hypothetical workload. After that C-Rule algorithm

will limit the number of VMs and resources to achieve a faster result for the

simulation and the final result will be compared in the chapter 6.

Chapter 5 will explain the required Java programing steps for CloudSim.

Scheduling algorithm will be defined in step 6 of programing while creating virtual

machine, task scheduling algorithm will be defined. Chapter 4 introduced all previous

algorithms and discussed a new approach for scheduling algorithm (C-Rule) algorithm.

PREDICTIVE WORKLOAD BALANCING

52

5. CHAPTER 5 Implementation

5.1 Introduction to the fundamentals of Cloud Simulator.

In this chapter, we introduce the operation of the cloud simulator. The sample

data center for this paper will be simulated and the initial result of the simulation will

be printed at the end of the chapter.

The simulation envisaged in this study utilizes CloudSim simulation tool, a

generalized framework that allows a controllable environment for the simulation and

modelling of application performance (Cloud Computing and Distributed Systems

(Clouds) Laboratory).

The use of CloudSim simulator in this study is justified because the simulator

allows developers to focus on the design issues specific to a particular system, without

concerns over the cloud-based infrastructure and services. According to Calheiros et

al., the CloudSim toolkit can perform both system and behavior modelling of cloud

components like virtual machines, data centers, and policies for resource provisioning

(23). In particular, simulation of the cloud computing environments can provide

insights into the performance of cloud components. The main advantages of cloud

simulations are, improved flexibility in application configurations, ease of use and

enhanced customization, as well as the cost savings achieved by reusing the models

created during the design phase.

CloudSim provides a robust tool for simulating datacenters because the toolkit

provides the basic classes for defining datacenters (Buyya et al. 2009). A data center

refers to a remote facility comprising of a set of networked servers that an

organization uses for the data processing and or storage to meet the organization’s IT

PREDICTIVE WORKLOAD BALANCING

53

needs. The term ‘datacenter’ describes the facility’s physical and the virtual

infrastructure. CloudSim supports data center modelling and simulation because

datacenters behave like Infrastructure as a Service (IaaS) provider; that is, the

datacenter accepts VMs requests from brokers and generates the VMs in hosts.

The following steps were used to simulate the data center in CloudSim:

Step 1: Initial step for data center simulation: The initial step in CloudSim for data

center simulation is to create a data center called Cloud Information Service

(CIS). CIS is a registry of all the data center resources that are available on the

cloud. Each resource contains a data center and each data center contains one

or multiple hosts. A cloud host describes a network of servers dedicated to

providing hosting services. Each host must contain virtual machines (VMs),

specialized software programs or OSs that exhibit the behavior of physical

computers. The CloudSim simulation process requires three fundamental

parameters in order to initialize: the number of users, calendar instance, and

the traceflag value. The data center instance is created via

“CreateDataCenter”, which creates the datacenter characteristics.

Step 2: Registering a date center in the CIS registry: After creating a data center,

the second step is to register the data center in the CIS registry. Data centers

have unique characteristics defined by the hardware configuration of hosts

within the data center.

Step 3: Creating and submitting each task to a data center: The third step is to

create and submit each task to the data center Broker which keeps a list of

cloudlet(s). Data centers are assigned to a broker, which directly interacts with

PREDICTIVE WORKLOAD BALANCING

54

data center and cloudlet(s). Essentially, the Broker conceals the VM

management including the VM creation and the submission of cloudlets. It also

implements policies for VM selection for running cloudlets and datacenter

selection for executing submitted VMs. No sub initializations were done at the

Datacenterbroker instance stage.

Step 4: Allocation of policies and importing cloudlets: The fourth step is the

allocation of policies

 The datacenter uses the VM allocation policy to allocate machine

 The hosts uses VM scheduling policy

 Cloudlet Scheduler policy involved processing of cloudlets on the VMs

 This is the stage where cloudlets can be imported to the simulator from a .swf

file, however in this paper hypothetical cloudlets will used to achieve this goal.

Step 5: Defining characteristics of VMs and resource allocation algorithm: The

fifth step of the policy simulation is to define the characteristics of VMs and define the

algorithm which will be used for the resource allocation. In this step we define

whether each VM will be Time or Space Shared. The following parameters of VMs

will be defined in this step disk size, memory ram, VM mips, VM bandwidth and

number of CPU for each virtual machine.

Step 6: Start of the simulation and requesting results: The sixth step is to start the

simulation, request the results as a list and then stop the simulation, this can be done

by the following three command lines:

 CloudSim.startSimulation();
List<Cloudlet> Finalresults = dcb.getCloudletReceivedList();

PREDICTIVE WORKLOAD BALANCING

55

CloudSim.stopSimulation();

Step 7: Printing results of the simulation: The seventh step is to print the result of

the simulation

The following diagram demonstrates the procedures and operations behind the

workload balancing. All resources are registered in Cloud Information Service and

then sent to the broker. All cloudlets will be registered in the broker directly.

Figure 18 CloudSim DataCenter 1 Diagram

PREDICTIVE WORKLOAD BALANCING

56

5.2 CloudSim Programming and Implementation:

This section entails a description of the main steps of java code

implementations required for datacenter simulation. In the present study, the following

data center model was simulated in the CloudSim.

************** Length of Instruction from the (Task and Workloads) Section

Cloudlet Length 5000000

of Task CPU: 1

Input file size: 100000

Output file size: 300000

************** Each Host *****************************

Memory RAM: 32 GB

Bandwidth: 8 Mbps

Storage (SSD/HDD): 2000 GB

************** Each VM (Virtual Machine) **************

Disk Disk : 20 GB

Memory RAM : 1 Gb

VM MIPS: 1000

VM Bandwidth: 1 Mbps

of VM CPU: 1

PREDICTIVE WORKLOAD BALANCING

57

Each Hosts

CPU Quad cores (Each core has 1000 mips)

Memory RAM 32 GB of memory

Storage 50 GB of storage (50000)

Bandwidth 8 mbps (2000 kbits/s)

Number of Data center brokers: 1

20 Cloudlets (task and workloads)

Length of Instruction 5000000 length of instruction

Input file size 100000 kb input file size

Output file size 300000 kb output file size

CPU core 1

5 Virtual machines

Storage 20 GB

Memory 1 GB RAM

Virtual CPU 1 (each with 1000 mips CPU speeds)

Cloudlets Scheduler Timeshared

Figure 19 Data center 1 specifications table

Step 1:

5.2.1 Initializing CloudSim process

The first step is the CloudSim initialization process, a stage that involves

initialize the simulation toolkit for the experiments. In this step a CloudSim was

initialized using the CloudSim.init() method. The initialization approach entails

defining the number of users based on the num-user parameter, determining the

simulation start time defined by the calendar parameter, and using the trace_ flag

parameter to track the simulation events. That it, the initialization method takes in the

number of cloud users in integer value and an instance of calendar and a Boolean

value.

PREDICTIVE WORKLOAD BALANCING

58

 CloudSim.init(num _user, calendar, trace _flag);

The screen will display the following message upon executing step 1:

“Initializing...”

Step 2:

5.2.2 Creating data centers, VM allocation policy and scheduling

The second step in the CloudSim implementation entails creating the data

center, which consists of the physical hosts that represent the computing resources. In

this stage, at least one data center should be created using the createDatacenter

(“dataCentre_name”) method. This approach to datacenter creation returns a

datacenter object. Notably, this step entails defining the characteristics of the

datacenter as well as articulating the VM allocation policy and scheduling policy.

Firstly, the MIPS of each CPU were provisioned by the following command:

PeProvisionerSimple ProcessorProvisioner = new

PeProvisionerSimple(1000);

Secondly, each CPU core was designed to have its own ID. After

CPU ID assignment, each CPU was added into a list.

Pe CPUcore1 = new Pe(0, ProcessorProvisioner);

 Pe CPUcore2 = new Pe(1, ProcessorProvisioner);

 Pe CPUcore3 = new Pe(2, ProcessorProvisioner);

 Pe CPUcore4 = new Pe(3, ProcessorProvisioner);

peList.add(CPUcore1);

 peList.add(CPUcore2);

 peList.add(CPUcore3);

 peList.add(CPUcore4);

After CPU core ID assignment, each Host was provisioned and

added to a list using the following command:

Host host1 = new Host(0, new

RamProvisionerSimple(HostRAM), new

 BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new

VmSchedulerSpaceShared(peList));

PREDICTIVE WORKLOAD BALANCING

59

Host host2 = new Host(1, new

RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new

VmSchedulerSpaceShared(peList));

hostlist.add(host1);

hostlist.add(host2);

In part, Datacenter Characteristics were defined and all Virtual

machines lists and time zone and cost of each part added to the

data center.

DatacenterCharacteristics acharacteristic = new

DatacenterCharacteristics(architecture, os, vmm, hostlist,

timeZone,

EachComputercostPerSec, costPerMem,

costPerStorage, costPerBw);

LinkedList<Storage>SANstroage = new LinkedList<Storage>();

Datacenter aDatacenter=null;

try {//exception starts

aDatacenter = new Datacenter("DataCenter1", acharacteristic,

new VmAllocationPolicySimple(hostlist), SANstroage, 1);

} catch (Exception e1) {e1.printStackTrace();}//end of exception

returnaDatacenter;

Step 3:

5.2.3 Creating Broker

To create a broker, the name of the data center was defined without creating

any spaces. The following command was used to create a broker for the Datacenter.

DatacenterBroker dcb=new DatacenterBroker

("DataCenterBroker1");

To handle the exception created by the

DatacenterBroker dcb=null;

try {dcb = new DatacenterBroker("DataCenterBroker1");} catch

(Exception e) {e.printStackTrace();}

Step 4:

PREDICTIVE WORKLOAD BALANCING

60

5.2.4 Creating Cloudlets by Defining the Workload

In this step, each cloudlet was generated randomly and cloudlet length, a long

variable, which represented the length of instruction from the (task and workloads)

section. The utilization type was full as shown in the following command:

List<Cloudlet> cloudletList = new ArrayList<Cloudlet>();

UtilizationModelFull fullUtilize =new UtilizationModelFull();

In this part, random cloudlets will be generated with a random size and each cloudlet

will contain a user id and will be added to the list.

for (int cloudletId =0;cloudletId <20;cloudletId ++) {

Random r= new Random ();

Cloudlet anewcloudlet = new Cloudlet(cloudletId ,

cloudletLength+r.nextInt(1000), cloudletLength,

cloudletInputFileSize, cloudletOutputSize,

fullUtilize,fullUtilize,fullUtilize);

anewcloudlet.setUserId(dcb.getId());

cloudletList.add(anewcloudlet); }

The following java command can import Cicada data into the simulator from a

.swf file. The main java class must be modified to throw a FileNotFoundEception.

Private static List<Cloudlet> createCloudLets() throws FileNotFoundException{

//The following command reads the sample swf file.

WorkloadFileReader workloadFileReader = new

WorkloadFileReader("C:\CodeRespository\ HPC2N-2002-2.1-cln2.swf", 1);

//The following command can generate cloudlets from imported workload file

cloudletList = workloadFileReader.generateWorkload();

return cloudletList;}.

PREDICTIVE WORKLOAD BALANCING

61

In this paper we used hypothetical workload data for our simulation and the above

commands will be in the program.

Step 5:

5.2.5 Creating VMs and Defining the Task Scheduling Algorithm

This part uses the task-scheduling algorithm proposed in this paper. The first

part of the simulation used the space-shared algorithm and a comparison was

conducted between the C-algorithm and the space-shared algorithm.

//********** Task scheduling algorithm will be defined here **********

//**************************Algorithm********************************

for(intvmId =0;vmId<NumberOfVM; vmId ++)

 {Vm VirtualMachine= new Vm(vmId, dcb.getId(),

 VMmips,

VCPU,

VMRam,

VMbandwidth,

 vmdiskSize,

VMM,

 new CloudletSchedulerSpaceShared());

vmList.add(VirtualMachine);}

dcb.submitCloudletList(cloudletList);

dcb.submitVmList(vmList);

//*********************End of Algorithm

Step 6:

5.2.6 Starting the Simulation

// Part 6.0: Simulation starts in part 6 even simulation (engine)

In step 6, the simulation process started in a simulation engine.

