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Abstract 

By identifying students’ learning styles and working memory capacity (WMC) 

personalized scaffolding techniques can be used, either by teachers or adaptive systems to 

offer students individual recommendations of learning activities. Such personalization 

has been shown to have a positive effect on learning outcomes. Traditionally, learning 

styles and WMC have been identified by dedicated test. However, these tests have certain 

drawbacks (e.g., students have to spend additional time on them, etc.). Therefore, recent 

research aims at automatically identifying learning styles and WMC from students’ 

behavior in learning systems. This thesis presents an investigation into using different 

computational intelligence algorithms to build automatic approaches to more precisely 

identify learning styles and WMC. An evaluation of these approaches using real student 

data shows that most improve precision over existing leading approaches. However the 

best result for learning styles was a hybrid architecture improving precision styles to 

80.4% and an evolving artificial neural network improving precision for WMC to 88.0%. 

By increasing the precision of learning styles and WMC identification, more accurate 

interventions can be made to better support students while learning. 
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Chapter I - Introduction 

Being able to identify a student’s learning styles and working memory capacity (WMC) 

allows a student to learn better and faster through several means. By understanding 

themselves, students are able to capitalize on their own strengths and make better 

decisions to support self-regulated learning. Furthermore, learning systems may be 

personalized to the students by providing them advice, recommendations or material 

adapted to their abilities and preferences. Personalizing content to the learning styles and 

WMC of students has been found to be beneficial to learning in several ways such as 

improving motivation (Cordova & Lepper, 1996; Popescu, 2010), learning outcomes 

(Bajraktarevic, Hall, & Fullick, 2003; Paas, Renkl, & Sweller, 2004), learning transfer 

(Moreno, 2004; Van Merriënboer, Schuurman, De Croock, & Paas, 2002) and reducing 

the time needed to learn (Cooper, 1998; Graf, Chung, Liu, & Kinshuk, 2009).  

As a first step towards personalization, the learning styles and WMC of students 

must be identified. Classically, this is done using dedicated tests such as the Index of 

Learning Styles (ILS) (Felder & Solomon, 1998) and (Operation Span Task) OSPAN 

(Turner & Engle, 1989), which although valid and reliable (Felder & Spurlin, 2005; Klein 

& Fiss, 1999) have at least two notable drawbacks. The main drawback is that they take 

the student away from the learning task by requiring time and effort to complete the test. 

Furthermore, these tests can misidentify due to fatigue (Gohar et al., 2009), stress 

(Beilock & Carr, 2005), misconceptions or lack of effort from the student. To overcome 

these drawbacks, automatic approaches have been proposed building a student model 

from the students’ behaviors when using a learning management system (LMS) (Chang, 

El-Bishouty, Graf, & Kinshuk, 2013; García, Amandi, Schiaffino, & Campo, 2007; Graf, 

Kinshuk, & Liu, 2009).  
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 Such automatic approaches currently peak at a precision from 70.9% to 79.9% for 

learning styles (Graf, Kinshuk et al., 2009) (a range due to learning styles having multiple 

dimensions)  and 80.9% for WMC (Chang, El-Bishouty, Kinshuk, & Graf, 2016), so 

there is room for improvement. This research aims to improve the precision of 

automatically identifying learning styles and WMC. Whereas most research on 

automated approaches identify their own student modeling process, this research 

capitalizes on the work already done by leading automated approaches in two fashions. 

First, computational intelligence (CI) algorithms are used to optimally weight the rules of 

the leading automated approaches; thereby improving precision. Second, since the 

behavior patterns identified by these leading automated approaches are known to provide 

fairly precise results, these same behavior patterns are used as inputs into different CI 

algorithms towards producing a new approach which is more precise. This is done in two 

phases described as follows. 

In the first phase, four approaches are developed and evaluated to improve the 

precision of identification each using a separate CI algorithm: artificial neural network 

(ANN), ant colony system (ACS), genetic algorithm (GA) and particle swarm 

optimization (PSO). For learning styles identification these approaches are called LSID-

ANN, LSID-ACS, LSID-GA and LSID-PSO (with LSID meaning Learning Style 

Identifier) and similarly for WMC the approaches are called WMCID-ANN, WMCID-

ACS, WMCID-GA and WMCID-PSO (with WMCID meaning Working Memory 

Capacity Identifier). For the second phase, the results from the first phase are analyzed 

and a hybrid CI algorithm is selected to overcome any weakness discovered. For learning 

styles, a loosely coupled hybrid architecture was selected and an architecture called 
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“Simplify and Solve” (SISO) was developed to build the approach LSID-SISO. For 

WMC, an evolving artificial network (EANN) is selected, including the recurrent 

topology variant (EANN/R) and used to build WMCID-EANN and WMCID-EANN/R. 

WMCID-SISO is also built to show that the SISO architecture works specifically due to 

observations made on the identification of learning styles (i.e. WMCID-SISO was not 

expected to improve results for WMC). 

The remainder of this thesis is structured as follows. Chapter 2 provides a review 

of literature through several sub-sections on: student modeling, learning styles models, 

WMC, a survey of existing automatic approaches for identifying learning styles and 

WMC and a background on algorithms used in this research. Chapter 3 describes all of 

the LSID and WMCID approaches and how the CI algorithms were adapted to identify 

learning styles and WMC. Chapter 4 discusses the methods used in this thesis, including 

the data, performance metrics and describes each of the LSID and WMCID approaches. 

Chapter 5 provides the results from each of the algorithms for identifying learning styles 

and WMC. The LSID and WMCID approaches are compared to other approaches and 

each other to identify the best approaches. Chapter 6 analyzes the results from the LSID 

and WMCID approaches and the execution of the algorithms. Chapter 7 concludes the 

thesis and discusses the future direction of the research. 
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Chapter II - Review of Literature 

This chapter examines the existing research which forms the underlying basis of 

this study. Student modeling is explored by looking at the information provided by 

student models, how such models are built and how they can be used to support learning. 

This is followed by a discussion on learning styles and WMC. Afterwards a survey of 

existing automatic approaches for identifying learning styles and WMC is presented. This 

chapter concludes with a discussion on the CI algorithms used to build the identification 

approaches in this research. 

2.1 Student Modeling 

 A student model is a representation of a student that provides predictions about 

the characteristics of the student (VanLehn, 1988). Student modeling is the process of 

“creating a student model” (Self, 1994) or “the process of building and updating the 

student model” (Graf, 2007). Student modeling has origins primarily from research on 

intelligent tutoring systems (ITSs) (Kass, 1989; Sison & Shimura, 1998; VanLehn, 1988); 

however, more recently student modeling has been used to implement educational 

adaptive multimedia systems (Brusilovsky & Millán, 2007; Chrysafiadi & Virvou, 2013; 

Encarnação, 1997; Jia, Zhong, Wang, & Yang, 2009) which seek to provide an optimal 

learning environment for students by adapting to their individual characteristics. Student 

models are built by transforming known information about a student into a prediction 

about their characteristics. The heart of this thesis research is about student modeling as 

this research seeks to transform student’s behaviors into a prediction of their learning 

styles or WMC. The remainder of this section examines three questions:  
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1. What information do student models provide? 

2. How are student models constructed? 

3. How may the student model be used to support learning? 

2.1.1 Information Provided by Student Models 

 This sub-section will examine the information typically found in student models 

and some of the ways in which the information is represented. The information provided 

by student models may be broken down broadly into the following five categories: 

“knowledge, interests, goals, background and individual traits” (Brusilovsky & Millán, 

2007). Each of the categories are described as follows from the work of Brusilovsky and 

Millán (2007).  

The knowledge category represents what the student knows about a particular 

subject. To model a student’s knowledge level a number of models have been proposed. 

The simplest is the scalar model, which uses either a quantitative (e.g. 0 to 10) or 

qualitative (e.g., none, poor, average, good, excellent) scale to describe the user’s 

knowledge. Despite the simplicity, such scalar models have been successfully used to 

implement educational adaptive learning systems (Beaumont, 1994; Boyle & 

Encarnacion, 1998; Encarnação, 1997). Although scalar models can describe a level of 

expertise, they do not describe what information within the topic the student knows. To 

address this, VanLehn (VanLehn, 1988) proposed the overlay model  which breaks down 

a topic into fragments where each fragment describes a particular expert level piece of 

knowledge. The simplest overlay model describes whether the student knows any 

particular fragment with a true / false value. The drawback to this type of overlay is it 
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does not clearly convey a level of expertise. Thus, the scalar model and overlay model 

may be combined such that the student’s knowledge is described as a scalar value for 

each fragment, and the overall expertise level for the topic as a weighted average of the 

individual fragments (Brusilovsky & Millán, 2007). 

Knowledge modelling may be further extended to describe the missing or 

insufficient expertise due to misconceptions, or perturbations (Kass, 1989; VanLehn, 

1988). A list of possible perturbations can be created by examining literature or through 

analysis of students’ behaviors to find common errors (VanLehn, 1988). The difficulty is 

in assuring a relatively complete list of possible perturbations, and what to do when a 

student displays a perturbation that is not on the list. Describing all possible perturbations 

from literature is very costly, in terms of effort, and ongoing as it can never be complete 

with certainty. Extracting perturbations from students’ behaviors is currently a manual 

process, no literature could be found to do this in an automatic fashion, and so is also 

costly in terms of effort. Additionally, it is subject to human bias as the human expert 

must decide if a particular error is a perturbation, if so is it an existing perturbation and if 

not how should it be objectively described. For example, if the perturbation is described 

as a logical rule, it must be crafted very carefully so that it will not encompass other 

perturbations or worse desirable behavior. These issues should be regarded as open 

research questions for the knowledge category. Regardless, overall, the student’s 

knowledge state for a given topic may be described as the overlay model plus the set of 

perturbations. 

The interest category pertains to the areas of interest for the student, both 

academic and non-academic. For example, it might describe that a student has an interest 
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in sports and mathematics. The interest category may be described either as concepts or 

by keywords. Interests are generally thought to be an element of student models 

(Brusilovsky & Millán, 2007; Surjono & Maltby, 2003; Walkington, 2013) perhaps 

because they play a prominent role in user models for adaptive hypermedia systems in 

other domains (e.g. sales and marketing). 

The goal category is relatively straightforward as it simply describes what it is 

that the student wishes to learn. Providing adaptive material based on goals has been 

well-researched (Brusilovsky, 1992; McArthur, Stasz, Hotta, Peter, & Burdorf, 1988; 

McCalla, Bunt, & Harms, 1986; Ueno, 2005) although no example in literature could be 

found for adaptiveness based only on students’ goals. Rather in literature the student 

model combined knowledge level with students’ goals. In the literature, the goals in the 

system are defined manually from expert knowledge. 