 CloudSim.startSimulation();

 List<Cloudlet>Finalresults = dcb.getCloudletReceivedList();

 CloudSim.stopSimulation();

PREDICTIVE WORKLOAD BALANCING

62

Step 7:

5.2.7 Printing Results of the Simulation

In the final stage, the results of the simulation are printed on the screen by the

following command:

intcloudletNo=0;

 DecimalFormat TwoDecimalFormatter = new

DecimalFormat("#0.00");

for (Cloudlet c: Finalresults) {

Log.printLine("Result of cloudlet No:"+cloudletNo);

 Log.printLine("**************************");

 Log.printLine("ID:" +c.getCloudletId() + " , VM:"

+c.getVmId()+1+ " ,

status:" +" , Excecution Time:

"+TwoDecimalFormatter.format(c.getActualCPUTime())+" ,

start:

"+TwoDecimalFormatter.format(c.getExecStartTime())+" , Stop:

 "+TwoDecimalFormatter.format(c.getFinishTime()));

Log.printLine("**************************");

cloudletNo++;}

 }//END OF THE PUBLIC STAT
************** Length of Instruction from the (Task and Workloads) Section **************

Cloudlet Length 5000000

of Task CPU: 1

Input file size: 100000

Output file size: 300000

************** Each Host *****************************

Memory RAM : 32 GB

Bandwidth : 8 Mbs

Storage (SSD/HDD): 2000 GB

************** Each VM (Virtual Machine) **************

Disk Disk : 20 GB

Memory RAM : 1 Gb

VM Mips : 1000

VM Bandwidth : 1 Mbs

of VM CPU : 1

The result of the simulation with a Space shared Algorithm is the following

CloudletID STATUS VmID WaitTime StartTime FinishTime

6 Success 7 0.00 0.10 5000.12

5 Success 6 0.00 0.10 5000.23

4 Success 5 0.00 0.10 5000.44

3 Success 4 0.00 0.10 5000.63

7 Success 8 0.00 0.10 5000.76

0 Success 1 0.00 0.10 5000.87

1 Success 2 0.00 0.10 5000.98

PREDICTIVE WORKLOAD BALANCING

63

2 Success 3 0.00 0.10 5001.09

13 Success 6 5000.13 5000.23 10000.48

14 Success 7 5000.02 5000.12 10001.06

8 Success 1 5000.77 5000.87 10001.21

12 Success 5 5000.34 5000.44 10001.32

9 Success 2 5000.88 5000.98 10001.52

11 Success 4 5000.53 5000.63 10001.63

15 Success 8 5000.66 5000.76 10001.63

10 Success 3 5000.99 5001.09 10001.82

16 Success 1 10001.11 10001.21 15001.29

17 Success 2 10001.42 10001.52 15001.89

19 Success 4 10001.53 10001.63 15002.20

18 Success 3 10001.72 10001.82 15002.68

The Total Execution Waiting Time of this Algorithm is: 80010.10

Table 4: Initial Simulation Result for Space Shared Algorithm

Each host of the datacenter model has the following specifications.

 Quad cores of 1000 MIPS

 32GB memory RAM

 20GB storage

 8 mbps bandwidth.

 A single datacenter Broker

 20 Cloudlets measuring 5000000 in instruction length

 100000 kb file input size

 300000 kb output file size.

Further, the database model comprises of

 20 VMs

 Storage capacity of 20GB

 1GB memory RAM

 1 virtual CPU installed with 1000 MIPS speed

 Space-sharing Cloudlets Scheduler.

PREDICTIVE WORKLOAD BALANCING

64

5.3 Summary

This chapter introduced and explained the concept for java programing required

for importation of workload prediction and simulation in CloudSim simulator. The

sample workload data for the CloudSim was introduced in this chapter. This chapter

explained the fundamental requirement for Cloud simulation and the sample data center

was simulated and the result of the sample simulation was included at the end of the

chapter.

PREDICTIVE WORKLOAD BALANCING

65

6. CHAPTER 5 RESULTS

In this chapter we discuss the sample data and the final findings of this paper.

For our simulation a hypothetical prediction data will be imported into the CloudSim

simulator and C-Rule algorithm introduced in chapter 3 and 4 will detect whether to use

previous data and parameters or to run a new simulation. Cicada extension has the

ability to detect whether that its prediction is reliable or not. The C-Rule algorithm will

first determine whether the predictions of Cicada is reliable. In case if Cicada’s

prediction is reliable then C-Rule algorithm will use historical data and the result of

previous predictions to determine the parameters and the amount of the resources for

workload balancing. If the algorithm does not find any similar historical data then it will

run a simulation for find the minimum amount of cloud resources required for that

workload to reach CPU waiting time of zero.

To prove the efficiency of C-Rule algorithm will use spaced-sharing policy for VM

scheduling in order to simulate a hypothetical prediction data generated by Cicada

extension.

In this part we simulate Datacenter 1 model from chapter 4 by a space shared Algorithm

with the following specifications.

************** Length of Instruction from the (Task and Workloads) Section

Cloudlet Length 5000000
of Task CPU: 1
Input file size: 100000
Output file size: 300000
************** Each Host *****************************
Memory RAM : 32 GB
Bandwidth : 8 Mbs
Storage (SSD/HDD): 2000 GB
************** Each VM (Virtual Machine) **************

PREDICTIVE WORKLOAD BALANCING

66

Disk Disk : 20 GB
Memory RAM : 1 Gb
VM Mips : 1000
VM Bandwidth : 1 Mbs
of VM CPU : 1

6.1 Result 1: Without C-Rule Algorithm

The result of the simulation with a Space shared Algorithm is the following

CloudletID STATUS VmID WaitTime StartTime FinishTime

6 Success 7 0.00 0.10 5000.12

5 Success 6 0.00 0.10 5000.23

4 Success 5 0.00 0.10 5000.44

3 Success 4 0.00 0.10 5000.63

7 Success 8 0.00 0.10 5000.76

0 Success 1 0.00 0.10 5000.87

1 Success 2 0.00 0.10 5000.98

2 Success 3 0.00 0.10 5001.09

13 Success 6 5000.13 5000.23 10000.48

14 Success 7 5000.02 5000.12 10001.06

8 Success 1 5000.77 5000.87 10001.21

12 Success 5 5000.34 5000.44 10001.32

9 Success 2 5000.88 5000.98 10001.52

11 Success 4 5000.53 5000.63 10001.63

15 Success 8 5000.66 5000.76 10001.63

10 Success 3 5000.99 5001.09 10001.82

16 Success 1 10001.11 10001.21 15001.29

17 Success 2 10001.42 10001.52 15001.89

19 Success 4 10001.53 10001.63 15002.20

18 Success 3 10001.72 10001.82 15002.68

The Total Execution Waiting Time of this Algorithm is: 80010.10

Table 5: New Result of simulation with space shared algorithm with the following

In the data above we can clearly see that the ExcTime of this Algorithm is 812:43

seconds, the above approach requires additional time due to the fact that first a

simulation needs to be completed first and then the system must decide in a small

amount of time whether or not to use this approach or to use a different workload

balancing approach.

In the next paragraph the C-Algorithm will check whether any similar workload

balancing has been done previously or not. Once the C-Algorithm finds a similar

workload balancing scenario, then it will use the previous result.

PREDICTIVE WORKLOAD BALANCING

67

In this step C-algorithm will reduce the total number of virtual machines to 7 virtual

machines, total memory for each machine will be reduced to 2 Gb of RAM and the

total disk size of each virtual machine to will be reduced to 20 Gb.

6.2 Result 2: With C-Rule algorithm

The following result is generated after the simulation.

 ************** Length of Instruction from the (Task and Workloads) Section

Cloudlet Length 5000000
of Task CPU: 1
Input file size: 100000
Output file size: 300000
************** Each Host *****************************
Memory RAM : 32 GB
Bandwidth : 8 Mbs
Storage (SSD/HDD): 2000 GB
************** Each VM (Virtual Machine) **************
Disk Disk : 20 GB
Memory RAM : 1 Gb
VM Mips : 1000
VM Bandwidth : 1 Mbs
of VM CPU : 1

System Architecture: 64 bits
OS Type: Ubuntu Server
VM Software: VMware
************** C-Algorithm Load Balancer *****************************
This program will find the optimal amount of VMs and Hosts
Press Enter to continue

NEW SIMULATION
Total Number of Virtual Machine : to be used: 20
Total Number of Host Machine to be used: 1
Initialising...
Starting CloudSim version 3.0
DataCenter1 is starting...
DataCenterBroker1 is starting...
Entities started.
0.0: DataCenterBroker1: Cloud Resource List received with 1 resource(s)
0.0: DataCenterBroker1: Trying to Create VM #1 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #2 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #3 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #4 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #5 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #6 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #7 in DataCenter1

PREDICTIVE WORKLOAD BALANCING

68

0.0: DataCenterBroker1: Trying to Create VM #8 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #9 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #10 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #11 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #12 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #13 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #14 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #15 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #16 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #17 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #18 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #19 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #20 in DataCenter1
[VmScheduler.vmCreate] Allocation of VM #5 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #6 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #7 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #8 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #9 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #10 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #11 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #12 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #13 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #14 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #15 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #16 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #17 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #18 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #19 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #20 to Host #1 failed by MIPS
0.1: DataCenterBroker1: VM #1 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #2 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #3 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #4 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: Creation of VM #5 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #6 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #7 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #8 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #9 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #10 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #11 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #12 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #13 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #14 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #15 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #16 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #17 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #18 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #19 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #20 failed in Datacenter #2
0.1: DataCenterBroker1: Sending cloudlet 0 to VM #1
0.1: DataCenterBroker1: Sending cloudlet 1 to VM #2
0.1: DataCenterBroker1: Sending cloudlet 2 to VM #3
0.1: DataCenterBroker1: Sending cloudlet 3 to VM #4
0.1: DataCenterBroker1: Sending cloudlet 4 to VM #1

PREDICTIVE WORKLOAD BALANCING

69

0.1: DataCenterBroker1: Sending cloudlet 5 to VM #2
0.1: DataCenterBroker1: Sending cloudlet 6 to VM #3
0.1: DataCenterBroker1: Sending cloudlet 7 to VM #4
0.1: DataCenterBroker1: Sending cloudlet 8 to VM #1
0.1: DataCenterBroker1: Sending cloudlet 9 to VM #2
0.1: DataCenterBroker1: Sending cloudlet 10 to VM #3
0.1: DataCenterBroker1: Sending cloudlet 11 to VM #4
0.1: DataCenterBroker1: Sending cloudlet 12 to VM #1
0.1: DataCenterBroker1: Sending cloudlet 13 to VM #2
0.1: DataCenterBroker1: Sending cloudlet 14 to VM #3
0.1: DataCenterBroker1: Sending cloudlet 15 to VM #4
0.1: DataCenterBroker1: Sending cloudlet 16 to VM #1
0.1: DataCenterBroker1: Sending cloudlet 17 to VM #2
0.1: DataCenterBroker1: Sending cloudlet 18 to VM #3
0.1: DataCenterBroker1: Sending cloudlet 19 to VM #4
5000.376: DataCenterBroker1: Cloudlet 1 received
5000.602: DataCenterBroker1: Cloudlet 0 received
5000.715: DataCenterBroker1: Cloudlet 2 received
5000.914: DataCenterBroker1: Cloudlet 3 received
10000.585: DataCenterBroker1: Cloudlet 5 received
10001.053: DataCenterBroker1: Cloudlet 6 received
10001.276: DataCenterBroker1: Cloudlet 4 received
10001.59: DataCenterBroker1: Cloudlet 7 received
15000.954: DataCenterBroker1: Cloudlet 9 received
15001.144: DataCenterBroker1: Cloudlet 10 received
15001.316: DataCenterBroker1: Cloudlet 8 received
15001.936000000002: DataCenterBroker1: Cloudlet 11 received
20001.472: DataCenterBroker1: Cloudlet 14 received
20001.703: DataCenterBroker1: Cloudlet 12 received
20001.813: DataCenterBroker1: Cloudlet 13 received
20002.058999999997: DataCenterBroker1: Cloudlet 15 received
25002.263999999996: DataCenterBroker1: Cloudlet 17 received
25002.373999999993: DataCenterBroker1: Cloudlet 16 received
25002.48399999999: DataCenterBroker1: Cloudlet 18 received
25002.593999999986: DataCenterBroker1: Cloudlet 19 received
25002.593999999986: DataCenterBroker1: All Cloudlets executed. Finishing...
25002.593999999986: DataCenterBroker1: Destroying VM #1
25002.593999999986: DataCenterBroker1: Destroying VM #2
25002.593999999986: DataCenterBroker1: Destroying VM #3
25002.593999999986: DataCenterBroker1: Destroying VM #4
DataCenterBroker1 is shutting down...
Simulation: No more future events
CloudInformationService: Notify all CloudSim entities for shutting down.
DataCenter1 is shutting down...
DataCenterBroker1 is shutting down...
Simulation completed.
Simulation completed.
Result of cloudlet No

CloudletID STATUS VmID WaitTime StartTime FinishTime
1 Success 2 0.00 0.10 5000.38
0 Success 1 0.00 0.10 5000.60
2 Success 3 0.00 0.10 5000.72
3 Success 4 0.00 0.10 5000.91