The background category describes the student’s previous experience. This may 

include items such as profession, previous work or study experience, native and non-

native languages. Background information is difficult to capture by monitoring and so is 

generally explicitly provided by the student and is modelled simply as a stereotype 

(Brusilovsky & Millán, 2007). 

The individual traits category contains those characteristics which describe a 

person as an individual. These characteristics generally pertain to how the person thinks 

and feels such as “personality traits (e.g. introvert/extrovert), cognitive styles 

(holist/serialist), cognitive factors (e.g., working memory capacity) and learning styles” 

(Brusilovsky & Millán, 2007). Although such traits may be captured by specialized 
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psychological tests there are a growing number of automatic approaches to capture these 

characteristics by monitoring the student, such as this research does for learning styles 

and WMC. 

2.1.2 Constructing the Student Model 

 There are two approaches towards gathering data for a student model: 

collaborative and automatic (Brusilovsky, 1996). In the collaborative approach, the 

student provides the information, typically by simply being asked. Sources for such data 

might include the student’s personnel file (gender, age, etc.), academic record (courses 

completed, grades), questionnaires (such as the ILS (Felder & Solomon, 1998)) and 

standalone questions (“Did you find this learning object helpful?” or “Please select a 

learning goal for this session”). The main drawback to ask the student is that for some 

questions the student may answer as in accordance to expectations, internal or external, 

instead of truthfully. For example, a student may be unwilling to say that they found a 

learning object unhelpful for fear of angering their professor. Alternatively, on the ILS 

(Felder & Solomon, 1998) for example, students may answer how they wish, how they 

acted or how they think a good student is supposed to act instead of how they actually 

feel. A proposed method to lessen this effect is the “Do It Yourself” method (Bull, 1998) 

which asks the student to quantify how certain they are about the response. Although this 

is not proof against a student answering in accordance with expectations, it encourages 

students to self-evaluate and reflect on their answers; thereby, improving the quality of 

responses. 
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 With the automatic approach data is gathered from the student without direct 

interaction, although this should not imply that is gathered unethically, i.e. without their 

knowledge or consent. Typically, the data is gathered from students’ interactions with the 

system which includes items such as: content preferences, navigational behavior, 

biometrics, keystrokes, mouse clicks, forum posts or conversation logs (textual or 

verbal). From these sources useful information is inferred about the student for the model 

and much research has been done on how to transform this data. This list is certainly not 

exhaustive; however, some examples include identifying learning styles (García et al., 

2007; Graf, Kinshuk et al., 2009; Latham, Crockett, McLean, & Edmonds, 2012), 

cognitive styles (Frias-Martinez, Chen, & Liu, 2007), WMC (Chang et al., 2013), reading 

skill (Beck & Chang, 2007), or students at-risk of poor performance in a course 

(Jayaprakash, Moody, Lauría, Regan, & Baron, 2014; Yu, Own, & Lin, 2001). 

Automatic approaches used to build student models are either data-driven or 

literature-based (Graf, 2007). Under the data-driven paradigm, student data, for example 

behavior data, is mined to produce the model rules or an AI/CI algorithm (e.g. Bayesian, 

decision tree learning) may be trained on the data to produce the model. The drawback to 

the data-driven paradigm is the requirement for data of both sufficient quantity and 

quality to develop a precise student model. The literature-based approach builds the 

student model by developing rules based on expert knowledge (or literature) (Graf, 

2007). The drawback to this approach is that the rules which can be extracted from 

literature may be either too simple or difficult to extract and encode logically. As 

previously mentioned, this research aims to improve upon existing two leading literature-

based approaches (Chang et al., 2013; Graf, Kinshuk et al., 2009). This is done in three 



AUTOMATIC IDENTIFICATION OF LEARNING STYLES AND WORKING MEMORY CAPACITY 

11 

 

fashions. The first uses behavior data to train an ANN, while the second uses 

optimization algorithms to find optimal weights for the rules produced by the literature-

based approaches selected (Chang et al., 2013; Graf, Kinshuk et al., 2009). The third 

fashion selects the best algorithm from the first two and then uses hybrid CI algorithms to 

address any weaknesses. 

2.1.3 Supporting Learning with Student Models 

The ultimate goal of using a student model is to know something about the 

students which can then be used to allow students to learn faster or better. This is 

generally accomplished in one of three ways. First, the student will be better informed of 

their strengths and weakness and can make better choices for self-regulated learning with 

effective self-regulated learning being a predictor of higher performance (Pintrich & De 

Groot, 1990). Second, teachers are supported by understanding how their students learn 

or where they struggle and thus are more able to provide them with appropriate 

interventions (Delozanne, Grugeon, Previt, & Jacoboni, 2003; Graf, Kinshuk et al., 2009; 

Lin, 2004). Third, for online and blended learning, the learning environment for the 

student may be personalized to allow them to learn faster or better (Graf, 2007; Klašnja-

Milićević, Vesin, Ivanović, & Budimac, 2011; Popescu, 2010).  

Although personalization may be provided in a large variety of ways, three of the 

most common are: “adaptive content selection, adaptive navigation support, and adaptive 

presentation” which are described as follows from Brusilovsky’s work (2012). 

Adaptive content selection is used when the student searches for information. 

Rather than returning the data in a non-adaptive manner (e.g., in alphabetical order or in 
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order of being found) the system sorts the data so that the information which would be 

most helpful or appealing to the individual student appears higher in the list. Various 

studies have examined successful ways to implement adaptive content selection (Brajnik, 

Guida, & Tasso, 1987; Brusilovsky, 1992; Chen & Kuo, 2000). For example, Chen and 

Kuo (2000) use query feedback from the student to dynamically model what the student 

believes a term means, which will change over time as the student gains more knowledge 

and experience. They then use the intended meaning of search terms to find the most 

relevant search items. One example they provide is that for a particular student the search 

term “watermark” may implicitly represent “information hiding”. Adaptive content 

selection aims for three interrelated outcomes: make the system easier to use (by making 

it simpler for the student to find the information they seek), increase system adoption by 

students, and increase student satisfaction (Mulwa, Lawless, Sharp, Arnedillo-Sanchez, & 

Wade, 2010). 

Adaptive navigation support is provided to the student by ordering, hiding or 

recommending links to particular items in accordance with the student’s characteristics 

(Graf, 2007; Mampadi, Chen, Ghinea, & Chen, 2011). For example, Graf et al. (2009) 

investigated the effects of adaptive navigational support on three of the four FSLSM 

dimensions with the V/V dimension excluded. The experiment divided the students into 

three groups with adaptivity provided by altering the placement and/or number of links to 

learning objects (LOs) with each chapter. For the first group (matched), the course was 

adapted to match their learning styles while for the second group (mismatched) the 

course was adapted to not match their learning styles. The third group (standard) received 

a non-adapted version of each chapter. For example, Figure 1 shows that for “adaptive 
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course 1” there are 4 links to examples and they are placed at the top of the list, while for 

“adaptive course 2” there is only 1 link to an example and it is placed nearer the bottom. 

The study found that adaptivity is beneficial and works differently for students with 

different learning styles. When provided with mismatched material, students with active 

or sequential preferences were found to spend more time with the material, thus learning 

inefficiently. They found that reflective, sensing and global students seemed to recognize 

the unsuitability of mismatched material and requested additional material more 

frequently. 

Figure 1. Chapter outlines adapted to student learning styles (Graf, 2007) 

 

Adaptive presentation modifies the contents of LOs to match the characteristics of 

the student. Two common research techniques are hiding, showing or ordering content 

within the LO (Carver, Howard, & Lane, 1999; Melis et al., 2001; Popescu, 2010) and 

providing adaptive scaffolding, which are hints or guidance tailored for the student based 

on the problems they are having or their characteristics (Azevedo, Cromley, Winters, 
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Moos, & Greene, 2005; Ley, Kump, & Gerdenitsch, 2010; Segedy, Biswas, Blackstock, 

& Jenkins, 2013). For example, Popescu (2010) developed the tool WELSA to adapt 

course web pages based on students’ learning styles. The student model for WELSA is 

built from mining a log of the students’ activities. One way WELSA adapts web pages is 

by initially showing or hiding content, for example a student with a visual preference will 

have images shown and text hidden and inversely for a student with a verbal preference. 

Additionally, the student is provided with a recommendation cue to the learning objects 

best suited to their preferences. Students are free to view the hidden content by expanding 

the corresponding LO. Popescu evaluated student motivation and satisfaction when 

provided with matched and mismatched content by use of a survey. It was found that both 

satisfaction and motivation are improved with the matched content. 

2.2 Learning Styles 

This section discusses the Felder-Silverman Learning Styles Model (FSLSM), 

starting with an overview of the learning styles as a whole. Then the FSLSM itself is 

discussed with a look at the psychological questionnaire, the Index of Learning Styles 

(ILS) (Felder & Solomon, 1998), used classically to identify learning styles under this 

model. This is followed by an examination of each of the FSLSM dimensions, including 

proposals on possible curriculum modifications for each learning style dimension. Lastly, 

the validity and reliability of the ILS is discussed. 

There exist a variety of definitions for learning styles, such as “strengths and 

preferences in the ways they take in and process information” (Felder & Soloman, 2000), 

“a description of the attitudes and behaviours which determine an individual’s preferred 

way of learning” (Honey & Mumford, 1992), “characteristic cognitive, affective and 
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psychological behaviors that serve as relatively stable indicators of how learners 

perceive, interact with, and respond to the learning environment” (Keefe, 1979).  One 

common element among these definitions is the idea that each has their own individual 

preference towards how they may best learn. Understanding learning styles unlocks one 

possible explanation for why some students struggle and in turn to then help them learn 

better and faster. Felder & Silverman (1988) states that prior to research into learning 

styles the student would typically be blamed for a failure to learn, and although this might 

be warranted sometimes, in other cases the fault lies with the curriculum not reaching 

some students. They argue that traditional curricula only appeals to particular learning 

styles and students which did not share these learning styles may suffer and not by a lack 

of ability or effort. 

 To describe these preferences, several models have been produced such as those 

by Felder-Silverman (1988), Kolb (1971), Pask (1976) and Honey and Mumford (1992). 

Models, such as the four listed, describe the preferences as labels and/or dimensions, 

sometimes in opposition to each other. For example, Kolb’s model has two opposing 

dimensions, abstract/concrete and active/reflective from which four learning styles are 

defined as labels: converging (abstract, active), diverging (concrete, reflective), 

assimilating (abstract, reflective) and accommodating (concrete, active).  