PREDICTIVE WORKLOAD BALANCING

70

5 Success 2 5000.28 5000.38 10000.58
6 Success 3 5000.61 5000.72 10001.05
4 Success 1 5000.50 5000.60 10001.28
7 Success 4 5000.81 5000.91 10001.59
9 Success 2 10000.48 10000.58 15000.95
10 Success 3 10000.95 10001.05 15001.14
8 Success 1 10001.18 10001.28 15001.32
11 Success 4 10001.49 10001.59 15001.94
14 Success 3 15001.04 15001.14 20001.47
12 Success 1 15001.22 15001.32 20001.70
13 Success 2 15000.85 15000.95 20001.81
15 Success 4 15001.84 15001.94 20002.06
17 Success 2 20001.71 20001.81 25002.26
16 Success 1 20001.60 20001.70 25002.37
18 Success 3 20001.37 20001.47 25002.48
19 Success 4 20001.96 20002.06 25002.59
The Total Excecution Waiting Time of this Algorithm is : 200017.91
***************** Unsuccessfull Load Balancing *****************
***************** Total excecution wait time is not zero yet *****************
There is a total waiting time of :200017.91
Used 1 host(s) Machines
***************** Simulation will restart now ***********************
Press Enter to Restart the simulation with: 2 Host(s)

NEW SIMULATION
Total Number of Virtual Machine : to be used: 20
Total Number of Host Machine to be used: 2
Initialising...
Starting CloudSim version 3.0
DataCenter1 is starting...
DataCenterBroker1 is starting...
Entities started.
0.0: DataCenterBroker1: Cloud Resource List received with 1 resource(s)
0.0: DataCenterBroker1: Trying to Create VM #1 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #2 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #3 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #4 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #5 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #6 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #7 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #8 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #9 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #10 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #11 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #12 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #13 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #14 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #15 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #16 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #17 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #18 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #19 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #20 in DataCenter1
[VmScheduler.vmCreate] Allocation of VM #9 to Host #1 failed by MIPS

PREDICTIVE WORKLOAD BALANCING

71

[VmScheduler.vmCreate] Allocation of VM #9 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #10 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #10 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #11 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #11 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #12 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #12 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #13 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #13 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #14 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #14 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #15 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #15 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #16 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #16 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #17 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #17 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #18 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #18 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #19 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #19 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #20 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #20 to Host #2 failed by MIPS
0.1: DataCenterBroker1: VM #1 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #2 has been created in Datacenter #2, Host #2
0.1: DataCenterBroker1: VM #3 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #4 has been created in Datacenter #2, Host #2
0.1: DataCenterBroker1: VM #5 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #6 has been created in Datacenter #2, Host #2
0.1: DataCenterBroker1: VM #7 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #8 has been created in Datacenter #2, Host #2
0.1: DataCenterBroker1: Creation of VM #9 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #10 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #11 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #12 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #13 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #14 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #15 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #16 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #17 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #18 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #19 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #20 failed in Datacenter #2
0.1: DataCenterBroker1: Sending cloudlet 0 to VM #1
0.1: DataCenterBroker1: Sending cloudlet 1 to VM #2
0.1: DataCenterBroker1: Sending cloudlet 2 to VM #3
0.1: DataCenterBroker1: Sending cloudlet 3 to VM #4
0.1: DataCenterBroker1: Sending cloudlet 4 to VM #5
0.1: DataCenterBroker1: Sending cloudlet 5 to VM #6
0.1: DataCenterBroker1: Sending cloudlet 6 to VM #7
0.1: DataCenterBroker1: Sending cloudlet 7 to VM #8
0.1: DataCenterBroker1: Sending cloudlet 8 to VM #1
0.1: DataCenterBroker1: Sending cloudlet 9 to VM #2
0.1: DataCenterBroker1: Sending cloudlet 10 to VM #3

PREDICTIVE WORKLOAD BALANCING

72

0.1: DataCenterBroker1: Sending cloudlet 11 to VM #4
0.1: DataCenterBroker1: Sending cloudlet 12 to VM #5
0.1: DataCenterBroker1: Sending cloudlet 13 to VM #6
0.1: DataCenterBroker1: Sending cloudlet 14 to VM #7
0.1: DataCenterBroker1: Sending cloudlet 15 to VM #8
0.1: DataCenterBroker1: Sending cloudlet 16 to VM #1
0.1: DataCenterBroker1: Sending cloudlet 17 to VM #2
0.1: DataCenterBroker1: Sending cloudlet 18 to VM #3
0.1: DataCenterBroker1: Sending cloudlet 19 to VM #4
5000.121: DataCenterBroker1: Cloudlet 6 received
5000.231000000001: DataCenterBroker1: Cloudlet 5 received
5000.436000000001: DataCenterBroker1: Cloudlet 4 received
5000.626: DataCenterBroker1: Cloudlet 3 received
5000.763: DataCenterBroker1: Cloudlet 7 received
5000.8730000000005: DataCenterBroker1: Cloudlet 0 received
5000.983000000001: DataCenterBroker1: Cloudlet 1 received
5001.093000000002: DataCenterBroker1: Cloudlet 2 received
10000.480000000001: DataCenterBroker1: Cloudlet 13 received
10001.059000000001: DataCenterBroker1: Cloudlet 14 received
10001.209: DataCenterBroker1: Cloudlet 8 received
10001.319000000001: DataCenterBroker1: Cloudlet 12 received
10001.515000000001: DataCenterBroker1: Cloudlet 9 received
10001.625000000002: DataCenterBroker1: Cloudlet 11 received
10001.625000000002: DataCenterBroker1: Cloudlet 15 received
10001.821000000002: DataCenterBroker1: Cloudlet 10 received
15001.288: DataCenterBroker1: Cloudlet 16 received
15001.893: DataCenterBroker1: Cloudlet 17 received
15002.198: DataCenterBroker1: Cloudlet 19 received
15002.675000000001: DataCenterBroker1: Cloudlet 18 received
15002.675000000001: DataCenterBroker1: All Cloudlets executed. Finishing...
15002.675000000001: DataCenterBroker1: Destroying VM #1
15002.675000000001: DataCenterBroker1: Destroying VM #2
15002.675000000001: DataCenterBroker1: Destroying VM #3
15002.675000000001: DataCenterBroker1: Destroying VM #4
15002.675000000001: DataCenterBroker1: Destroying VM #5
15002.675000000001: DataCenterBroker1: Destroying VM #6
15002.675000000001: DataCenterBroker1: Destroying VM #7
15002.675000000001: DataCenterBroker1: Destroying VM #8
DataCenterBroker1 is shutting down...
Simulation: No more future events
CloudInformationService: Notify all CloudSim entities for shutting down.
DataCenter1 is shutting down...
DataCenterBroker1 is shutting down...
Simulation completed.
Simulation completed.
Result of cloudlet No

CloudletID STATUS VmID WaitTime StartTime FinishTime
6 Success 7 0.00 0.10 5000.12
5 Success 6 0.00 0.10 5000.23
4 Success 5 0.00 0.10 5000.44
3 Success 4 0.00 0.10 5000.63
7 Success 8 0.00 0.10 5000.76
0 Success 1 0.00 0.10 5000.87

PREDICTIVE WORKLOAD BALANCING

73

1 Success 2 0.00 0.10 5000.98
2 Success 3 0.00 0.10 5001.09
13 Success 6 5000.13 5000.23 10000.48
14 Success 7 5000.02 5000.12 10001.06
8 Success 1 5000.77 5000.87 10001.21
12 Success 5 5000.34 5000.44 10001.32
9 Success 2 5000.88 5000.98 10001.52
11 Success 4 5000.53 5000.63 10001.63
15 Success 8 5000.66 5000.76 10001.63
10 Success 3 5000.99 5001.09 10001.82
16 Success 1 10001.11 10001.21 15001.29
17 Success 2 10001.42 10001.52 15001.89
19 Success 4 10001.53 10001.63 15002.20
18 Success 3 10001.72 10001.82 15002.68
The Total Excecution Waiting Time of this Algorithm is : 80010.10
***************** Unsuccessfull Load Balancing *****************
***************** Total excecution wait time is not zero yet *****************
There is a total waiting time of :80010.10
Used 2 host(s) Machines
***************** Simulation will restart now ***********************
Press Enter to Restart the simulation with: 3 Host(s)

NEW SIMULATION
Total Number of Virtual Machine : to be used: 20
Total Number of Host Machine to be used: 3
Initialising...
Starting CloudSim version 3.0
DataCenter1 is starting...
DataCenterBroker1 is starting...
Entities started.
0.0: DataCenterBroker1: Cloud Resource List received with 1 resource(s)
0.0: DataCenterBroker1: Trying to Create VM #1 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #2 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #3 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #4 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #5 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #6 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #7 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #8 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #9 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #10 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #11 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #12 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #13 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #14 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #15 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #16 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #17 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #18 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #19 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #20 in DataCenter1
[VmScheduler.vmCreate] Allocation of VM #13 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #13 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #13 to Host #3 failed by MIPS

PREDICTIVE WORKLOAD BALANCING

74

[VmScheduler.vmCreate] Allocation of VM #14 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #14 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #14 to Host #3 failed by MIPS

[VmScheduler.vmCreate] Allocation of VM #15 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #15 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #15 to Host #3 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #16 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #16 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #16 to Host #3 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #17 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #17 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #17 to Host #3 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #18 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #18 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #18 to Host #3 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #19 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #19 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #19 to Host #3 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #20 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #20 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #20 to Host #3 failed by MIPS
0.1: DataCenterBroker1: VM #1 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #2 has been created in Datacenter #2, Host #2
0.1: DataCenterBroker1: VM #3 has been created in Datacenter #2, Host #3
0.1: DataCenterBroker1: VM #4 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #5 has been created in Datacenter #2, Host #2
0.1: DataCenterBroker1: VM #6 has been created in Datacenter #2, Host #3
0.1: DataCenterBroker1: VM #7 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #8 has been created in Datacenter #2, Host #2
0.1: DataCenterBroker1: VM #9 has been created in Datacenter #2, Host #3
0.1: DataCenterBroker1: VM #10 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #11 has been created in Datacenter #2, Host #2
0.1: DataCenterBroker1: VM #12 has been created in Datacenter #2, Host #3
0.1: DataCenterBroker1: Creation of VM #13 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #14 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #15 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #16 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #17 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #18 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #19 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #20 failed in Datacenter #2
0.1: DataCenterBroker1: Sending cloudlet 0 to VM #1
0.1: DataCenterBroker1: Sending cloudlet 1 to VM #2
0.1: DataCenterBroker1: Sending cloudlet 2 to VM #3
0.1: DataCenterBroker1: Sending cloudlet 3 to VM #4
0.1: DataCenterBroker1: Sending cloudlet 4 to VM #5
0.1: DataCenterBroker1: Sending cloudlet 5 to VM #6
0.1: DataCenterBroker1: Sending cloudlet 6 to VM #7
0.1: DataCenterBroker1: Sending cloudlet 7 to VM #8
0.1: DataCenterBroker1: Sending cloudlet 8 to VM #9
0.1: DataCenterBroker1: Sending cloudlet 9 to VM #10
0.1: DataCenterBroker1: Sending cloudlet 10 to VM #11
0.1: DataCenterBroker1: Sending cloudlet 11 to VM #12

PREDICTIVE WORKLOAD BALANCING

75

0.1: DataCenterBroker1: Sending cloudlet 12 to VM #1
0.1: DataCenterBroker1: Sending cloudlet 13 to VM #2
0.1: DataCenterBroker1: Sending cloudlet 14 to VM #3
0.1: DataCenterBroker1: Sending cloudlet 15 to VM #4
0.1: DataCenterBroker1: Sending cloudlet 16 to VM #5
0.1: DataCenterBroker1: Sending cloudlet 17 to VM #6
0.1: DataCenterBroker1: Sending cloudlet 18 to VM #7
0.1: DataCenterBroker1: Sending cloudlet 19 to VM #8
5000.168000000001: DataCenterBroker1: Cloudlet 11 received
5000.2970000000005: DataCenterBroker1: Cloudlet 7 received
5000.407000000001: DataCenterBroker1: Cloudlet 6 received
5000.626: DataCenterBroker1: Cloudlet 4 received
5000.736000000001: DataCenterBroker1: Cloudlet 5 received
5000.846000000001: DataCenterBroker1: Cloudlet 3 received
5000.846000000001: DataCenterBroker1: Cloudlet 9 received
5000.953: DataCenterBroker1: Cloudlet 1 received
5000.953: DataCenterBroker1: Cloudlet 2 received
5001.063000000001: DataCenterBroker1: Cloudlet 0 received
5001.063000000001: DataCenterBroker1: Cloudlet 10 received
5001.173000000002: DataCenterBroker1: Cloudlet 8 received
10000.752: DataCenterBroker1: Cloudlet 19 received
10001.015000000001: DataCenterBroker1: Cloudlet 17 received
10001.125000000002: DataCenterBroker1: Cloudlet 16 received
10001.125000000002: DataCenterBroker1: Cloudlet 14 received
10001.235000000002: DataCenterBroker1: Cloudlet 15 received
10001.345000000003: DataCenterBroker1: Cloudlet 18 received
10001.455000000004: DataCenterBroker1: Cloudlet 13 received
10001.565000000004: DataCenterBroker1: Cloudlet 12 received
10001.565000000004: DataCenterBroker1: All Cloudlets executed. Finishing...
10001.565000000004: DataCenterBroker1: Destroying VM #1
10001.565000000004: DataCenterBroker1: Destroying VM #2
10001.565000000004: DataCenterBroker1: Destroying VM #3
10001.565000000004: DataCenterBroker1: Destroying VM #4
10001.565000000004: DataCenterBroker1: Destroying VM #5
10001.565000000004: DataCenterBroker1: Destroying VM #6
10001.565000000004: DataCenterBroker1: Destroying VM #7
10001.565000000004: DataCenterBroker1: Destroying VM #8
10001.565000000004: DataCenterBroker1: Destroying VM #9
10001.565000000004: DataCenterBroker1: Destroying VM #10
10001.565000000004: DataCenterBroker1: Destroying VM #11
10001.565000000004: DataCenterBroker1: Destroying VM #12
DataCenterBroker1 is shutting down...
Simulation: No more future events
CloudInformationService: Notify all CloudSim entities for shutting down.
DataCenter1 is shutting down...
DataCenterBroker1 is shutting down...
Simulation completed.
Simulation completed.
Result of cloudlet No