Being able to understand students’ learning styles allows both teachers and 

students to be supported for the benefit of the student. Teachers are supported by giving 

them an initial point of understanding and so allowing them to make more appropriate 

interventions for a student struggles (Graf, Kinshuk et al., 2009). When a student 

understands themselves this is not only empowering for the student (Felder & Spurlin, 
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2005), but allows them to make better choices for self-regulated learning which can help 

them achieve better performance (Pintrich & De Groot, 1990). Finally, as discussed in the 

section on student modeling there is much research on using adaptive technologies to 

personalize the learning environment towards the students’ learning preferences 

(Bajraktarevic et al., 2003; Brajnik et al., 1987; Brusilovsky, 1992; Chen & Kuo, 2000; 

Graf, 2007; Klašnja-Milićević et al., 2011; Mampadi et al., 2011; Mulwa et al., 2010; 

Popescu, 2010) with benefits such as an improvement in satisfaction (Popescu, 2010), 

learning outcomes (Bajraktarevic et al., 2003) or a decrease in the time needed to learn 

(Graf, Chung et al., 2009). 

Although there is much appeal to learning styles, there does exist some criticism 

in literature. With respect to learning styles in general, Coffield et al. (2004) state that due 

to the intrinsic appeal of learning styles, it has become commercialized with exaggerated 

claims of efficacy. They state that learning styles research encompasses a very large body 

of work with occasionally divergent viewpoints while it is oft treated as “united in its 

thinking” (2004). The effect, in particular from industry, is that advice provided to 

practitioners has been summarized from multiple, often contested, works and results in 

being simplified to the point of not being very useful. They also argue that in some cases 

claims made from researchers without the support of empirical data are used to provide 

advice to practitioners. This research has taken such criticism into account and focused 

the literature review on works which avoid exaggerated claims and mainly focuses on 

those works which have been evaluated using real student data. 

Both studies of Coffield et al. (Coffield et al., 2004) and Pasher et al. (Pashler, 

McDaniel, Rohrer, & Bjork, 2008) criticize the practicality of capitalizing on learning 
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styles in the face-to-face context. In a classroom with many students and so many 

different learning styles represented there is no possibility that a teacher could adapt to 

each learning style. Solving that issue by splitting classrooms by learning styles is also 

logistically impractical in large scales (Coffield et al., 2004). However, proponents for 

learning styles do not generally argue that in the face-to-face context the teacher must 

adapt their teaching style to each student or that the classroom should be separated by 

learning style. Rather, it is argued that since traditional curriculum satisfies only a narrow 

range of learning styles, a curriculum which considers different learning styles should be 

adopted to meet the needs of more students (Felder & Spurlin, 2005). In any case, the 

argument that the effort to provide individual adaptation is too high has decreasing 

validity with research showing that adaptive learning systems are quite capable of 

automatically adapting to any number of students (Brajnik et al., 1987; Brusilovsky, 

1992; Chen & Kuo, 2000; Graf, 2007; Klašnja-Milićević et al., 2011; Popescu, 2010) and 

with the increase in the use and desirability of adaptivity in LMSs (Dahlstrom, Brooks, & 

Bichsel, 2014). 

With respect to the benefits of learning styles, especially with respect to content 

matching, there is some criticism that the effects tend to be small or contradictory 

(Coffield et al., 2004; Pashler et al., 2008). From this, they do not conclude that matching 

content to learning styles is invalid but rather that the research on how to successfully 

match content with learning styles is incomplete and that more research is required. More 

specifically, they suggest that research should examine how learning styles should be 

intermixed with other characteristics to be successful at benefiting students (Coffield et 

al., 2004). Although more research may still be needed, studies examining intermixing 
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characteristics have been done. Two independent studies (Limongelli, Sciarrone, 

Temperini, & Vaste, 2009; Papanikolaou, Grigoriadou, Kornilakis, & Magoulas, 2003), 

evaluated intermixing knowledge level with learning styles and found a positive effect on 

learning outcomes. Also, despite criticism on the benefits of learning styles, Coffield et 

al. (2004) agree that identification of learning styles is useful as a means of self-

awareness for students. 

One of the major challenges with respect to learning styles pertains to how they 

are identified and this challenge is directly addressed by this research. Classically, 

learning styles are identified through the use a psychological questionnaire. For example, 

the Kolb model uses the Learning Styles Inventory (Kolb & Hay, 1999), the Honey and 

Mumford model uses the Learning Styles Questionnaire (Honey & Mumford, 2006) and 

the Felder-Silverman learning styles model (FSLSM) uses the Index of Learning Styles 

(ILS) (Felder & Solomon, 1998). Although the questionnaires for Kolb’s model and the 

FSLSM are considered valid and reliable (Felder & Spurlin, 2005; Willcoxson & Prosser, 

1996; Wilson, 1986) they do have some notable drawbacks. First, it is intrusive to the 

learning task as students must fill in the questionnaire in addition to learning activities. 

Second, as previously discussed, a questionnaire may be influenced by other factors than 

just a student’s learning styles. A student’s perceived importance of the questionnaire can 

lead to a misidentification of their learning styles as they may answer the questions very 

quickly without much thought. Further, student’s answers may be biased by personal 

misconceptions or from perceived expectations. To overcome these drawbacks, automatic 

approaches, such as those presented in this thesis, have been researched to identify 

students’ learning styles from their behavior (Carmona, Castillo, & Millán, 2008; Cha et 
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al., 2006; Dorça, Lima, Fernandes, & Lopes, 2013; García et al., 2007; Graf, Kinshuk et 

al., 2009; Latham et al., 2012; Özpolat & Akar, 2009; Villaverde, Godoy, & Amandi, 

2006). An automatic approach reduces intrusiveness by working in the background as the 

student uses the learning system. Automatic approaches are not influenced by student’s 

perceived importance, preconceptions or expectations with respect to learning styles as 

only their actual behaviors are considered. 

2.2.1 Felder-Silverman Learning Style Model  

The FSLSM (Felder & Silverman, 1988) was proposed in 1988 with the aim of 

providing insight to faculty on how to provide a better learning environment for students 

who were not being reached by existing curricula. Felder and Silverman thought that low 

performance for engineering students was usually blamed on the student, when it might 

be better explained that the standard curricula was not suited to their learning styles. 

Felder and Silverman propose not only a learning styles model, but discuss how to best 

accommodate different learning styles in the classroom (their work predates the rise in 

blended and online learning).  

Originally consisting of five dimensions, the most recent version of the FSLSM 

consists of four dimensions: active/reflective (A/R), sensing/intuitive (S/I), visual/verbal 

(V/V) and sequential/global (S/G). The V/V dimension was originally called 

visual/auditory; however, this was changed as it was unclear where a preference for 

reading should fall. Some thought that it should be in the visual preference as it generally 

requires the use of sight. By changing auditory to verbal, it makes it clearer that the 

opposite preference to visual is linguistics whether read or heard. The fifth dimension in 

the FSLSM was inductive / deductive and was removed even though it does describe a 
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learning preference. Felder states in the author’s preface (Felder & Silverman, 1988) that 

although an inductive curriculum is more effective, most students tend towards a 

deductive preference. He feared that faculty would use the deductive preference as 

justification to continue with the traditional, but less effective, deductive-based curricula. 

For this research, the Felder-Silverman learning styles model (FSLSM) (Felder & 

Silverman, 1988) has been selected for several reasons. To begin, the FSLSM brings 

together different elements from the models by Kolb (1971), Pask (1976) and the Myers-

Briggs personality inventory (Myers-Briggs, 1962). The FSLSM uses four dimensions, 

described in subsequent sub-sections, active / reflective (A/R), sensing / intuitive (S/I), 

visual / verbal (V/V) and sequential / global (S/G) allowing the student’s learning styles 

to be described in great detail. Where other models tend to use labels the FSLSM allows 

each dimension to vary from +11 to -11, in increments of 2. This more accurately 

describes learning styles as a tendency as opposed to an absolute behavior allowing 

students’ learning styles to be described more deeply than with labels. Research has 

found that the FSLSM is well-suited to use as a model for providing personalization 

(Kuljis & Liu, 2005) and is used commonly in literature (Bajraktarevic et al., 2003; Cha 

et al., 2006; García et al., 2007; Graf, 2007; Limongelli et al., 2009; Villaverde et al., 

2006). Lastly, there exists a valid and reliable questionnaire, the Index of Learning Styles 

(ILS) (Felder & Solomon, 1998), for identifying Felder-Silverman learning styles. 

To identify a student’s learning styles under the FSLSM, the Index of Learning 

Styles (ILS) (Felder & Solomon, 1998) is used. It consists of 44 questions each with two 

choices where the responses are associated to both poles of a learning style dimension (a 

sample of question #1 is shown in Figure 2). In the example, the response “a” denotes an 
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active preference and “b” indicates a reflective preference. The relationships between the 

questions and preferences are shown in Table 1. A response for the active, sensing, visual 

and sequential preferences are assigned a value of +1 and -1 is assigned to the other 

response. As each dimension has 11 questions assigned to it, each dimension in the 

FSLSM is described as a scale from -11 to +11 in increments of 2 (switching responses 

creates a change of 2 points as it shifts from +1 to -1 or vice versa). Thus, the higher 

values indicate a strong active, sensing, visual or sequential preference and inversely 

lower values a reflective, intuitive, verbal or global preference. The relative value should 

not be interpreted to imply that one preference is better than another, i.e. an active 

preference (+5 to +11) is not better than a reflective preference (-5 to -11) or a balanced 

preference (-3 to +3). Since a scale is used the FSLSM describes preferences as a 

tendency instead of an absolute behavior, and is a differentiating feature of the FSLSM 

from other models which tend to use labels only. 

Figure 2. Sample question from the ILS (Felder & Solomon, 1998) 

 

Table 1. Relationship between learning style dimension and Index of Learning Style questions 

Dimension Question # 
Active/Reflective 1,5,9,13,17,21,25,29,33,37,41 
Sensing/Intuitive 2,6,10,14,18,22,26,30,34,38,42 
Visual/Verbal 3,7,11,15,19,23,27,31,35,39,43 
Sequential/Global 4,8,12,16,20,24,28,32,36,40,44 

 

The remainder of this section will focus on the latest version of the FSLSM 

(Felder & Soloman, 2000) starting with describing the four dimensions and their origins 
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from literature. Also, discussed are Felder & Silverman’s (1988) recommendations for 

learning material and activities. The recommendations have a bias towards science 

education as the FSLSM was originally developed for engineering faculty in a classroom 

setting. However, since then the FSLSM has been shown to be very appropriate for use in 

eLearning (Carver et al., 1999; Kuljis & Liu, 2005). Lastly, the validity and reliability of 

the ILS (Felder & Solomon, 1998) will also be discussed in the final sub-section. 

2.2.1.1 Active / Reflective Dimension 

The A/R dimension is derived mainly from Kolb’s learning styles model (1971) 

which consists of two dimensions: processing and perception. The processing dimension 

is described by two labels, active experimentation (doing) and reflective observation 

(watching). The active / reflective dimension is also loosely inspired by the extrovert / 

introvert attitude types from Jung’s personality types (1971), later used in the Myers-

Briggs Type Indicator (MBTI) (1962), which describe a person as focussed on the 

external world or internal thought respectively. 

Both the Kolb learning styles model and the FSLSM state that the A/R dimension 

describes how a student converts perceived information into knowledge. Thus, for 

students with the active preference, this means doing something with the information, 

while reflective students prefer the opportunity to consider the information internally. In 

context of curriculum, Felder & Silverman (1988) emphasize that neither of these 

students prefer to be passive, and so lecturing alone is not effective for either preference. 

For active students, discussions and experimentation are good ways to help them learn 

material. For reflective learners within the classroom discussions and brainstorming 
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sessions may also be effective; however, they should be done in smaller groups since 

reflective learners tend to be more introverted and might not participate in discussions 

involving a large classroom. With respect to lecturing or content in a learning system, as 

active students prefer to experiment, such students prefer material which presents 

practical means to solve problems (practical problem solving is also related to the sensing 

learning style described below) to support their experimentation (Felder & Silverman, 

1988). While reflective students will prefer more theoretical material since this promotes 

inner thought and understanding. 

2.2.1.2 Sensing / Intuitive Dimension 

The S/I dimension is derived from Jung’s personality types (1971) which posited 

that people could be categorized by two functions: perceiving and judging. The 

perceiving function is, in turn, sub-divided into two categories, sensation and intuition. 

The perceiving function is described as relating to how information is gathered. Thus, 

with the S/I dimension, as with Jung’s personality types, the sensing preference means 

that such students gather information by the use of their senses, i.e. interacting with the 

real world. Students with an intuition preference gather information indirectly, through 

the use of speculation or imagination. 

Sensing students prefer facts, experimentation and are patient with details. 

Intuitive students prefer principles, theory and become bored with details or repetition. In 

general, sensing students may process verbal material slower than intuitive students 

possibly because sensing students are less comfortable with symbols, which includes 
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words. Intuitive students tend to work more quickly; however, this tends to make them 

careless as they may not pay attention to details.  

In terms of curricula, learning material should be split so that there is a balance of 

facts and practical problem solving versus theory and principles. For scientific courses, 

when teaching a theory providing examples of predictions made by theory is helpful for 

sensing students. This can be followed by a description of how the theory is developed, 

which will be helpful for intuitive students. For learning activities, sensing students will 

prefer to drill exercises and conduct experiments, while intuitive students prefer 

opportunities to use logic to develop their own theory. 

2.2.1.3 Visual / Verbal Dimension 

The V/V dimension describes how students prefer to receive information. Barbe 

et al. (1979) developed the VAK model which describes how people receive information 

using three learning modalities: visual, auditory and kinesthetic. The visual modality 

relates to seeing material, the auditory modality with hearing information (and includes 

reading) and the kinesthetic modality with feeling or tasting material. The kinesthetic 

modality is not very applicable to higher education where most activities involving 

lectures (N.B. it would also be impractical for online learning) and so was not included in 

the FSLSM. The VAK model would later be expanded to the VARK model which 

included a reading/writing modality (Fleming, 1995) in order to differentiate the spoken 

word from the written word. As previously discussed, for the FSLSM the auditory 

preference was renamed verbal as it included a preference for reading from the outset. 



AUTOMATIC IDENTIFICATION OF LEARNING STYLES AND WORKING MEMORY CAPACITY 

25 

 

Most students exhibit a preference for the visual modality (Barbe & Milone Jr, 

1981; Felder & Spurlin, 2005); however, most classrooms are a verbal experience, since 

they rely heavily on lecturing. The recommendation by Felder & Silverman is 

straightforward, that to appeal to visual students graphs, charts, diagrams and flow charts 

should be presented alongside of the lecture (or as learning material in a learning system). 

Additionally, live demonstrations (or video) of processes are an effective means to reach 

visual students. Since most learning material is already either auditory (lectures) or 

involves reading nothing extra is needed for verbal students. Lastly, learning is reinforced 

when all modalities (including kinesthetic) are used in concert with each other regardless 

of the student’s visual or verbal preference (Barbe et al., 1979; Dunn, DeBello, Brennan, 

Krimsky, & Murrain, 1981). Thus, verbal students who are already well serviced by the 

existing curricula, lectures and reading material, will benefit from visual material and 

kinesthetic activities as well. 

2.2.1.4 Sequential / Global Dimension 

 Conversation Theory (Pask, 1976) proposes that learning between cognitive 

systems (much of Pask’s work was in cybernetics and so was not exclusive to human 

interaction) occurs by conversation about the material. Pask proposed that to make 

learning easier material should be organized appropriately; however, that there exists two 

organization strategies: serialist and holist. The serialist strategy is to organize material 

linearly, while the holist strategy organizes material as a conceptual framework (a non-

linear series of topics within the subject matter). The S/G dimension describes the 

preference a student has for how information is organized. The sequential student prefers 
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the serialist organization strategy, while the global student prefers the holist organization 

strategy (Hammond-Kaarremaa, 1994; Thomas & Harri-Augstein, 1977). 

 The most common organization of material, especially in the face-to-face 

classroom, is to provide material in a linear fashion progressing from the most basic 

material to the most complex. This organization strategy, a serialist one, works very well 

for sequential students. As global students prefer a framework-style organization, context 

is useful to help these students learn. Thus, global students may be reached by providing 

an overview or goal at the start of lecture or material to provide the needed context. 

Global students prefer to find their own way to solve problems; therefore, this should be 

encouraged. 

2.2.1.5 Validity and Reliability of the Index of Learning Styles 

 There are several types of validity (e.g., criterion, content, concurrent, construct, 

predictive, etc.); however, the analysis of ILS in literature (Cook & Smith, 2006; Felder 

& Spurlin, 2005; Genovese, 2004; Litzinger, Lee, & Wise, 2005) focuses on construct 

validity (Cronbach & Meehl, 1955) which is a qualitative description on how well the 

instrument truly measures the intended phenomenon. For example, if a written instrument 

intended to measure a particular trait uses complex words or phrases, it might be 

measuring reading comprehension instead of the desired trait and would have low 

construct validity. Construct validity is evaluated through the analysis of evidence. 

 The ILS is argued to be valid if it identifies consistencies and differences in 

learning styles based on what is known about learning styles (Cook & Smith, 2006; 

Litzinger et al., 2005).  Both studies point out that students are expected to have some 
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consistency in learning styles within a faculty and differences in learning styles between 

different faculties. Litzinger et al (2005) add that there are no expected gender differences 

in the learning styles identified for students. Several studies (Cook & Smith, 2006; Felder 

& Spurlin, 2005; Genovese, 2004; Litzinger et al., 2005; Lopes, 2002) confirm that the 

ILS identifies learning styles with consistency within faculties and identifies differences 

between faculties as expected. For example, it is seen that engineering students across 

several universities tend to have consistent learning styles (Felder & Spurlin, 2005). 

Litzinger et al. (2005) examined students from the education, engineering and liberal arts 

faculty in two colleges for any differences. They found that there were significant 

differences between engineering, liberal arts and education students while each faculty 

showed some consistency.  Lopes (2002) similarly examined students from the sciences 

and humanities and found some differences in learning styles between faculties, while 

being similar internal to the faculty. Litzinger et al (2005) identified the learning styles of 

male and female engineering students and found no significant difference in learning 

styles as expected. All of this evidence suggests that the ILS is performing as expected 

and so is a valid instrument for identifying learning styles. 

There are also several different types of reliability, with two being evaluated in 

literature for the ILS: test-retest reliability (Cook & Smith, 2006; Felder & Spurlin, 2005; 

Livesay, Dee, Nauman, & Hites Jr, 2002; Seery, Gaughran, & Waldmann, 2003) and 

internal consistency reliability (Bacon, 2004; Cook & Smith, 2006; Genovese, 2004; 

Zywno, 2003).  

Test-retest reliability measures whether an assessment instrument will repeatedly 

make the same measurement on a series of tests. For example, a scale which measures a 1 
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kg weight consistently as 1 kg would be said to be very reliable; whereas, if it measures 

the weight as 1 kg, 0.5 kg and 1.5 kg on three tests it would be very unreliable. For 

psychometric instruments, test-retest is typically done by testing a participant and then 

retesting them 1 or more times after a significant period of time. The period of time needs 

to be long enough so that the participant will not answer similarly from memory, but not 

so long that the trait to be evaluated may have changed from other factors. To be 

considered reliable, the measurements should have significant correlation. Internal 

consistency reliability applies only to assessment instruments with multiple test items 

(such as the ILS) and measures the degree to which the different test items measure the 

same trait.  

Table 2. Test-retest correlation coefficients for Index of Learning Styles 

Study Time Frame Test-Retest Correlation Coefficient N 
A/R S/I V/V S/G 

Seery et al. (2003) 4 weeks 0.804* 0.787* 0.870* 0.725* 46 
Cook & Smith 
(2006) 

3 months 0.809** 0.856** 0.703** 0.651** 89 

Livesay et al. 
(2002) 

7 months 0.73*** 0.78*** 0.68*** 0.60*** 24 

Zywno (2003) 8 months 0.683* 0.678* 0.511* 0.505* 123 
* p<0.01, ** p<0.0001, *** p<0.05 

 

The ILS has been evaluated for test-retest reliability with engineering students at 

three different time frames, 4 weeks (Seery et al., 2003) , 7 months (Livesay et al., 2002) 

and 8 months (Zywno, 2003), and with medical students with a 3 month gap between 

tests (Cook & Smith, 2006). The results from these four trials are shown in Table 2. 

Felder and Spurlin (2005) state that the four week interval is the ideal time period and 

that the high correlations in addition to the statistical significance of the two other results 
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suggest that the ILS is “satisfactory” with respect to test-retest consistency. Felder and 

Spurlin did not consider the study by Cook and Smith as it did not exist at the time; 

however, the results from Cook and Smith only strengthen their conclusion that the ILS is 

satisfactory with respect to test-retest reliability. Furthermore, Cook & Smith show that 

test-retest reliability for the ILS may extend beyond the engineering faculty. 

Internal consistency is evaluated using Cronbach’s alpha (α) (Cronbach, 1951) 

which examines the relatedness of each possible pair of test items. Cronbach’s alpha is 

based on a method of assessing consistency used prior to Cronbach’s alpha called split-

half. When using the split-half method, the instrument is split in half and evaluated as if it 

were two separate instruments, thus providing two measurements. If the measurements 

from each half of the instrument are similar then the instrument is considered consistent. 