CloudletID STATUS VmID WaitTime StartTime FinishTime
11 Success 12 0.00 0.10 5000.17
7 Success 8 0.00 0.10 5000.30
6 Success 7 0.00 0.10 5000.41

PREDICTIVE WORKLOAD BALANCING

76

4 Success 5 0.00 0.10 5000.63
5 Success 6 0.00 0.10 5000.74
3 Success 4 0.00 0.10 5000.85
9 Success 10 0.00 0.10 5000.85
1 Success 2 0.00 0.10 5000.95
2 Success 3 0.00 0.10 5000.95
0 Success 1 0.00 0.10 5001.06
10 Success 11 0.00 0.10 5001.06
8 Success 9 0.00 0.10 5001.17
19 Success 8 5000.20 5000.30 10000.75
17 Success 6 5000.64 5000.74 10001.02
16 Success 5 5000.53 5000.63 10001.13
14 Success 3 5000.85 5000.95 10001.13
15 Success 4 5000.75 5000.85 10001.24
18 Success 7 5000.31 5000.41 10001.35
13 Success 2 5000.85 5000.95 10001.46
12 Success 1 5000.96 5001.06 10001.57
The Total Excecution Waiting Time of this Algorithm is : 40005.08
***************** Unsuccessfull Load Balancing *****************
***************** Total excecution wait time is not zero yet *****************
There is a total waiting time of :40005.08
Used 3 host(s) Machines
***************** Simulation will restart now ***********************
Press Enter to Restart the simulation with: 4 Host(s)

NEW SIMULATION
Total Number of Virtual Machine : to be used: 20
Total Number of Host Machine to be used: 4
Initialising...
Starting CloudSim version 3.0
DataCenter1 is starting...
DataCenterBroker1 is starting...
Entities started.
0.0: DataCenterBroker1: Cloud Resource List received with 1 resource(s)
0.0: DataCenterBroker1: Trying to Create VM #1 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #2 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #3 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #4 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #5 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #6 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #7 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #8 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #9 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #10 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #11 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #12 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #13 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #14 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #15 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #16 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #17 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #18 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #19 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #20 in DataCenter1

PREDICTIVE WORKLOAD BALANCING

77

[VmScheduler.vmCreate] Allocation of VM #17 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #17 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #17 to Host #3 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #17 to Host #4 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #18 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #18 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #18 to Host #3 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #18 to Host #4 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #19 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #19 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #19 to Host #3 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #19 to Host #4 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #20 to Host #1 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #20 to Host #2 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #20 to Host #3 failed by MIPS
[VmScheduler.vmCreate] Allocation of VM #20 to Host #4 failed by MIPS
0.1: DataCenterBroker1: VM #1 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #2 has been created in Datacenter #2, Host #2
0.1: DataCenterBroker1: VM #3 has been created in Datacenter #2, Host #3
0.1: DataCenterBroker1: VM #4 has been created in Datacenter #2, Host #4
0.1: DataCenterBroker1: VM #5 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #6 has been created in Datacenter #2, Host #2
0.1: DataCenterBroker1: VM #7 has been created in Datacenter #2, Host #3
0.1: DataCenterBroker1: VM #8 has been created in Datacenter #2, Host #4
0.1: DataCenterBroker1: VM #9 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #10 has been created in Datacenter #2, Host #2
0.1: DataCenterBroker1: VM #11 has been created in Datacenter #2, Host #3
0.1: DataCenterBroker1: VM #12 has been created in Datacenter #2, Host #4
0.1: DataCenterBroker1: VM #13 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #14 has been created in Datacenter #2, Host #2
0.1: DataCenterBroker1: VM #15 has been created in Datacenter #2, Host #3
0.1: DataCenterBroker1: VM #16 has been created in Datacenter #2, Host #4
0.1: DataCenterBroker1: Creation of VM #17 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #18 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #19 failed in Datacenter #2
0.1: DataCenterBroker1: Creation of VM #20 failed in Datacenter #2
0.1: DataCenterBroker1: Sending cloudlet 0 to VM #1
0.1: DataCenterBroker1: Sending cloudlet 1 to VM #2
0.1: DataCenterBroker1: Sending cloudlet 2 to VM #3
0.1: DataCenterBroker1: Sending cloudlet 3 to VM #4
0.1: DataCenterBroker1: Sending cloudlet 4 to VM #5
0.1: DataCenterBroker1: Sending cloudlet 5 to VM #6
0.1: DataCenterBroker1: Sending cloudlet 6 to VM #7
0.1: DataCenterBroker1: Sending cloudlet 7 to VM #8
0.1: DataCenterBroker1: Sending cloudlet 8 to VM #9
0.1: DataCenterBroker1: Sending cloudlet 9 to VM #10
0.1: DataCenterBroker1: Sending cloudlet 10 to VM #11
0.1: DataCenterBroker1: Sending cloudlet 11 to VM #12
0.1: DataCenterBroker1: Sending cloudlet 12 to VM #13
0.1: DataCenterBroker1: Sending cloudlet 13 to VM #14
0.1: DataCenterBroker1: Sending cloudlet 14 to VM #15
0.1: DataCenterBroker1: Sending cloudlet 15 to VM #16
0.1: DataCenterBroker1: Sending cloudlet 16 to VM #1
0.1: DataCenterBroker1: Sending cloudlet 17 to VM #2

PREDICTIVE WORKLOAD BALANCING

78

0.1: DataCenterBroker1: Sending cloudlet 18 to VM #3
0.1: DataCenterBroker1: Sending cloudlet 19 to VM #4
5000.147: DataCenterBroker1: Cloudlet 2 received
5000.2570000000005: DataCenterBroker1: Cloudlet 1 received
5000.2570000000005: DataCenterBroker1: Cloudlet 6 received
5000.367000000001: DataCenterBroker1: Cloudlet 12 received
5000.367000000001: DataCenterBroker1: Cloudlet 7 received
5000.543000000001: DataCenterBroker1: Cloudlet 0 received
5000.651000000001: DataCenterBroker1: Cloudlet 9 received
5000.777: DataCenterBroker1: Cloudlet 5 received
5000.9: DataCenterBroker1: Cloudlet 14 received
5001.01: DataCenterBroker1: Cloudlet 4 received
5001.01: DataCenterBroker1: Cloudlet 8 received
5001.01: DataCenterBroker1: Cloudlet 13 received
5001.01: DataCenterBroker1: Cloudlet 3 received
5001.01: DataCenterBroker1: Cloudlet 15 received
5001.120000000001: DataCenterBroker1: Cloudlet 10 received
5001.120000000001: DataCenterBroker1: Cloudlet 11 received
10000.471000000001: DataCenterBroker1: Cloudlet 18 received
10000.752000000002: DataCenterBroker1: Cloudlet 16 received
10000.972000000002: DataCenterBroker1: Cloudlet 17 received
10001.858000000002: DataCenterBroker1: Cloudlet 19 received
10001.858000000002: DataCenterBroker1: All Cloudlets executed. Finishing...
10001.858000000002: DataCenterBroker1: Destroying VM #1
10001.858000000002: DataCenterBroker1: Destroying VM #2
10001.858000000002: DataCenterBroker1: Destroying VM #3
10001.858000000002: DataCenterBroker1: Destroying VM #4
10001.858000000002: DataCenterBroker1: Destroying VM #5
10001.858000000002: DataCenterBroker1: Destroying VM #6
10001.858000000002: DataCenterBroker1: Destroying VM #7
10001.858000000002: DataCenterBroker1: Destroying VM #8
10001.858000000002: DataCenterBroker1: Destroying VM #9
10001.858000000002: DataCenterBroker1: Destroying VM #10
10001.858000000002: DataCenterBroker1: Destroying VM #11
10001.858000000002: DataCenterBroker1: Destroying VM #12
10001.858000000002: DataCenterBroker1: Destroying VM #13
10001.858000000002: DataCenterBroker1: Destroying VM #14
10001.858000000002: DataCenterBroker1: Destroying VM #15
10001.858000000002: DataCenterBroker1: Destroying VM #16
DataCenterBroker1 is shutting down...
Simulation: No more future events
CloudInformationService: Notify all CloudSim entities for shutting down.
DataCenter1 is shutting down...
DataCenterBroker1 is shutting down...
Simulation completed.
Simulation completed.
Result of cloudlet No

CloudletID STATUS VmID WaitTime StartTime FinishTime
2 Success 3 0.00 0.10 5000.15
1 Success 2 0.00 0.10 5000.26
6 Success 7 0.00 0.10 5000.26
12 Success 13 0.00 0.10 5000.37
7 Success 8 0.00 0.10 5000.37

PREDICTIVE WORKLOAD BALANCING

79

0 Success 1 0.00 0.10 5000.54
9 Success 10 0.00 0.10 5000.65
5 Success 6 0.00 0.10 5000.78
14 Success 15 0.00 0.10 5000.90
4 Success 5 0.00 0.10 5001.01
8 Success 9 0.00 0.10 5001.01
13 Success 14 0.00 0.10 5001.01
3 Success 4 0.00 0.10 5001.01
15 Success 16 0.00 0.10 5001.01
10 Success 11 0.00 0.10 5001.12
11 Success 12 0.00 0.10 5001.12
18 Success 3 5000.05 5000.15 10000.47
16 Success 1 5000.44 5000.54 10000.75
17 Success 2 5000.16 5000.26 10000.97
19 Success 4 5000.91 5001.01 10001.86
The Total Excecution Waiting Time of this Algorithm is : 20001.56
***************** Unsuccessfull Load Balancing *****************
***************** Total excecution wait time is not zero yet *****************
There is a waiting time of :20001.56
Used 4 host(s) Machines
***************** Simulation will restart now ***********************
Press Enter to Restart the simulation with: 5 Host(s)

NEW SIMULATION
Total Number of Virtual Machine: to be used: 20
Total Number of Host Machine to be used: 5
Initialising...
Starting CloudSim version 3.0
DataCenter1 is starting...
DataCenterBroker1 is starting...
Entities started.
0.0: DataCenterBroker1: Cloud Resource List received with 1 resource(s)
0.0: DataCenterBroker1: Trying to Create VM #1 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #2 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #3 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #4 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #5 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #6 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #7 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #8 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #9 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #10 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #11 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #12 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #13 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #14 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #15 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #16 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #17 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #18 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #19 in DataCenter1
0.0: DataCenterBroker1: Trying to Create VM #20 in DataCenter1
0.1: DataCenterBroker1: VM #1 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #2 has been created in Datacenter #2, Host #2