The drawback to the split-half method is that it is dependent on what items are selected 

for each half and selecting different items will result in a different measurement of 

consistency (Brownell, 1933). Cronbach, in defining alpha, proposed to correct this 

problem by considering all the possible split-halves. Cronbach’s alpha, shown in Formula 

1 (Cronbach, 1951), is a function of the number of test items (n), the variance of the 

measurement scores (Vt) and the variance for each item (Vi).  

� =  �� − 1 �1 − ∑ 	
�
�	� � 
(1) 

 

 For instruments which assess an attitude (or preference) an α > 0.5 is considered 

acceptable (Tuckman & Harper, 2012). Several researchers have calculated Cronbach’s 

alpha for the ILS in the context of different faculties with the results shown in Table 3.  
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Table 3. Cronbach’s Alpha values by learning style dimension for different faculty 

Study Context N A/R S/I V/V S/G 
Bacon (2004) Business 161 0.60 0.70 0.66 0.47 
Cook & Smith (2006) Medical 89 0.62 0.77 0.72 0.65 
Genovese (2004) Education, Psychology 131 0.63 0.72 0.71 0.53 
Litzinger et al. (2005) Engineering, Liberal Arts, 

Education 
572 0.60 0.77 0.74 0.56 

Livesay et al. (2002) Engineering 242 0.56 0.72 0.60 0.54 
Spurlin (Spurlin, 2002) Unspecified 584 0.62 0.76 0.69 0.55 
Van Zwanenberg et al. 
(2000)  

Engineering, Business 284 0.51 0.65 0.56 0.41 

Zywno (2003) Engineering 557 0.60 0.70 0.63 0.53 
 

Based on their individual results, the literature agrees that the A/R, S/I and V/V 

dimensions are internally consistent. One issue raised repeatedly in literature is a high 

degree of correlation (low orthogonality) between the S/I and S/G dimensions (Cook & 

Smith, 2006; Genovese, 2004; Zywno, 2003), suggesting that they are not unique traits. 

In particular the S/G dimension is questioned as the results are very close to the 

acceptable limit, and in the case of the studies by Bacon (2004) and Van Zawnenberg et 

al. (2000) slightly below. Felder & Spurlin (2005) respond to this criticism by pointing 

out that this is only an issue from a psychometric perspective. The purpose of the FSLSM 

(and by extension the ILS) is to measure these traits with the aim towards providing 

guidance to teachers and students. Thus, to account for different preferences in the S/I 

and S/G dimensions, different approaches are required with respect to course design, 

teacher interventions and decisions made by students about their own learning. 

2.3 Working Memory Capacity 

This section discusses WMC beginning with an overview of its origins. This is 

followed by a look at cognitive load theory (CLT) and its implications on learning and 

curriculum development. Afterwards, the techniques for identifying WMC are examined, 
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with some focus on the OSPAN test as a computerized form of this test, WebOSPAN 

(Lin, 2007), is used by this research to identify students’ actual WMC. Lastly, this section 

concludes with an examination of the validity and reliability of the OSPAN test and 

computerized versions of OSPAN. 

The origins of WMC come from the investigations of Miller (1956) into the span 

of absolute judgement (the amount of information that can be received simultaneously) 

and the span of immediate memory (the number of items that may be retained at a time, 

i.e. WMC). The limit for the span of absolute judgment was found by examining the data 

from other studies on the number of unique items that could be identified by a person at a 

time, such as pitches (Pollack, 1953), tonal intensities (loudness) (Garner, 1953) and 

tastes (Beebe-Center, Rogers, & O'connell, 1955). Miller found that by determining the 

number of bits required to describe the maximums for each of these different tests, that 

the span of absolute judgment was limited by the total amount of information received. 

This limit of span of immediate memory was investigated by examining how many 

binary digits, decimal digits, letters, letter and digits and mono-syllable words could be 

retained in memory at a time by a person (Hayes, 1952). The limit for immediate memory 

was found to be more dependent on the number of items, than the size (in bits) of each 

item and the limit was found to be between 7±2 items (Miller, 1956). 

Knowing that WMC is limited, Sweller (1988) developed cognitive load theory 

(CLT) to explore the effects of cognitive load on learning. At the time, Sweller (1988) 

states that the only means of measuring problem difficulty was to present the problem to 

the student and measure the outcome. This means that if a problem is found to be 

inappropriate for a specific student, this discovery is made too late for that student. 
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Sweller’s motivation was to find a mechanism for measuring problem difficulty, and in 

turn its effectiveness as a learning tool, for students without needing to present the 

problem to the student. Similar to Felder and Silverman argument that traditional 

curriculum may not be effective for all students, Sweller (1988) argues that curriculum 

which has a high cognitive load, for example problem solving in mathematics, may not 

be an effective learning tool for all students. 

An extension to WMC was presented in the work by Mayer and Moreno (1998) in 

which they present evidence that WMC exists as two separate channels, visual and 

auditory. Furthermore, they argue that cognitive overloading can occur on either channel 

independently. For complex tasks, such as learning, when WMC is overloaded additional 

mental effort is required (Kane & Engle, 2000) and causes an increased number of errors, 

time or a reduction in transfer of learning (Cooper, 1998; Kirschner, 2002; Van 

Merriënboer et al., 2002). The literature review found that most research has been 

focused on avoiding cognitive overloading; however, underloading also reduces student 

performance as the mind is under stimulated (Paas et al., 2004; Teigen, 1994). Thus, to 

obtain peak performance requires putting the student under the optimal cognitive load, 

neither too low nor too high. The early literature on CLT looks at considering curriculum 

broadly; however, Mayer and Moreno (2003) argue that in part curriculum needs to be 

individualized to each student. What follows is a closer examination at some of the 

effects poorly designed curriculum can have on WMC and how to avoid such effects. 

One study at the University of New South Wales examined using several 

techniques for avoiding effects which may increase cognitive load: goal free effect, 

worked example and problem completion effect, split attention effect, redundancy effect 
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and modality effect (Cooper, 1998). Cooper recommends the following guidelines when 

designing learning material. First, problems should be goal free which is a design 

paradigm where students are not told to solve a specific problem but rather to “find what 

they can” (Cooper, 1998). The goal free problem design forces students to examine the 

problem data and work incrementally forward and has been found to reduce cognitive 

load (Ayres, 1993). Second, Cooper encourages more use of worked examples where 

students are shown how to solve a problem in a step-wise fashion. This reduces cognitive 

load as only small amounts of information are required to be processed at a time, the 

problem state and the transition rule being taught for the step (Paas, 1992). Third, LOs 

which require both visual and verbal elements should be integrated together so as to not 

have student split their attention between them (Chandler & Sweller, 1992). Fourth, when 

both visual and verbal content is integrated caution should be taken not to have it 

repeated simultaneously as this needlessly increased the amount of information to be 

processed. Figure 3 shows an example of redundant information. Additionally the 

pictured graph on the left is a better choice of content, if it were alone, as it integrates 

both the visual and verbal elements. As working memory exists as two separate dedicated 

channels, visual and verbal (Baddeley, 1992; Mayer & Moreno, 1998) and the load on 

each channel is independent, the fifth guideline is to have both visual and verbal elements 

in LOs when possible. This will allow for an effective increase in usable WMC as the 

student will use both channels. 
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Figure 3. Example of redundant information and visual / verbal integration (Cooper, 1998) 

 

Another study (Mayer & Moreno, 2003) makes similar recommendations as 

Cooper (1998); however, they have three additional recommendations. First, they suggest 

a segmentation effect where material is both divided into small segments and the student 

is allowed to control the movement between segments. Their experiment consisted of 

dividing content into 16 segments and presenting it to sets of students. The control group 

was shown the material in a continuous sequence while for the experimental group the 

sequence was paused after each segment until the student hit a “continue” button. They 

found that the experimental group had a higher amount of learning transfer over the 

control group. They suggest that prior to the main educational content, pre-training on 

important terms will aid in reducing cognitive load (pre-training effect). Furthermore, 

they suggest that extraneous material be removed from LOs as this simply increases the 

cognitive load to little benefit (coherence effect). 

As a first step towards optimizing cognitive load, WMC for a student must first be 

identified. Classically, identifying WMC has been done with dedicated tests using 

concurrent processing tasks where the participant must perform a memorization task in 

addition to some other task that varies from test to test. One early such test is the reading 
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span task (Daneman & Carpenter, 1980) where the participant reads a series of sentences 

and must memorize the end words of each sentence. After reading the series of sentences, 

the student must recall and state the end words. Turner and Engle (1989) developed the 

operation span task (OSPAN) task while investigating the possibility that the reading 

span task was measuring reading comprehension rather than WMC by evaluating the 

independence of several different span tasks: sentence-word span (reading span), 

sentence-digit, operation-word (OSPAN), operation-digit, simple word and simple digit. 

Sentence-word and sentence digit require the participant to read a sentence and memorize 

the end word or a digit placed at the end of the sentence respectively. Operation-word and 

operation digit replace reading a sentence with solving the truth value of a mathematical 

expression (e.g. “8 ÷ (2 + 2) = 4?”). Simple word and simple digit require the participant 

to simply memorize a series of words or digits, i.e. there is no concurrent processing for 

these tasks while the first four all contain concurrent processing. Of the six tasks, the 

measured WMC for the sentence-word span task, sentence-digit and operation-word were 

found to correlate well (r > 0.5, p < 0.0001) showing that WMC measurement was task 

independent and that the sentence-word span does not simply measure reading 

comprehension although higher WMC does predict better reading comprehension 

(Daneman & Merikle, 1996). Literature shows that both the reading span (DeCaro, 

Peelle, Grossman, & Wingfield, 2016; McVay & Kane, 2012) and OSPAN tasks (Chang 

et al., 2013; Lin, 2007) remain in common use in research; however, the remainder of this 

section will focus on the validity and reliability of OSPAN as a computerized version is 

used by this research to measure students’ actual WMC. 

2.3.1 Validity and Reliability of OSPAN 
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 Much research has been done on the validity and reliability of OSPAN. Literature 

shows that the classical OSPAN is valid and reliable (Conway, Cowan, Bunting, 

Therriault, & Minkoff, 2002; Engle, Tuholski, Laughlin, & Conway, 1999; Klein & Fiss, 

1999). Furthermore, the automatic computerized version used by this research, 

WebOSPAN, has also been found to be reliable (Lin, 2007). 

The validity of OSPAN is based on latent variable analysis comparing the 

measurements of several cognitive traits, such as general intelligence, short term memory 

and processing speed, to the measurement of WMC (Conway et al., 2002; Engle et al., 

1999). Since participants who are measured as having high WMC by OSPAN are also 

identified as having higher fluid intelligence, short term memory and processing speed 

(as expected) this suggests good construct validity for OSPAN.  

With respect to reliability, Klein and Fiss (1999) used a test-retest methodology to 

examine the reliability and stability of OSPAN by conducting an initial test, a retest after 

3 weeks and a second retest after an additional 6 or 7 weeks. The lowest test-retest 

correlation was 0.66 between the initial test and the 2nd retest. Using Heise’s (Heise, 

1969) formula for reliability (which takes into account measurement errors) they found 

that OSPAN had a true reliability of 0.883. From this, they conclude that OSPAN is “an 

extremely reliable measure” (Klein & Fiss, 1999). They examined the internal 

consistency using Cronbach’s Alpha (Cronbach, 1951) and got results of 0.776, 0.810 

and 0.829 for the initial test, retest and 2nd retest respectively, which is considered 

acceptable to good (Kline, 2013; Tuckman & Harper, 2012).  

  Lin (2007) examined the validity of WebOSPAN by calculating the Pearson 

Correlation Coefficient and 2-tailed significance between two metrics (OpTotal and 
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SetSize) measured by WebOSPAN (other metrics are gathered by Lin and examined but 

they do not relate to the discussion on validity). OpTotal is the total number of words 

recalled correctly across all series where all of the words in a series must be recalled 

correctly and in the proper order (i.e. this is the measurement of WMC as defined by the 

operation span task (Turner & Engle, 1989)). SetSize is the largest word series size 

correctly identified by the participant. The argument is that for a reliable instrument 

participants should be consistently right or wrong based on the maximum series size they 

can successfully perform, i.e. these two metrics should have high correlation. This same 

argument is used by both Engle et al. (1999) for OSPAN and by De Neys (2002) for GO-

SPAN (another computerized OSPAN task). The correlation coefficient is found to be 

0.811 with a 2-tailed significance of 0.01, thus showing that WebOSPAN is reliable. 

2.4 Survey of Other Automatic Approaches for Identifying Learning Styles 

This section examines several other automatic approaches for identifying learning 

styles. First, approaches which use a literature-based method are examined, followed by 

approaches which use a data-driven method with AI/CI algorithm(s). A summary of the 

approaches examined are shown in Table 4. 

 

Latham et al. (2012) propose a literature-based approach used with a natural 

language conversational agent called Oscar. In their approach, logical rules are derived 

from literature, for example if a student answers a question correctly after being shown 

an image they may have a visual preference. The students’ behaviors are extracted from 

the dialogs between the agent and student and the rule set is applied to the data to identify 

the learning styles. The experimental data showed a precision value of 86% for A/R 
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dimension, 75% for S/I, 83% for V/V and 72% for S/G; however, a significant drawback 

of this approach is that it is tied to the Oscar system and cannot be generalized.  

Table 4. Summary of automatic approaches to identify learning styles 

Study Algorithm Number of participants 
in the evaluation 

Limitations 

Latham et al. 
(2012) 

Rules 75-95 Non-generic 

Graf et al. 
(2009) 

Rules 75 - 

Garcia et al. 
(2007) 

Bayesian network 77 
Cannot identify V/V 
dimension 

Carmona et al. 
(2008) 

Bayesian network No evaluation 
Students must rate 
LOs 

Özpolat and 
Akar (2009) 

Naïve Bayes 
decision tree 

40 - 

Cha et al. (2006) 
Decision tree 
Hidden Markov 
model 

23-49 
Identifies subset of 
students only 

Dorça et al. 
(2013) 

Reinforcement 
learning 

Simulated data - 

Villaverde et al. 
(2006) 

Artificial neural 
network 

Simulated data 
Cannot identify V/V 
dimension  

 

Another literature-based approach called DeLeS (Graf, Kinshuk et al., 2009), 

derived relationships between behavior patterns and learning styles. They used this 

information to construct rules to produce hint values. The learning style is calculated by 

using an unweighted average of the hint values. They report a precision of 79% for A/R, 

77% for S/I, 77% for V/V and 73% for S/G. Unlike Oscar, the behavior patterns used by 

DeLeS are general to any LMS. 

Garcia et al. (2007) used a Bayesian network (BN) in order to detect students' 

learning styles. First, they identified the behaviors that may be relevant to identifying 

learning styles, such as whether the student participates in forums or revises exams. The 

initial probabilities for the BN are based on expert knowledge. They then used the ILS 
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(Felder & Solomon, 1998) to identify the learning styles for 50 real students. These 

students then use the learning environment and their behaviors are used to further train 

the BN to identify their learning styles (based on knowing their actual learning styles). 

The trained BN was then evaluated using 27 real students. With these students the belief 

state of the BN is updated as they interact with the learning system, with the BN 

providing a probability that the student has a particular preference. This probability is 

mapped to the FSLSM scale to identify the strength of the student’s preference. The 

example they provide is if a student has a 75% probability of a preference for a learning 

style they consider this a value of 7 on the FSLSM scale (which is 1,3,5,7,9,11) for that 

dimension. In evaluating their algorithm, they introduce a similarity metric (SIM) in 

which the FSLSM is divided into three regions, neutral (or balanced) and two poles. The 

SIM returns 0, 0.5 or 1 as a function of the region of the student’s actual and identified 

learning style (1 if they are the same region, 0.5 if they are adjacent, 0 if they are 

opposed). Using the SIM metric, they obtained a precision of 58% for A/R, 77% for S/I 

and 63% for S/G (the V/V dimension was not considered).  

Carmona et al. (2008) also used a dynamic Bayesian network to identify learning 

styles. To LOs in the system they associated five learning style relevant attributes: format 

(image, text, etc.), resource type (exercise, example, etc.), interactivity level (very low to 

very high), interactivity type (active, expositive or mixed) and semantic density (very low 

to very high). Each of the attributes is mapped to one or more FSLSM dimension(s). 

Every time a student selected a LOs, they would be asked to rate the usefulness of the 

material from 1 to 4. After rating the LO, the rating is used as evidence to adjust the 

belief state of the network. The drawback to this approach, when compared to other 
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automatic approaches, is that it requires input from the student instead of working solely 

on their behaviors. This is potentially intrusive for the student and there is no guarantee 

that the student will rate solely based on how it appealed to their learning styles. They did 

not evaluate their approach. 

Özpolat and Akar (2009) examined the LOs selected by students as being most 

useful in response to a keyword search. Using a naïve Bayes decision tree (NBTree) the 

keyword attributes of the LOs are converted into learning styles identification for the 

student. For example, if the student selects LOs with the keyword attributes such as 

graphs, charts or jpg then the student is more likely to be classified as having a visual 

preference. They report a precision of 70.0% for A/R, 73.3% for S/I, 73.3% for S/G and 

53.3% for V/V. 

Cha et al. (Cha et al., 2006) evaluate two approaches in their study, decision trees 

and hidden Markov models (HMM). For building a decision tree they gathered numerous 

behaviors (they state 58 but they are not fully listed) such as the number of clicks on 

particular icons, time spent on some activities, quiz grades and reading or posting to 

forums. They then identify the learning styles for 70 real students using the ILS (Felder & 

Solomon, 1998) and then eliminate any student with a preference between 1-3 on the 

FSLSM scale, i.e. a balanced preference. A subset of the data is used to train the decision 

tree based on knowing the actual learning styles. For the HMM-based approach is trained 

to recognize the sequence of buttons clicks from students with known learning styles. The 

HMM is used to identify a future student’s learning styles from their click sequence. For 

the decision tree, they found a precision of 66.7% for A/R, 77.8% for S/I, 100% for V/V 

and 71.4% for S/Q. The HMM approach is reported as having precision values of 66.7% 
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for A/R, 77.8% for S/I, 85.7% for V/V and 85.7% for S/Q. Although some of the results 

are quite high, as mentioned above they excluded all students with a balanced preference. 

Thus, their approach has a major limitation in that it can only identify students with a 

strong preference one way or another, i.e. it cannot identify students with a balanced 

preference. 

Dorça et al. (2013) presented an approach for identifying learning styles using 

reinforcement learning (Q-learning). With this approach, they assume an a priori 

probability of a student having a learning style in accordance with the meta-study by 

Felder & Spurlin (Felder & Spurlin, 2005). They associate LOs in the system to particular 

learning styles based on expert knowledge. The student is then presented LOs to achieve 

a learning goal followed by an assessment on how well they learned the material. The 

probability that the student has particular learning styles is then reinforced based on the 

performance assessment and how well the learning styles of the LO match the students’ 

current predicted learning styles. They considered three different strategies towards 

reinforcement, either reinforcing for high performance only, low performance only 

(inverse reinforcement) or both. So for example, with a reinforcement with high 

performance strategy if the student performs well on an assessment it is more likely they 

have the learning styles associated with the LO. They evaluated their approach using 

simulated data. 

Villaverde et al. (2006) evaluated training a feed forward ANN (a 3-layer 

perceptron) with backpropagation under a supervised learning model. They used 10 

behavior patterns as inputs such as what kind of reading material did the student prefer, 

does the student revise exams prior to submission and does the student ignore, post or 
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read forums? They translate the behavior patterns from a qualitative value to real values 

from -5 to +5 (e.g., the students make few exam revisions is translated to -5). Their 

approach provides an integer output from +1 to -1.  They translate value of -1 to active, 

intuitive or sequential and +1 as reflective, sensing or global (the V/V dimension is not 

considered). They report an average precision of 69.3% across the three dimensions they 

considered using simulated data (they do not report individual precision values for each 

dimension). The approaches in this research which use ANNs (LSID-ANN and LSID-

SISO) are similar to this approach in that they use a 3-layer perceptron with behavior 

patterns as inputs; however, there is a notable difference. First, rather than using a single 

ANN to identify three learning style dimensions simultaneously, LSID uses a single 

algorithm for each learning style dimension. By doing so, LSID-ANN and LSID-SISO 

are able to find a globally optimal solution for each learning style dimension as opposed 

to the solution that has the best average across the learning styles. Also, building a 

separate approach for each learning style dimensions allows the behavior inputs to be 

only those expected to be relevant for that learning style dimension, as opposed to using 

all of the behavior patterns for all of the learning style dimensions. 

2.5 Survey of Other Automatic Approaches for Identifying Working Memory Capacity  

The only automatic approach found to identify WMC is “Detecting Working 

Memory Capacity” (DeWMC) (Chang et al., 2013). DeWMC works by creating rules to 

generate hint values, which are then averaged to give the student’s WMC. The rules are 

based on the relationships between navigational patterns when using an LMS and WMC 

and the relationship between learning styles and WMC. DeWMC was evaluated using 

behavior data, learning styles as identified by the ILS (Felder & Solomon, 1998) and 
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compared it to WMC as identified by WebOSPAN (Lin, 2007) and found to have a 

precision of 80.9%. 