PREDICTIVE WORKLOAD BALANCING

80

0.1: DataCenterBroker1: VM #3 has been created in Datacenter #2, Host #3
0.1: DataCenterBroker1: VM #4 has been created in Datacenter #2, Host #4
0.1: DataCenterBroker1: VM #5 has been created in Datacenter #2, Host #5
0.1: DataCenterBroker1: VM #6 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #7 has been created in Datacenter #2, Host #2
0.1: DataCenterBroker1: VM #8 has been created in Datacenter #2, Host #3
0.1: DataCenterBroker1: VM #9 has been created in Datacenter #2, Host #4
0.1: DataCenterBroker1: VM #10 has been created in Datacenter #2, Host #5
0.1: DataCenterBroker1: VM #11 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #12 has been created in Datacenter #2, Host #2
0.1: DataCenterBroker1: VM #13 has been created in Datacenter #2, Host #3
0.1: DataCenterBroker1: VM #14 has been created in Datacenter #2, Host #4
0.1: DataCenterBroker1: VM #15 has been created in Datacenter #2, Host #5
0.1: DataCenterBroker1: VM #16 has been created in Datacenter #2, Host #1
0.1: DataCenterBroker1: VM #17 has been created in Datacenter #2, Host #2
0.1: DataCenterBroker1: VM #18 has been created in Datacenter #2, Host #3
0.1: DataCenterBroker1: VM #19 has been created in Datacenter #2, Host #4
0.1: DataCenterBroker1: VM #20 has been created in Datacenter #2, Host #5
0.1: DataCenterBroker1: Sending cloudlet 0 to VM #1
0.1: DataCenterBroker1: Sending cloudlet 1 to VM #2
0.1: DataCenterBroker1: Sending cloudlet 2 to VM #3
0.1: DataCenterBroker1: Sending cloudlet 3 to VM #4
0.1: DataCenterBroker1: Sending cloudlet 4 to VM #5
0.1: DataCenterBroker1: Sending cloudlet 5 to VM #6
0.1: DataCenterBroker1: Sending cloudlet 6 to VM #7
0.1: DataCenterBroker1: Sending cloudlet 7 to VM #8
0.1: DataCenterBroker1: Sending cloudlet 8 to VM #9
0.1: DataCenterBroker1: Sending cloudlet 9 to VM #10
0.1: DataCenterBroker1: Sending cloudlet 10 to VM #11
0.1: DataCenterBroker1: Sending cloudlet 11 to VM #12
0.1: DataCenterBroker1: Sending cloudlet 12 to VM #13
0.1: DataCenterBroker1: Sending cloudlet 13 to VM #14
0.1: DataCenterBroker1: Sending cloudlet 14 to VM #15
0.1: DataCenterBroker1: Sending cloudlet 15 to VM #16
0.1: DataCenterBroker1: Sending cloudlet 16 to VM #17
0.1: DataCenterBroker1: Sending cloudlet 17 to VM #18
0.1: DataCenterBroker1: Sending cloudlet 18 to VM #19
0.1: DataCenterBroker1: Sending cloudlet 19 to VM #20
5000.1050000000005: DataCenterBroker1: Cloudlet 8 received
5000.206: DataCenterBroker1: Cloudlet 13 received
5000.206: DataCenterBroker1: Cloudlet 14 received
5000.316000000001: DataCenterBroker1: Cloudlet 11 received
5000.316000000001: DataCenterBroker1: Cloudlet 4 received
5000.426000000001: DataCenterBroker1: Cloudlet 0 received
5000.426000000001: DataCenterBroker1: Cloudlet 10 received
5000.426000000001: DataCenterBroker1: Cloudlet 2 received
5000.426000000001: DataCenterBroker1: Cloudlet 7 received
5000.426000000001: DataCenterBroker1: Cloudlet 12 received
5000.536000000002: DataCenterBroker1: Cloudlet 9 received
5000.646000000001: DataCenterBroker1: Cloudlet 16 received
5000.646000000001: DataCenterBroker1: Cloudlet 17 received
5000.759: DataCenterBroker1: Cloudlet 19 received
5000.869000000001: DataCenterBroker1: Cloudlet 5 received
5000.869000000001: DataCenterBroker1: Cloudlet 6 received

PREDICTIVE WORKLOAD BALANCING

81

5000.869000000001: DataCenterBroker1: Cloudlet 3 received
5000.979000000001: DataCenterBroker1: Cloudlet 15 received
5000.979000000001: DataCenterBroker1: Cloudlet 1 received
5001.089000000002: DataCenterBroker1: Cloudlet 18 received
5001.089000000002: DataCenterBroker1: All Cloudlets executed. Finishing...
5001.089000000002: DataCenterBroker1: Destroying VM #1
5001.089000000002: DataCenterBroker1: Destroying VM #2
5001.089000000002: DataCenterBroker1: Destroying VM #3
5001.089000000002: DataCenterBroker1: Destroying VM #4
5001.089000000002: DataCenterBroker1: Destroying VM #5
5001.089000000002: DataCenterBroker1: Destroying VM #6
5001.089000000002: DataCenterBroker1: Destroying VM #7
5001.089000000002: DataCenterBroker1: Destroying VM #8
5001.089000000002: DataCenterBroker1: Destroying VM #9
5001.089000000002: DataCenterBroker1: Destroying VM #10
5001.089000000002: DataCenterBroker1: Destroying VM #11
5001.089000000002: DataCenterBroker1: Destroying VM #12
5001.089000000002: DataCenterBroker1: Destroying VM #13
5001.089000000002: DataCenterBroker1: Destroying VM #14
5001.089000000002: DataCenterBroker1: Destroying VM #15
5001.089000000002: DataCenterBroker1: Destroying VM #16
5001.089000000002: DataCenterBroker1: Destroying VM #17
5001.089000000002: DataCenterBroker1: Destroying VM #18
5001.089000000002: DataCenterBroker1: Destroying VM #19
5001.089000000002: DataCenterBroker1: Destroying VM #20
DataCenterBroker1 is shutting down...
Simulation: No more future events
CloudInformationService: Notify all CloudSim entities for shutting down.
DataCenter1 is shutting down...
DataCenterBroker1 is shutting down...
Simulation completed.
Simulation completed.
Result of cloudlet No

CloudletID STATUS VmID WaitTime StartTime FinishTime
8 Success 9 0.00 0.10 5000.11
13 Success 14 0.00 0.10 5000.21
14 Success 15 0.00 0.10 5000.21
11 Success 12 0.00 0.10 5000.32
4 Success 5 0.00 0.10 5000.32
0 Success 1 0.00 0.10 5000.43
10 Success 11 0.00 0.10 5000.43
2 Success 3 0.00 0.10 5000.43
7 Success 8 0.00 0.10 5000.43
12 Success 13 0.00 0.10 5000.43
9 Success 10 0.00 0.10 5000.54
16 Success 17 0.00 0.10 5000.65
17 Success 18 0.00 0.10 5000.65
19 Success 20 0.00 0.10 5000.76
5 Success 6 0.00 0.10 5000.87
6 Success 7 0.00 0.10 5000.87
3 Success 4 0.00 0.10 5000.87
15 Success 16 0.00 0.10 5000.98
1 Success 2 0.00 0.10 5000.98

PREDICTIVE WORKLOAD BALANCING

82

18 Success 19 0.00 0.10 5001.09 The Total Execution Waiting Time of
this Algorithm is: 0.00
***************** Successfully Achieved Load Balancing (0 waiting time)

Total # of host machine used: 5
Total # of VM used: 20

Table 6: Final Simulation result after applying the C-Algorithm

Paired t-test can also be applied to compare the initial result of the simulation with 1 host

machine to the final result with 5 physical host machines.

Waiting time with 1
host Waiting Time with 5 Hosts 𝑫 𝑫𝟐

 0 0 0 0

 0 0 0 0

 0 0 0 0

 0 0 0 0

 5000.28 0 5000.28 25002800.08

 5000.61 0 5000.61 25006100.37

 5000.5 0 5000.5 25005000.25

 5000.81 0 5000.81 25008100.66

 10000.48 0 10000.48 100009600.2

 10000.95 0 10000.95 100019000.9

 10001.18 0 10001.18 100023601.4

 10001.49 0 10001.49 100029802.2

 15001.04 0 15001.04 225031201.1

 15001.22 0 15001.22 225036601.5

 15000.85 0 15000.85 225025500.7

 15001.84 0 15001.84 225055203.4

 20001.71 0 20001.71 400068402.9

 20001.6 0 20001.6 400064002.6

 20001.37 0 20001.37 400054801.9

 20001.96 0 20001.96 400078403.8

Mean 10000.8945 0

Total 200017.89 0

PREDICTIVE WORKLOAD BALANCING

83

t-Test: Paired Two Sample for Means

Waiting time
with 1 host Waiting Time with 5 Hosts

Mean 10000.8945 0
Variance 52640016.21 0
Observations 20 20
Pearson Correlation #DIV/0!

Hypothesized Mean Difference 0

df 19

t Stat 6.164471323

P(T<=t) one-tail 3.17195E-06

t Critical one-tail 1.729132812

P(T<=t) two-tail 6.3439E-06

t Critical two-tail 2.093024054

Table 7: T-Test Comparison of final results after applying the C-Rule algorithm

The value of the paired t-test is 6.16 which indicates a big different with 95% percent level of
confidence.

Figure 20: Chart of Final CPU Waiting Time after adding 5 host machines.

If no previous simulation data were to be found then C-Algorithm would run its

own simulation to workload balance if there was no previous predictions, random

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CPU Waiting Time

Waiting time with 1 host Waiting Time with 5 Hosts

PREDICTIVE WORKLOAD BALANCING

84

algorithm is used temporary for load balancing while CloudSim runs a simulation to find

the optimal amount of resource allocation for the workload.

6.3 CONCLUSION

Chapter 2-6 answered all research questions and hypothesis. All conditions for

unreliable and reliable prediction and simulation were discussed in chapter 3.

The literature from Chapter 3 indicated that Cicada can generate a prediction in

less than 20 milliseconds and the result from Chapter 5 demonstrated that CloudSim can

detect the minimum number of host machines and memory RAM required for a workload

in a matter of seconds. The C-Rule algorithm managed to lower the number of physical

host machines and memory ram by %50 in some cases, resulting in a much faster

workload balancing.

This new approach helped cloud services achieve faster and more reliable

workload balancing, allowing them to utilize their resources more efficiently by

preventing any over-provisioning. Cloud service providers can use the workload

prediction and if any similar workload exists in the historical data then C-Rule algorithm

can simply use the result from the previous prediction. If no previous data exists in the

database then C-Rule algorithm can use the prediction data and simulate a workload

balancing and use that simulation data in future for a faster workload balancing. The C-

Rule algorithm can balance a workload in a matter of seconds rather than several

minutes.

PREDICTIVE WORKLOAD BALANCING

85

6.4 Summary

The objectives of this work are three-fold: to investigate under what conditions

to use Cicada for predicting workloads in dynamic Internet hosting platforms, to

determine the conditions to use CloudSIM for reliable workload simulation, and to

identify the challenges of rule-based algorithm for load balancing for Internet-based

platforms compared to Cicada predictions. The methodology envisaged in this work

entails three phases: workload prediction using Cicada, simulation using CloudSIM

framework, and the development of a space-shared algorithm (C-algorithm) for

dynamic workload balancing in cloud environments. The final objective is to reduce

cloud resource assignment for a specific workload while reducing the CPU waiting

time.

Chapter 6 demonstrated a successful simulation of the data center. Results

from chapter 6 proved that prediction workload balancing can achieved faster results

and can require less computational power. Results from this chapter covered the 3rd

research question.

PREDICTIVE WORKLOAD BALANCING

86

REFERENCES

Al-Qudah, Z., Alzoubi, H. A., Allman, M., Rabinovich, M., & Liberatore, V. (2009).

Efficient application placement in a dynamic hosting platform. In ’09

Proceedings of the 18th ACM International Conference on World Wide Web,

Madrid, Spain, pp. 281-290.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011).

CloudSim: A toolkit for modeling and simulation of cloud computing

environments and evaluation of resource provisioning algorithms. Software:

Practice and Experience, 41(1), 23-50.

Calheiros, R. N., Ranjan, R., De Rose, C. A. F., & Buyya, R. (2009). CloudSim: A

novel framework for modeling and simulation of cloud computing

infrastructure and services. Technical Report GRIDS-TR-2009-1, Grid

Computing and Distributed Systems Laboratory.

Chase, J. S., Anderson, D. C., Thakar, P. N., Vahdat, A. M., & Doyle, R. P. (2001,

October). Managing energy and server resources in hosting centers. In ACM

SIGOPS Operating Systems Review, 35(5), 103-116.

Devi, C., & Uthariaraj, R. (2016). Load balancing in cloud computing environment

using improved weighted Round Robin Algorithm for non-preemptive

dependent tasks. Hindawi Publishing Corporation,

http://dx.doi.org/10.1155/2016/3896065.

PREDICTIVE WORKLOAD BALANCING

87

Doyle, B., & Lopes, C. V. (2005). Survey of technologies for Web application

development. ACM Journal, 2(3), 1-43.

Duggan, J., Cetintemel, U., Papaemmanouil, O. & Upfal, E. (2011). Performance

prediction for concurrent database workloads. SIGMOD ’11. June 12-16, 2011,

Athens, Greece. 978 (1): 337-348.

Issawi, S. F., Halees, A. A., & Radi, M. (2015). An efficient adaptive load-balancing

algorithm for cloud computing under bursty workloads. Engineering,

Technology, & Applied Science Research, 5(3), 795-800.