2.6 Background on CI Algorithms 

 This section will examine each of the CI algorithms used in this research. The 

underlying basis of each algorithm and how they are used to solve problems will be 

discussed. Additionally, any algorithm specific control parameters will be discussed. 

2.6.1 Artificial Neural Networks 

ANNs has been described as a “universal approximator” (Hornik, Stinchcombe, & 

White, 1989)  as it is an algorithm which selects from a set of hypotheses (or functions) 

one which best fits the data samples (Mitchell, 1997b). In so doing, it allows future data 

samples to be properly identified. ANNs are inspired by the cellular neurobiology of the 

brain, the most advanced mechanism for intelligence to human knowledge. The building 

block of the brain is the neuron, a cell which at a basic level consists of dendrites, soma 

(cell body) and axon and functions as follows (Zigmond & Bloom, 1999). Dendrites are 

incoming connections carrying electrical impulses from other neurons. If the cumulative 

effect of the incoming impulses raises the electrical charge on the soma above the 

threshold of excitation, the neuron becomes activated and sends out an electrical impulse 

to its axon which connects to the dendrites of other neurons.  

An ANN is composed of a graph of virtual neurons (henceforth, just neuron). 

Each neuron is classified as an input neuron, output neuron or hidden neuron. Figure 4 

shows a simple ANN consisting of two input neurons (I2 and I2), two hidden neurons 

(H1 and H2) and a single output neuron (O1). The neuron, much likes its biological 

counterpart, is composed of three basic elements: input links, output links and an 
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activation mechanism. Each of these is described as follows from the work of Mitchell 

(1997b). 

Figure 4. A Simple ANN (a 3-layer perceptron) 

 

The links, as a connection between two neurons, act as both inputs and outputs. 

For example, in Figure 4, the link (L_I1_H1) between I1 and H1 acts as an input to H1 

and an output for I1. Each link has a weight and strength associated to it with the weights 

having real values from 0 to 1 and strength values as real values typically bounded to ±1. 

The strength value of a link is the output value of the neuron. So, the strength of the link 

L_I1_H1 is the output value of the neuron I1. The output value of a neuron is determined 

by the inputs and the activation mechanism as described next. 

 The activation mechanism consists of a transformation function and an optional 

activation threshold. The transformation function converts the total strength applied to the 

neuron into an activation value where the total strength applied to a neuron is the 

weighted sum of the strength of the neuron’s input links. The exception is the strength of 

an input neuron, which has no inputs links, is the value of a data input. If the activation 

value is above the optional activation threshold then the neuron is said to have fired. 

When a neuron fires, the activation value is used as the output value which is used as the 

strength value for its output links. Although any function may be used for the 
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transformation function, generally a sigmoid function is used, such as tanh. A sigmoid 

function has a distinct s-shaped curve and is typically bounded to ±1 (shown in Figure 5).  

Figure 5. S-shaped curve of the function tanh 

 

  There are many different topologies for ANNs. One common topology, and the 

one used in this research, is the multilayer perceptron (MLP). The MLP consists of two 

or more layers of neurons; however, three layers is typical, an input layer, hidden layer 

and output layer (Mitchell, 1997a) as shown in Figure 4 above. The topology of the MLP 

is such that each input neuron is connected to each hidden neuron and each hidden 

neuron is connected to each output neuron. Each input neuron has one input link and 

similarly each output neuron has a single output link. In this configuration, as there are no 

cyclical connections, the information feeds forward from the inputs to the outputs. 

 To train an ANN, both a learning model and training method must be selected. 

The three learning models used by CI algorithms are supervised, unsupervised and 

reinforcement learning (Mitchell, 1997b). Used by this research is the supervised learning 

model, where an error is calculated from comparing the ANN’s output to an expected 

value. Training is continued iteratively until the error is minimized. The supervised 

learning model is only usable when the training data contains the expected value, which 
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is true for this research as the student data contains the students’ actual learning styles 

and WMC. The recommended method for training a MLP under the supervised learning 

model is backpropagation which functions as follows (Mitchell, 1997b).  

Backpropagation works by processing the MLP in reverse and adjusting the 

weights in the neural links so as to reduce the error. The formula for finding the weight 

adjustment is called the delta rule and is derived from the gradient descent algorithm 

(Mitchell, 1997b). The gradient descent algorithm is a process of iteratively altering the 

value of x for a function, f(x), to find the minimum value of f(x). Each iteration the value 

x is modified in the descending direction of f(x) and by a step size in proportion to the 

negative gradient of the function. Since, only a step along this gradient is required, a 

parameter is needed to control the step size and is called the learning rate (0 ≤ η ≤ 1). The 

learning rate is generally kept low to prevent oscillation over the minimum; however, if it 

is too low the training process can become prone to being stuck in local minima. 

 One issue with the backpropagation algorithm is that it steps towards the local 

minimum which may not be the global minimum. Assuming no overfitting is occurring, 

the ideal is for the MLP to be trained to the global minimum error. The momentum (0 ≤ 

m ≤ 1) control parameter is used to push the MLP out of local minima; therefore, 

exploring the weight solution space more fully (Mitchell, 1997a). Momentum adjusts the 

weight adjustment formula by adding a portion of the previous weight adjustment to the 

current weight adjustment. Like learning rate, momentum is generally kept quite low as a 

high momentum makes it very difficult for the training process to come to rest in the 

vicinity of the global minimum once it is found. 
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 There are two training modes available for MLPs: individual and ensemble 

(Mitchell, 1997a).  Although backpropagation is done following each sample, it is not 

necessary to immediately apply the weight modifications to the links. If the weight 

modification is applied immediately, this is called individual training mode. Otherwise, 

after each generation the weight adjustments from each sample may be summed and then 

applied, and this is called ensemble training mode. The advantage of the individual 

training mode is that more steps are taken more quickly, while the advantage to the 

ensemble mode is that each sample is processed by an identical MLP. Which training 

mode is best is problem specific. 

2.6.2 Ant Colony System 

 ACS is one of the more recent versions in the family of ant colony optimization  

(ACO) algorithms (Dorigo & Gambardella, 1997b; Dorigo & Stützle, 2010). The 

inspiration for all of the ACO algorithms is real ant behavior when foraging for food. 

Ants share information by laying pheromone along the path to food sources. Suppose 

there are two paths to a food source, one long and one short, since the ants have no 

information about the length of the paths an equal number of ants will choose the long 

and short paths. The shorter path will have a higher density of ants and so pheromone 

will accumulate quicker on the short path. This will encourage more ants to the shorter 

path and so the most food will be gathered for the least effort. Thus, for the ants, the 

shorter path is the higher quality solution. 

 ACS uses a population of artificial ants (henceforth just ants) to search a solution 

space for optimal solutions by using a pheromone-like mechanic (Dorigo & Gambardella, 

1997b). ACS was originally proposed to solve the problem where a travelling salesman 
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must travel to a set of cities while travelling the shortest distance. ACS has since been 

used to find optimal solutions for other problems such as quadratic assignment problem 

(Gambardella, Taillard, & Dorigo, 1999), job scheduling (Rajendran & Ziegler, 2004) 

and economic dispatch (Pothiya, Ngamroo, & Kongprawechnon, 2010).  

To use ACS, the solution space must be described as a graph. The ants are then 

inserted into a node and set to traverse the graph by iteratively choosing a link to follow. 

The graph must be crafted such that a completed path may be decoded into an appropriate 

solution. For example, for the travelling salesman problem the nodes may represent the 

cities, the links represent the roads connecting the cities and the completed path is the 

route taken by the salesman. Whereas, for the scheduling problem, each node could 

represent a job and the links a choice of which job to schedule next and the path may then 

be decoded as a job schedule. 

 Each link in the graph has two associated values: local quality (l) and pheromone 

(global quality) (τ). The overall quality (Q) of the link is a weighted sum of these two 

values, with weights α and β respectively (shown in Formula 2). To choose a link, the 

ants use a pseudo-random proportional rule which encourages exploitation of higher 

quality links. At each node, a random value from 0 to 1 is selected and if this value is less 

than the control parameter, exploitation factor (q0) then the highest quality link will be 

followed; otherwise, a random link will be selected with a preference for higher quality 

links. When selecting a random link, not all links will necessarily be considered at each 

node. Each ant keeps a tabu list of nodes which may not be visited. Typically this is done 

to prevent revisiting of nodes but may be for any problem specific purpose. Using expert 

knowledge, an optional candidate list of preferred links may be pre-generated for each 
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node. An ant will consider only links on the candidate list unless all of them are on the 

tabu list, in which case it will consider all possible links not on the tabu list. Selecting a 

link is then done using a roulette wheel selection where the odds of selecting a link (S) 

are equal to the quality of the link divided by the sum of the quality of all permissible 

links from that node as shown in Formula 3. This process continues until the ant can no 

longer move or has built a complete solution at which point its path is decoded into the 

candidate solution. 

�
 =  � ×  �
 + � × �
 (2) 
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Two rules, the global pheromone updating rule and local pheromone updating 

rule control the pheromone values on each link. The global pheromone updating rule, 

although a common feature of ACO algorithms, may have some variations between them 

(Dorigo & Stützle, 2010). As only ACS is used in this research only the global 

pheromone updating rule for ACS is described next, followed by the local pheromone 

updating rule for ACS. 

The global pheromone updating rule occurs after each iteration and consists of 

two mechanisms. The first mechanism accumulates pheromone on the links as follows. 

Each solution generated by the ants is evaluated using the problem’s fitness function (F). 

If the fitness of a solution is better than the best solution found so far, then the solution is 

recorded as the global best solution (sgb). Either the links along iteration best solution 

(siter) are updated or more commonly the sgb is reinforced (Dorigo & Stützle, 2010) by 

1/F(s). The second mechanism of the global pheromone updating rule reduces pheromone 
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on the links, as if pheromone values were to only increase then it would become 

increasingly harder for the ants to explore for new solutions. Thus the colony needs to 

forget some information which is done by reducing pheromone values. After each 

iteration (t), every link in the graph has its pheromone value reduced as a function of the 

current pheromone times the evaporation rate (ρ) (shown in Formula 4) (Dorigo & 

Gambardella, 1997b). 

�
��� = �1 −  ���
� (4) 

The local pheromone updating rule occurs when an ant traverses a link (Dorigo & 

Gambardella, 1997b). The rule uses a consumption mechanism to reduce pheromone on 

links. In this way, ants which follow will be less likely to select the same path and so be 

more likely to explore the solution space. Pheromone on the link is reduced as a function 

of the pheromone on the link and the consumption rate (τ0) (shown in Formula 5). 