Jena, S. R., & Ahmad, Z. (2013). Response time minimization of different load

balancing algorithms in cloud computing environment. International Journal

of Computer Applications, 69(17), 22-27.

LaCurts, K. L. (2014, June). Application workload prediction and placement in cloud

computing systems (Unpublished doctoral dissertation). Massachusetts Institute

of Technology, Cambridge Massachusetts.

Lee, R., & Jeng, B. (2011). Load-balancing tactics in cloud. In Proceedings of the

International Conference on Cyber-Enabled Distributed Computing and

Knowledge CyberC Discovery, pp. 447-454.

Mahmood, Z. (2011). Cloud computing: characteristics and deployment approaches.

In the 11th IEEE International Conference on Computer and Information

Technology, pp. 121-126.

PREDICTIVE WORKLOAD BALANCING

88

Mathur, S., Larji, A. A., & Goyal, A. (2017). Static load balancing using SA Max-Min

algorithm. International Journal for Research in Applied Science &

Engineering Technology, 5(4), 1886-1893.

Nae, V., Prodan, R., & Fahringer, T. (2010, October). Cost-efficient hosting and load

balancing of massively multiplayer online games. In the 11th IEEE/ACM

International Conference on Grid Computing (GRID), Brussels, Belgium, pp.

9-16.

Nema, R., & Edwin, S. T. (2016). A new efficient virtual machine load balancing

algorithm for a cloud computing environment. International Journal of Latest

Research in Engineering and Technology, 2(2), 69-75.

Olston, C., Manjhi, A., & Garrod, C. (2005). A scalability service for dynamic web

applications. In Proceedings of the Conference on Innovative Data Systems

Research (CIDR). Retrieved from

http://www.cs.cmu.edu/~manjhi/publications/ss-cidr05.pdf

Oluwatolani, O., Babajide, A., & Philip, A. (2012). Development of a scalable

architecture for dynamic web-based applications. International Journal of

Information and Communication Technology Research, 2(3), 304-311.

Pasha, N., Agaarwal A., & Rastogi, R. (2014). Round Robin approach for VM load

balancing algorithm in cloud computing environment. International Journal of

Advanced Research in Computer Science and Software Engineering, 4(5), 34-

39.

PREDICTIVE WORKLOAD BALANCING

89

Patel, D., & Rajawat, A. (2015). Efficient throttled load-balancing algorithm in cloud

environment. International Journal of Modern Trends in Engineering and

Research, 2(3), 463-480.

Rajeshkannan, R., & Aramudhan, M. (2016). Comparative study of load balancing

algorithms in cloud-computing environment. India Journal of Science and

Technology, 9(20), 1-7.

Sheng, Q. Z., Qiao, X., Vasilakos, A. V., Szabo, C., Bourne, S., & Xu, X. (2014). Web

services composition: A decade’s overview. Information Sciences, 280, 218-

238.

Singh, S., & Jangwal, T. (2012). Cost breakdown of public cloud computing and

private cloud computing and security issues. International Journal of

Computer Science and Information Technology, 4(2), 17-31.

Sleit, A., Misk, N., Badwan, F., & Khalil, T. (2013). Cloud computing challenges with

emphasis on Amazon EC2 and Windows Azure. International Journal of

Computer Networks & Communications, 5(5), 35-43.

Wolke, A., Bichler, M., & Setzer, T. (2015). Planning vs. dynamic control: Resource

allocation in corporate clouds. Retrieved from http://dss.in.tum.de/files/bichler-

research/2015.IEEE_TCC.Wolke.Proactive.pdf

Buyya Rajkumar, Ranjan Rajiv, & Calheiros, N. Rodrigo. “Modeling and simulation

of scalable cloud computing environments and the CloudSim toolkit:

Challenges and opportunities.” In IEEE International Conference on High

PREDICTIVE WORKLOAD BALANCING

90

Performance Computing & Simulation(HPCS), Leipzig, German, 2009 June

21-24. Doi: 10.1109/HPCSIM.2009.5192685.

Katrina, L., Mogul, J.C., Balakrishnan, H., & Turner, Y. (2014). Cicada: Predictive

Guarantees for Cloud Network Bandwidth. cambridge: Massachuse t t s i n

stitute of technology.

Jun-Kwon, J., Jung, S., Kim, T., & Chung, T. (2012). A Study on the Cloud

Simulation with a Network Topology Generator (11 ed., Vol. 6). International

Journal of Computer and Information Engineering.

Blaszczyszyn, B., Javonavic, M., & Karray, M. K. (2014). How user throughout

depends on the traffic demand in large cellular networks. In 12th International

Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless

Networks, Hammamet, Tunisia. Doi: 10.1109/WIOPT.2014.6850355.

Gamal, M., Rizk, R., Mahdi, H., & Elhady, B. (2017). Bio-inspired load balancing

algorithm in cloud computing. In Proceedings of the International Conference

on Advanced Intelligent Systems and Informatics, Cairo, Egypt, 2017, pp. 579-

589.

Hashem, W., Nashaat, H., & Rizk. (2017). Honey bee based load balancing in cloud

computing. KSII Transactions on Internet and Information Systems, 11(12),

5694-5711.

Hwang, K. (2017). Cloud computing for machine learning and cognitive applications:

A machine Learning approach. London: MIT Press.

https://doi.org/10.1109/WIOPT.2014.6850355

PREDICTIVE WORKLOAD BALANCING

91

Kaur, R., & Luthra, P. (2014). Load balancing in cloud computing. In Proceedings of

the International Conference on Recent Trends in information,

Telecommunication, Computing, Association of Computer Electronics and

Electrical Engineers, pp. 375-381.

Kumar, S., & Mishra, A. (2015). Application of min-min and max-min algorithm for

task scedhuling in cloud environment under time-shared and space-shared VM

models. International Journal of Computing Academic Research, 182-190.

Nema, L., & Sharma, A. (2016). Efficient load balancing based on improved honey

bee method in cloud computing. International Science Press, 9(22), 151-161.

Shiny, S. (2013). Load balancing in cloud computing: A review. Journal of Computer

Engineering, 15(2), 22-29.

Wahab, M. N., Mexiani, S. N., & Atyabi, A. (2015). A comprehensive review of

swarm optimization algorithms. PLoS One, 10(5), pp. 1-36.

Wang, T., Liu, Z., Chen, Y., Xu, Y. & Dai, X. (2014). Load balancing task scheduling

based on genetic algorithm in cloud computing. In IEEE 12th International

Conference on Dependable, Autonomic, and Secure Computing, Dalian China.

Doi: 10.1109/DASC.2014.35.

Zhou, X., Lin, F., Yang, L., Nie, J., Tan, Q., Zeng, W., & Zhang, N. (2016). Load

balancing method of cloud storage based on analytical hierarchy process and

hybrid hierarchical genetic algorithm. SpringerPlus, 5, pp. 1-23.

Doi:10.1186/s40064-016-3619-x.

Fei, L., Scherson, I.D., & Fuentes, J. (2017). Dynamic Creation of Virtual Machines in

Cloud Computing Systems. Las Vegas: IEEE.

https://doi.org/10.1109/DASC.2014.35

PREDICTIVE WORKLOAD BALANCING

92

10.1109/ICSEng.2017.13

Jiang, Z. (2013). GreenCloud for Simulating QoS-based NaaS in Cloud Computing.

Leshan City: 2013 Ninth International Conference on Computational

Intelligence and Security. 10.1109/CIS.2013.167

Wenhong Tian, Minxian Xu, Aiguo Chen, Guozhong Li, Xinyang Wang, Yu Chen.

Open-source simulators for Cloud computing: Comparative study and

challenging issues, Simulation Modelling Practice and Theory, 2015, 58: 239-

254

K. S. Umadevi and P. Chaturvedi (2017) Predictive load balancing algorithm for cloud

computing: 2017 International conference on Microelectronic Devices,

Circuits and Systems (ICMDCS), Vellore, 2017, pp. 1-5. doi:

10.1109/ICMDCS.2017.8211727

Matthias, S., Klink, M., Tomforde, S., & Hahner, J. (2016). Predictive Load Balancing

in Cloud Computing Environments based on Ensemble Forecasting (4 ed., Vol.

11). Augsburg,: IEEE International Conference on Autonomic Computing.

Alexandre, D., Tomasik, J., Cohen, J., & Dufoulon, F. (2017). Load prediction for

energy-aware scheduling for Cloud computing platforms. Orsay: IEEE 37th

International Conference on Distributed Computing System.

PREDICTIVE WORKLOAD BALANCING

93

APPENDIX A - Java Classes of CloudSim

Introduction to programing language of CloudSim

The programing language of CloudSim is Java language and to understand the

simulation process, we need to introduce the class packages of CloudSim. This

section introduces all available packages of cloud of CloudSim and explains the

behavior of each java class related to the topic of this paper.

The following table contains the classes defined in the CloudSim:

Classes Description
Org.cloudbus.cloudsim

Datecenter.Java

DatacenterBroker.jave

Cloudlet.Java

File.Java

Host.JavaStorage.Java

This class contains two different categories of classes, which

generate different simulation behaviors and processes. The

first category is the simulation components and the

following classes can fit in the simulation category.

VmAllocationPolicy.java

VmAllocationPolicySimple.java

VmScheduler.java

VmSchedulerSpaceShared.java

VmSchedulerTimeShared.java

VmSchedulerTimeSharedOverSubscription.java

Scheduling and utilization policy. The following

components can fit in these categories:

Org.cloudbus.cloudsim.core

This class package set contains core classes for CloudSim,

which can handle the core functionalities of the CloudSim

toolkit.

Org.cloudbus.cloudsim.core.predicates: This class package set is responsible for matching and

selecting events from deferred queue list for execution.

Predicate.java This class selects events from a deferred queue.

PredicateAny.java

This class will match a prediction to events in the deferred

event queue.

Org.cloudbus.cloudsim.distributions: This class package contains a set of classes that are

responsible for the implementation of different distribution

techniques, used commonly in network events. These

classes can produce specific distribution technique including

Lomax Distributions, Exponential, Random Number

Generator, and Gamma Distribution as follows:

ContinuousDistribution.java Continuous Distribution

ExponentialDistr.java Exponential Distribution

PREDICTIVE WORKLOAD BALANCING

94

GammaDiskr.java Gama Distribution

LongnormalDistr.java Long normal Distribution

LomaxDistribution.java Lomax Distribution

ParetoDistr.java Pare to Distribution

UniformDistr.java Uniform Distribution

Org.cloudbus.cloudsim.lists This class package contains sets of classes that generate

objects, each containing lists of different components

generated by the program. That is, the class contains

operations lists on the lists of resources. Each generated

object is stored in the memory. The package consists of

codes designed for modeling cloud entities such as hosts,

VMs, and datacenters. It also encompasses various

scheduling and provisioning policies (Mishra & Sahoo 3).

Users can extent or overwrite the classes to define additional

cloud entities or create new policies.

CloudletList.java class - stores Cloudlet list

HostList.java class - stores Host List

ResCloudletList.java class - stores list resources of cloudlets

VmList.java class stores list of virtual machines

Org.cloudbus.cloudsim.network This package set contains set of classes, which produce

different network routing behavior. The set encompasses

classes for the network topology including the delay matrix

as well as the routing algorithm and topological information.

DelayMatrix_Float.java class can produce a delay-topology storing routing behavior

FloydWarshall_Float.java class uses Floyd War shall algorithm, which can calculate all

pair delay

GraphReaderBrite.java class is a file reader.

TopologicalGraph.java class draws a graph, which contains nodes and edges.

TopologicalLink.java class represents link edges from a graph.

TopologicalNode.java class represents network nodes in a topological generated

network and it can read information from a file.

Org.cloudbus.cloudsim.network.datacenter This class package set contains sets of classes, which are

extension of org.cloudbus.cloudim package set. This

package set is used to simulate behavior of geographically

distributed service providers.

AggregateSwitch.java Class – simulates switch of a Datacenter network.

AppCloudlet.java class simulates an application, which users submit for

execution within a datacenter environment.

EdgeSwitch.java class – simulates edge switch of a datacenter network and

exchanges packets by interacting with other switches.

HostPackage.java class – stores the information about cloudlets that are

communication with each other and its main job is to

represent packages, which travel within the virtual network

with a host.

NetDatacenterBroker.java class – functions as a broker that is acting from behalf of

Datacenter provider and it makes VM management hidden.

NetDatacenterBroker.java class – functions as a broker that is acting from behalf of

Datacenter provider and it makes VM management hidden.

PREDICTIVE WORKLOAD BALANCING

95

NetworkCloudlet.java class simulates complex applications where each cloudlet

will represent an application task and each task has several

stages.

NetworkCloudletSpaceSharedScheduler.java java class is used for spaced shared scheduling.

NetworkHost.java class – this is an extension class for simulating datacenter

networks.

NetworkPacket.java class – this class simulates traveling packets among servers.

NetworkVm.java class – this class extends VM and simulates datacenters of

networks.

NetworkVmAllocationPolicy.java class – it chooses the hosts for least PEs from virtual

machines.

RootSwitch.java class – simulates external root switch of a Datacenter.

TaskStage.java class – represents different stages of a cloudlet during the

execution time.

Org.cloudbus.cloudsim.power class– this class package set simulates functionality of

power aware components. It encompasses extendable

classes that can simulate a power aware DC and policies.

Org.cloudbus.cloudsim.provisioners class – class package set can simulate bandwidth-

provisioning policy of virtual machines.

Org.cloudbus.cloudsim.utilclass class package set can simulate and measure execution time

of a cloud environment.

ExecutionTimeMeasurer.java class can measure the execution time.

WorkloadFileReader.java class can create a list of jobs by importing traces of

resources from a file.

WorkloadModel.java class can define a workload model by generating and

dispatching list of jobs to a resource.

Table 8: Important Java Classes of CloudSim Simulator

PREDICTIVE WORKLOAD BALANCING

96

APPENDIX B - Tools: Installation of CloudSim and Commons Math files.

Step-by-step Installation Instructions of Cloud Sim on a PC computer:

 Step 1: The first step for installing CloudSim on a computer is to remove all

other versions of Java from your computer before you can install JDK version

of Java from your computer.

o Restart your computer

o Make sure that all previous files and folders of previous Java

installation is removed from your computer

 Remove C:\Program Files\Java

 Remove C:\Program Files (x86)\Java

Step 2: Use Ninite tool for easy installation of Java JDK x64 8 and Eclipse compiler

 Go to https://ninite.com/

 Under the developer tools select both Java JDK x64 8 and Eclipse compiler

 Under the runtimes select Java 8

 Click on get your Ninite.

 Download and install Ninite

 This installation will automatically install two different versions of Java on

your computer.

o Java SE Development Kit 8 Update 152

o Java 8 Update 152

PREDICTIVE WORKLOAD BALANCING

97

Figure 21. Screenshot of Java 64-bit

 Step 3: Ninite will also automatically install eclipse and it will add proper Java

runtime environment variables on windows.

 Step 4: Download CloudSim

Download CloudSim 3.0.3.zip from

https://code.google.com/archive/p/cloudsim/downloads

https://code.google.com/archive/p/cloudsim/downloads

PREDICTIVE WORKLOAD BALANCING

98

Figure 22. Google Code offers open-source project hosting

Another option is to download CloudSim from

https://github.com/Cloudslab/cloudsim/releases

GitHub is an open-source software development platform that also allows

hosting and reviewing of codes, as well as project management. When downloaded

from GitHub, the downloaded package comes with the source code, examples, API

html files, and jars.

 Step 5:

Download Apache Commons Math 3.3 from

http://commons.apache.org/proper/commons-math/download_math.cgi.

Common Math provides a lightweight library for addressing the common math

problems that do not exist in Java. The library requires Java 1.5+.

 Step 6:

 Unzip all zip files to C:\CodeRespository\

 Step 7:

o Click on File  new Java project

 In front of Project name choose your project name

o Select use an execution environment JRE: JavaSe-1.8

o Click on next

o Click on Libraries

o Click on Add external Jars and select

C:\CodeRespository\cloudsim-3.0.3\jars\cloudsim-3.0.3.rar

 Click on finish

PREDICTIVE WORKLOAD BALANCING

99

 Open your project on the left side and right Click on SRC folder

 Click on New and select Class option

o In front of the name type your desired class name and select

o both "public static void main(String[] args)

o inherited abstract methods

o Generate commands

 Click on finish and this will create an empty class to which can run Cloudsim

Java code.

PREDICTIVE WORKLOAD BALANCING

100

APPENDIX C – Java code for the simulation

The following Java code is for the simulation of the CloudSim.

import java.io.FileNotFoundException;

import java.text.DecimalFormat;

import java.util.ArrayList;

import java.util.Calendar;

import java.util.LinkedList;

import java.util.List;

import java.util.Random;

import java.util.Scanner;

import org.cloudbus.cloudsim.Cloudlet;

import org.cloudbus.cloudsim.CloudletSchedulerSpaceShared;

import org.cloudbus.cloudsim.CloudletSchedulerTimeShared;

import org.cloudbus.cloudsim.Datacenter; // for private data center

import org.cloudbus.cloudsim.DatacenterBroker;

import org.cloudbus.cloudsim.DatacenterCharacteristics;

import org.cloudbus.cloudsim.Host;

import org.cloudbus.cloudsim.Log;

import org.cloudbus.cloudsim.Pe;

import org.cloudbus.cloudsim.Storage;

import org.cloudbus.cloudsim.Vm;

import org.cloudbus.cloudsim.VmAllocationPolicySimple;

import org.cloudbus.cloudsim.VmSchedulerSpaceShared;

import org.cloudbus.cloudsim.core.CloudSim;

import org.cloudbus.cloudsim.provisioners.BwProvisionerSimple;

import org.cloudbus.cloudsim.provisioners.PeProvisionerSimple;

import org.cloudbus.cloudsim.util.WorkloadFileReader;

import org.cloudbus.cloudsim.UtilizationModelFull;

public class ThesisPartOne {

 /*

 * All Variables are moved here for ease of changing

 */

static int NumOfHostAddedSoFar=0;

static int NumOfHostToUseNextTime=1;

static boolean resimulate=true;

static double TotalExcTime=0;

static int numUser=1; // Number of Users

// ***************Host Specs ****************************

static int HostRAM = 32000; //32 GB of RAM for each host

static int HostBandwidth=8000; // 8 for test 2 Mbs of Bandwidth for each host

PREDICTIVE WORKLOAD BALANCING

101

static long HostStorage = 2000000; // 2000 GB of Storage for each host

static int NumberOfVM=20; //20 give best results

static long vmdiskSize = 20000; //20000 Virtual Machine Storage size

static int VMRam=1000; //2000 Virtual Machine Ram Size

static int VMmips =1000; //Virtual Machine mips Size

static int VMbandwidth = 1000; //Virtual Machine bandwidth Size

static int VCPU = 1; //Virtual Machine number of CPU

static String VMM ="XEN";

static String architecture="64 bits"; //This defines the architecture of the VM

static String os ="Ubuntu Server"; //OS of the VM

static String vmm="VMware"; //Software of the virtual machine

static double timeZone =7.0;

static double EachComputercostPerSec = 2.0;

static double costPerMem=0.75;

static double costPerStorage=0.10;

static double costPerBw=0.11;

static long cloudletLength= 5000000; //Length of Instruction from the (task and workloads)

static int TaskCPUNum=1; // Number of the CPU of the task and workload /

static long cloudletInputFileSize=100000; //input file size from the (task and workloads) section

static long cloudletOutputSize =300000; //output file from the (task and workloads) section

public static void main(String[] args) throws FileNotFoundException {

Log.printLine("\n************** Length of Instruction from the (Task and Workloads) Section

**************");

Log.printLine("Cloudlet Length "+cloudletLength);

Log.printLine("# of Task CPU: "+TaskCPUNum);

Log.printLine("Input file size: "+cloudletInputFileSize);

Log.printLine("Output file size: "+cloudletOutputSize);

Log.printLine("\n************** Each Host *****************************");

Log.printLine("Memory RAM : "+HostRAM/1000+" GB");

Log.printLine("Bandwidth : "+HostBandwidth/1000+" Mbs");

Log.printLine("Storage (SSD/HDD): "+HostStorage/1000+" GB");

Log.printLine("\n************** Each VM (Virtual Machine) **************");

Log.printLine("Disk Disk : "+vmdiskSize/1000+" GB"); //Virtual Machine Storage size

Log.printLine("Memory RAM : "+VMRam/1000+" Gb");

Log.printLine("VM Mips : "+VMmips+" ");

Log.printLine("VM Bandwidth : "+VMbandwidth/1000+" Mbs ");

Log.printLine("# of VM CPU : "+VCPU+"");

Log.printLine("**********************\n");

Log.printLine("System Architecture: "+architecture);

Log.printLine("OS Type: "+os);

Log.printLine("VM Software: "+vmm);

Log.printLine("************** C-Algorithm Load Balancer

*****************************\n");

Log.printLine("This program will find the optimal amount of VMs and Hosts \n");

Log.printLine("Press Enter to continue");

 try{System.in.read();} catch(Exception e){}

 try{System.in.read();} catch(Exception e){}

PREDICTIVE WORKLOAD BALANCING

102

 while (resimulate==true) {

Log.printLine("**********************************");

Log.printLine("NEW SIMULATION");

Log.printLine("Total Number of Virtual Machine: to be used: "+ NumberOfVM);

Log.printLine("Total Number of Host Machine to be used:

"+NumOfHostToUseNextTime+"\n");

//*****************Part I: Initializing the CloudSim package***********************

//In The following part we the entities

Calendar cal = Calendar.getInstance();

boolean traceFlag=false;

//This will print Initialising... On the screen

CloudSim.init(numUser, cal, traceFlag);

 //*****************PART II: Datacenter is created in this part

 //******************Characteristics of a DataCenters is created in the

CreateDataCenter();

 // HostList is created in this part and HostList elements will be processed

 // VM allocation policy and scheduling will be defined here

Datacenter dc=CreateDataCenter();

//**************Part 3 : Create Broker**************

DatacenterBroker dcb=null;

 try {dcb = new DatacenterBroker("DataCenterBroker1");} catch (Exception e)

{e.printStackTrace();}

 //******************************Part 4

List<Cloudlet> cloudletList = new ArrayList<Cloudlet>();

UtilizationModelFull fullUtilize =new UtilizationModelFull();

 for(int cloudletId =0;cloudletId <20;cloudletId ++) {

Random r= new Random();

Cloudlet anewcloudlet = new Cloudlet(cloudletId , cloudletLength+r.nextInt(1000),

TaskCPUNum, cloudletInputFileSize, cloudletOutputSize, fullUtilize,fullUtilize,fullUtilize);

anewcloudlet.setUserId(dcb.getId());

 cloudletList.add(anewcloudlet); // instead of generating random cloudlets we are

importing hp simulation data

 }//end of for loop

 // In this part we will import hp data

 // WorkloadFileReader workloadFileReader = new

WorkloadFileReader("C:\\CodeRespository\\ThesisPartOne\\HPC2N-2002-2.2-cln.swf", 1);

// cloudletList=workloadFileReader.generateWorkload();

PREDICTIVE WORKLOAD BALANCING

103

//********** Part 5 of the simulation VMs are created and

//********** Task scheduling algorithm will be defined here **********

List<Vm> vmList =new ArrayList<Vm>();

 /*

 * All variables have been moved to the beginning of the

 Program Beginning

 */

 for(int vmId =1;vmId <NumberOfVM+1; vmId ++)

 {Vm VirtualMachine= new Vm(vmId, dcb.getId(),

 VMmips,

 VCPU,

 VMRam,

 VMbandwidth,

 vmdiskSize,

 VMM,

 new CloudletSchedulerSpaceShared());

 vmList.add(VirtualMachine);}

 dcb.submitCloudletList(cloudletList); // cloudlets are submitted

to the broker in a list

 dcb.submitVmList(vmList);

// Part 6.0: Simulation starts in part 6 even simulation (engine)

 CloudSim.startSimulation();

 List<Cloudlet> Finalresults = dcb.getCloudletReceivedList();

 CloudSim.stopSimulation();

//***

 // Part 7.0 Print results when the simulation is over(output)

 int cloudletNo=0;

 DecimalFormat TwoDecimalFormatter = new DecimalFormat("#0.00"); //defining decimal

format

 String status;

 String space;

 String Startspace;

 String FinishTimespace;

 String ExcTimespace;

 Log.printLine("Result of cloudlet No");

 Log.printLine("**************************");

 Log.printLine("CloudletID STATUS VmID WaitTime StartTime

FinishTime");

 for (Cloudlet c: Finalresults)

 { //c.getResourceId() //

PREDICTIVE WORKLOAD BALANCING

104

 //c.

 status="Fail";

 space=" ";

 Startspace=" ";

 FinishTimespace=" ";

 ExcTimespace=" ";

 if (c.getCloudletId()>9) { space=" "; } //More spaces if getCloudletId is a two digit

number

 if (c.getExecStartTime()<0.9) {Startspace=" ";}

 if (c.getExecStartTime()>0.9) {Startspace=" ";}

 if (c.getFinishTime()>99) {FinishTimespace=" ";}

 if (c.getFinishTime()>9999) {FinishTimespace=" ";}

 if (c.getWaitingTime()==0) {ExcTimespace=" ";}

 if (c.getWaitingTime()>999) {ExcTimespace=" ";}

 if (c.getCloudletStatus() == c.SUCCESS){

 status="Success"; //c.getActualCPUTime() c.getResourceId()

// c.getWaitingTime()

 Log.printLine(" "+c.getCloudletId() + space +status+" "+c.getVmId()+

""+ExcTimespace+TwoDecimalFormatter.format(c.getWaitingTime())+

 "

"+TwoDecimalFormatter.format(c.getExecStartTime())+Startspace+"

"+TwoDecimalFormatter.format(c.getFinishTime())+FinishTimespace);

 } //c.getCloudletStatus() == c.SUCCESS)

 cloudletNo++;

 TotalExcTime=TotalExcTime+c.getWaitingTime();

 }

 Log.printLine("\nThe Total Excecution Waiting Time of this Algorithm is :

"+TwoDecimalFormatter.format(TotalExcTime));

 if (TotalExcTime==0) {

 Log.printLine("\n***************** Successfully Achieved Load Balancing (0

waiting time) *****************");

 Log.printLine("\nTotal # of host machine used: "+ NumOfHostToUseNextTime);

 Log.printLine("\nTotal # of VM used: "+NumberOfVM);

 resimulate=false;

 }

 if (TotalExcTime!=0) {

 Log.printLine("\n***************** Unsuccessfull Load Balancing

*****************");

 Log.printLine("***************** Total excecution wait time is not

zero yet *****************");

 Log.printLine("There is a waiting time of

:"+TwoDecimalFormatter.format(TotalExcTime));

 Log.printLine("Used "+NumOfHostToUseNextTime+" host(s)

Machines");

PREDICTIVE WORKLOAD BALANCING

105

 NumOfHostToUseNextTime++;

 if(NumOfHostToUseNextTime==13) {

 Log.printLine("Maximum of 13 host machines are allowed");

 resimulate=false;

 }

 Log.printLine("\n***************** Simulation will restart now

***********************");

 Log.printLine("Press Enter to Restart the simulation with:

"+NumOfHostToUseNextTime+" Host(s)");

 try{System.in.read();} catch(Exception e){}

 try{System.in.read();} catch(Exception e){}

 TotalExcTime=0;

 }

 }

 }//END OF THE PUBLIC STAT

 private static Datacenter CreateDataCenter()

 { //Beginning of CreateDataCenter(), Datacenter characteristics is defined here

 List<Pe> peList = new ArrayList<Pe>();

 //The following lines will Define the MIPS of each CPU

 //Each core has 1000 MIPS

 PeProvisionerSimple ProcessorProvisioner = new PeProvisionerSimple(1000);

//1000 MIPS

 //Each core will have its own ID

 //In the following part we will assign an ID for each core

 Pe CPUcore1 = new Pe(0, ProcessorProvisioner);

 Pe CPUcore2 = new Pe(1, ProcessorProvisioner);

 Pe CPUcore3 = new Pe(2, ProcessorProvisioner);

 Pe CPUcore4 = new Pe(3, ProcessorProvisioner);

 //We add each core to the Pe list

 peList.add(CPUcore1);

 peList.add(CPUcore2);

 peList.add(CPUcore3);

 peList.add(CPUcore4);

 /*

 * Variables are moved to the beginning of the program for ease of changing

 *

 */

List<Host> hostlist = new ArrayList<Host>();

//Each Host is created in this stage

PREDICTIVE WORKLOAD BALANCING

106

 Host host1 = new Host(1, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host2 = new Host(2, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host3 = new Host(3, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host4 = new Host(4, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host5 = new Host(5, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host6 = new Host(6, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host7 = new Host(7, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host8 = new Host(8, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host9 = new Host(9, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host10 = new Host(10, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host11 = new Host(11, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host12 = new Host(12, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host13 = new Host(13, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host14 = new Host(14, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host15 = new Host(15, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host16 = new Host(16, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host17 = new Host(17, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

PREDICTIVE WORKLOAD BALANCING

107

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host18 = new Host(18, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host19 = new Host(19, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 Host host20 = new Host(20, new RamProvisionerSimple(HostRAM), new

BwProvisionerSimple(HostBandwidth),

 HostStorage, peList, new VmSchedulerSpaceShared(peList));

 if (NumOfHostToUseNextTime==1) {hostlist.add(host1);

NumOfHostAddedSoFar++;}

 if (NumOfHostToUseNextTime==2) {

 hostlist.add(host1); NumOfHostAddedSoFar++;

 hostlist.add(host2); NumOfHostAddedSoFar++;

 }

 if (NumOfHostToUseNextTime==3) {

 hostlist.add(host1); NumOfHostAddedSoFar++;

 hostlist.add(host2); NumOfHostAddedSoFar++;

 hostlist.add(host3); NumOfHostAddedSoFar++;

 }

 if (NumOfHostToUseNextTime==4)

 {

 hostlist.add(host1); NumOfHostAddedSoFar++;

 hostlist.add(host2); NumOfHostAddedSoFar++;

 hostlist.add(host3); NumOfHostAddedSoFar++;

 hostlist.add(host4); NumOfHostAddedSoFar++;}

 if (NumOfHostToUseNextTime==5)

 {hostlist.add(host1); NumOfHostAddedSoFar++;

 hostlist.add(host2); NumOfHostAddedSoFar++;

 hostlist.add(host3); NumOfHostAddedSoFar++;

 hostlist.add(host4); NumOfHostAddedSoFar++;

 hostlist.add(host5); NumOfHostAddedSoFar++;}

 if (NumOfHostToUseNextTime==6) {hostlist.add(host1);

NumOfHostAddedSoFar++;

hostlist.add(host2); NumOfHostAddedSoFar++;

 hostlist.add(host3); NumOfHostAddedSoFar++;

 hostlist.add(host4); NumOfHostAddedSoFar++;

 hostlist.add(host5); NumOfHostAddedSoFar++;

 hostlist.add(host6); NumOfHostAddedSoFar++;}

 if (NumOfHostToUseNextTime==7) {

 hostlist.add(host1); NumOfHostAddedSoFar++;

 hostlist.add(host2); NumOfHostAddedSoFar++;

 hostlist.add(host3); NumOfHostAddedSoFar++;

PREDICTIVE WORKLOAD BALANCING

108

 hostlist.add(host4); NumOfHostAddedSoFar++;

 hostlist.add(host5); NumOfHostAddedSoFar++;

 hostlist.add(host6); NumOfHostAddedSoFar++;

 hostlist.add(host7); NumOfHostAddedSoFar++;}

 if (NumOfHostToUseNextTime==8) {

 hostlist.add(host1); NumOfHostAddedSoFar++;

 hostlist.add(host2); NumOfHostAddedSoFar++;

 hostlist.add(host3); NumOfHostAddedSoFar++;

 hostlist.add(host4); NumOfHostAddedSoFar++;

 hostlist.add(host5); NumOfHostAddedSoFar++;

 hostlist.add(host6); NumOfHostAddedSoFar++;

 hostlist.add(host7); NumOfHostAddedSoFar++;

 hostlist.add(host8); NumOfHostAddedSoFar++;}

 if (NumOfHostToUseNextTime==9) {

 hostlist.add(host1); NumOfHostAddedSoFar++;

 hostlist.add(host2); NumOfHostAddedSoFar++;

 hostlist.add(host3); NumOfHostAddedSoFar++;

 hostlist.add(host4); NumOfHostAddedSoFar++;

 hostlist.add(host5); NumOfHostAddedSoFar++;

 hostlist.add(host6); NumOfHostAddedSoFar++;

 hostlist.add(host7); NumOfHostAddedSoFar++;

 hostlist.add(host8); NumOfHostAddedSoFar++;

 hostlist.add(host9); NumOfHostAddedSoFar++;}

 if (NumOfHostToUseNextTime==10) {

 hostlist.add(host1); NumOfHostAddedSoFar++;

 hostlist.add(host2); NumOfHostAddedSoFar++;

 hostlist.add(host3); NumOfHostAddedSoFar++;

 hostlist.add(host4); NumOfHostAddedSoFar++;

 hostlist.add(host5); NumOfHostAddedSoFar++;

 hostlist.add(host6); NumOfHostAddedSoFar++;

 hostlist.add(host7); NumOfHostAddedSoFar++;

 hostlist.add(host8); NumOfHostAddedSoFar++;

 hostlist.add(host9); NumOfHostAddedSoFar++;

 hostlist.add(host10); NumOfHostAddedSoFar++;}

 if (NumOfHostToUseNextTime==11) {

 hostlist.add(host1); NumOfHostAddedSoFar++;

 hostlist.add(host2); NumOfHostAddedSoFar++;

 hostlist.add(host3); NumOfHostAddedSoFar++;

 hostlist.add(host4); NumOfHostAddedSoFar++;

 hostlist.add(host5); NumOfHostAddedSoFar++;

 hostlist.add(host6); NumOfHostAddedSoFar++;

 hostlist.add(host7); NumOfHostAddedSoFar++;

 hostlist.add(host8); NumOfHostAddedSoFar++;

 hostlist.add(host9); NumOfHostAddedSoFar++;

 hostlist.add(host10); NumOfHostAddedSoFar++;

 hostlist.add(host11); NumOfHostAddedSoFar++;}

 if (NumOfHostToUseNextTime==12) {

PREDICTIVE WORKLOAD BALANCING

109

 hostlist.add(host1); NumOfHostAddedSoFar++;

 hostlist.add(host2); NumOfHostAddedSoFar++;

 hostlist.add(host3); NumOfHostAddedSoFar++;

 hostlist.add(host4); NumOfHostAddedSoFar++;

 hostlist.add(host5); NumOfHostAddedSoFar++;

 hostlist.add(host6); NumOfHostAddedSoFar++;

 hostlist.add(host7); NumOfHostAddedSoFar++;

 hostlist.add(host8); NumOfHostAddedSoFar++;

 hostlist.add(host9); NumOfHostAddedSoFar++;

 hostlist.add(host10); NumOfHostAddedSoFar++;

 hostlist.add(host11); NumOfHostAddedSoFar++;

 hostlist.add(host12); NumOfHostAddedSoFar++;}

 if (NumOfHostToUseNextTime==20) {

 hostlist.add(host1); NumOfHostAddedSoFar++;

 hostlist.add(host2); NumOfHostAddedSoFar++;

 hostlist.add(host3); NumOfHostAddedSoFar++;

 hostlist.add(host4); NumOfHostAddedSoFar++;

 hostlist.add(host5); NumOfHostAddedSoFar++;

 hostlist.add(host6); NumOfHostAddedSoFar++;

 hostlist.add(host7); NumOfHostAddedSoFar++;

 hostlist.add(host8); NumOfHostAddedSoFar++;

 hostlist.add(host9); NumOfHostAddedSoFar++;

 hostlist.add(host10); NumOfHostAddedSoFar++;

 hostlist.add(host11); NumOfHostAddedSoFar++;

 hostlist.add(host12); NumOfHostAddedSoFar++;

 hostlist.add(host13); NumOfHostAddedSoFar++;

 hostlist.add(host14); NumOfHostAddedSoFar++;

 hostlist.add(host15); NumOfHostAddedSoFar++;

 hostlist.add(host16); NumOfHostAddedSoFar++;

 hostlist.add(host17); NumOfHostAddedSoFar++;

 hostlist.add(host18); NumOfHostAddedSoFar++;

 hostlist.add(host19); NumOfHostAddedSoFar++;

 hostlist.add(host20); NumOfHostAddedSoFar++;}

 // hostlist.add(host5); NumOfHostAddedSoFar++;

 // hostlist.add(host6); NumOfHostAddedSoFar++;

 // hostlist.add(host7); NumOfHostAddedSoFar++;

 // hostlist.add(host8); NumOfHostAddedSoFar++;

 // hostlist.add(host9); NumOfHostAddedSoFar++;

 // hostlist.add(host10); NumOfHostAddedSoFar++;

 // hostlist.add(host11); NumOfHostAddedSoFar++;

 //In this simulation there are only 2 hosts later more hosts can be added

 //These variables show the cost of

 /*

 double timeZone =7.0;

PREDICTIVE WORKLOAD BALANCING

110

 double EachComputercostPerSec = 2.0;

 double costPerMem=0.75;

 double costPerStorage=0.10;

 double costPerBw=0.11;

 */

DatacenterCharacteristics acharacteristic =

 new DatacenterCharacteristics(architecture, os, vmm, hostlist,

timeZone,

 EachComputercostPerSec, costPerMem,

 costPerStorage, costPerBw);

 LinkedList<Storage> SANstroage = new LinkedList<Storage>();

 Datacenter aDatacenter=null;

 try {//exception starts

 aDatacenter = new Datacenter("DataCenter1", acharacteristic,

 new VmAllocationPolicySimple(hostlist), SANstroage, 1);

 } catch (Exception e1) {e1.printStackTrace();}//end of exception

 return aDatacenter;} //end of CreateDataCenter() }