�
 = �1 −  ���
� (5) 

 
2.6.3 Genetic Algorithm 

 Genetic algorithm (Mitchell, 1998) is a combinatorial optimization algorithm 

inspired by concepts from evolution. In biological terms, as successive generations of 

parents mix genes when producing offspring over time the offspring become fit to their 

environment. Thus, GA operates under the premise that by re-combining the building 

blocks of solutions that over successive generations better solutions will be found, 

ultimately leading towards a globally optimal solution. 

 A population of size P genomes is produced and each genome is composed of N 

genes. Gene values are very flexible and may be expressed as a bit, integer or real value, 

although not necessary typically non-bit representations are bounded. Each gene 
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represents an element to the solution such that the entire genome represents, once 

decoded in a problem specific way, a solution. Each genome is assigned a fitness value 

using a problem specific fitness function. 

 After assessing the initial population, the main processing loop of the algorithm is 

started which consists of the following steps for each generation: selection, crossover, 

mutation and survival. During the selection step pairs of genomes are selected from the 

population. There are numerous ways this can be done; however, most techniques have 

the similar guiding principle of preferring more fit members. One technique, and the one 

used in this research, is roulette wheel selection. Roulette wheel works by assigning each 

genome (Gi) the chance of being selected (Si) equal to its fitness value (Fi) divided by the 

sum of all fitness values in the population as shown in Formula 6. A random value is 

selected from 0 to 1 and the appropriate genome is selected. For example, if there are four 

genomes (G1, G2, G3, G4) with the odds of selection (0.5, 0.3, 0.15, 0.05) respectively if 

the random value selected is 0.6 then G2 is selected as it is greater than the odds for G1 

but less than the odds of G1 + G2. During the selection process the same genome may be 

selected more than once; however, the same pair of genomes is not permitted to be 

selected in the same generation. 

�
 =  �
∑ �� ���  
(6) 

  After all of the pairs have been selected, the crossover operator is applied to each 

pair. As with the selection process, there are several techniques which may be used with 

some more common approaches being uniform crossover, one point crossover and two 

point crossover. For this research, uniform crossover is used and functions as follows. 

Uniform crossover assigns each gene an identical (hence uniform) chance, called the 
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crossover weight (0 < C < 1), of being swapped. For each gene a value from 0 to 1 is 

randomly picked, and if this value is less than C the genes are swapped. Since it is based 

on random chance, there may be zero to N swaps, with zero and N swaps being non-ideal 

as the result is the same genomes (this issue is resolved in the mutation step described 

next). Crossover weight is generally kept relatively high to promote a relatively large 

number of new genomes, although this can be disruptive of good gene combinations. The 

crossover operation fulfills the premise of the GA by seeking to exploit previously found 

good solutions and using their genes to build new solutions. An example of the crossover 

operation is shown in Figures 6 and 7. This example assume each genome (A & B) has 4 

genes called A1 to A4 and B1 to B4 and that the crossover operation will be done 

between A2 and B2. 

 

 

  

 

The mutation step is intended to ensure that particular gene values do not become 

utterly dominant in the population, thereby causing stagnation and a lack of exploration. 

The mutation step operates by possibly selecting one or more genes in each genome 

produced by the crossover step and changing it to a random value. Much like the uniform 

crossover operation, each gene is given the identical chance to be mutated called 

mutation weight (0 < M < 1). For each gene, a random value from 0 to 1 is picked, and if 

Figure 6. Example of the crossover operation, A2 swapped with B2 (pre-swap) 

Figure 7. Example of the crossover operation, A2 swapped with B2 (post-swap) 



AUTOMATIC IDENTIFICATION OF LEARNING STYLES AND WORKING MEMORY CAPACITY 

53 

 

the value is less than M the gene is mutated. As with the crossover step, there may be 

zero to N mutations. If there have been no swaps (or N swaps) and no mutations then the 

result is the same genomes. Since this would be a waste of processing, a single gene in 

each is forced to mutate by selecting a value from 1 to N for each genome and mutating 

that gene. Unlike with crossover weight, mutation weight is generally kept very low as 

very high values transform GA into random search. 

 The last step in the GA is the survival step. First, each genome produced in the 

current generation is evaluated using the fitness function and assigned a fitness value. 

Then the genomes are merged into the existing population. Genomes are removed (killed) 

from the population until it returns to size P. Typically, the genomes permitted to survive 

are those with the highest fitness; however, this can cause particular gene values to 

become (near) ubiquitous, i.e. less diversity in the population. Therefore, to promote 

diversity genomes with different gene values may be permitted to survive even if they are 

less fit. 

2.6.4 Particle Swarm Optimization 

 Like ACS and GA, particle swarm optimization (PSO) is a combinatorial 

optimization algorithm inspired from nature, in this case from the swarming movements 

in birds or insects (Eberhart & Kennedy, 1995). PSO consists of a population of size P of 

particles that are permitted to fly in a hyperspace (hypershape for bounded problems) 

where the location of the particle in the space corresponds to a solution. This is done by 

describing the solution space as a N-dimensional hyperspace where each dimension 

represents an element of the solution and a coordinate represents a specific option for that 
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element. The particles then share information with each on the quality of the solutions 

found and encouraged to fly towards the more promising areas. 

 Every particle is described as having a location and a current velocity vector (v0). 

Every generation, the particle position is updated based on the velocity vector. Then the 

velocity vector is modified in accordance with three parameters. The first parameter is 

inertia (w) which encourages the particle to continue moving in the same direction as v0. 

The second and third parameters are the acceleration coefficients (c1 and c2) towards the 

individual best solution so far (Xibest) and the global best solution (Xgbest). The velocity 

update function is shown in Formula 7, where rand1 and rand2 are random values from 0 

to 1, and Xcurr is the current location. 

! = " × ! + #$�%1 × &1 × �'()** − '
+,-�� + #$�%2 × &2 × �'()** − '/+,-�� (7) 

 

 Higher inertia values encourage exploration of the solution as it causes the 

particle to ignore the best solutions so far. The acceleration coefficients are both 

exploitation mechanics, with acceleration towards the individual best position being 

somewhat exploratory as it encourages some local search to see if the individual best 

solution has a better solution than the current global best. One drawback found in the 

early research on PSO is particle explosion (Clerc & Kennedy, 2002) where the particles 

can fly very far from promising areas just from momentum. This is resolved with the 

maximum velocity (Vmax) control parameter which limits the velocity of the particles. 

For bounded problems, Vmax is never greater than the absolute difference between the 

lowest and highest bound values (Xmax) as a velocity greater than this difference will 

only cause the particle to strike the hypershape boundary. 

2.6.5 Hybrid Architectures 
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A hybrid CI algorithm is a technique for combining multiple CI algorithms 

together so as to capitalize on the strengths of each algorithm. Typically, this is done in 

one of three ways. First, two algorithms may jointly process samples where one is 

intended to provide a globally oriented search and the other a locally oriented search 

(Gonçalves, de Magalhães Mendes, & Resende, 2005; Kao & Zahara, 2008). The second 

technique is to have one algorithm provide a configuration for the second algorithm, e.g. 

evolving artificial neural networks (Belew, McInerney, & Schraudolph, 1990; Yao, 1999). 

The third technique is the hybrid architecture where information from one algorithm is 

sent to other algorithms in the ensemble to improve their processing (Wermter & Sun, 

2000). 

Hybrid architectures are represented as graph where each node is a CI algorithm 

and the links represent the data transfer between them. Each algorithm should be 

considered as steps in an overarching algorithm. Figure 9 shows a very generic example 

consisting of four algorithms: Step 1, Step 2A, Step 2B and Step 3. Step 1 sends data to 

both Step 2A and Step 2B, which in turn sends data to Step 3. Each algorithm is trained 

and executed separately and to completion prior to the next in series, so for example, Step 

1 is trained completely first, then Step 2A and 2B and finally Step 3. A loosely coupled 

hybrid architecture is one where information only moves forward (like in Figure 8); 

whereas, a tightly coupled hybrid architecture allows for cyclical connections. A tightly 

coupled hybrid architecture has a shared control and communication mechanism that 

determines the timings for the training and execution of the individual algorithms. 
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Figure 8. An example of a loosely coupled hybrid architecture 

 

Hybrid architectures have mainly seen use in language processing and robotics. 

Jurafsky et al. (1994) combined an ANN and HMM to perform speech recognition. The 

ANN was trained to identify the phonetics of each word from acoustic features and this 

identified phonetics were then passed to the HMM for word recognition. Sun and 

Peterson (1998) combined three algorithms, ANN, a decision making module and 

decision tree learning to perform robotic navigation. The ANN was trained in an 

unsupervised learning model to determine the quality of an action (Q-value). The Q-

values were then used by the decision making module to choose a course of action. Over 

a training period the action and corresponding results were used to extract a set of rules 

which could be provided to a future agent. 

For the current research two hybrid algorithms are evaluated. A loosely coupled 

hybrid architecture is used to improve the precision of identification of learning styles 

and an evolving artificial neural network (EANN) is used to improve the precision of 

identification of WMC. For that reason, the EANN is described in greater detail in the 

following section. 

2.6.6 Evolving Artificial Neural Networks 

 An EANN is a hybrid algorithm which combines an ANN with an evolutionary 

algorithm to search for an optimal ANN topography (Yao, 1999). Although any 



AUTOMATIC IDENTIFICATION OF LEARNING STYLES AND WORKING MEMORY CAPACITY 

57 

 

evolutionary algorithm may be used, genetic algorithm (Belew et al., 1990; Yao, 1999) 

and evolutionary programming (Stanley & Miikkulainen, 2002; Yao & Liu, 1997) are 

typical choices. Since this research uses GA, the remainder of this section will focus on 

that combination.  

One issue with ANNs is the structure of the ANN forces a relationship style 

between the inputs which may not be optimal. For a simple problem, it might be possible 

to craft an ANN topology by hand; however, for many non-trivial problems this is not an 

option as there is insufficient domain knowledge to determine the proper topology. If 

there were sufficient domain knowledge to derive an optimal function, then the ANN is 

not necessary.  Finding the optimal topology is treated as a combinatorial optimization 

problem, where the solution space is a bounded area describing a set of possible 

topologies. The bounds are typically defined as a fixed or minimum / maximum number 

of hidden layers with a fixed or minimum / maximum number of nodes per hidden layer. 

For example, the bounds may be to consider all topologies where there is exactly 1 

hidden layer and a minimum of 1 node and a maximum of 20 hidden nodes. For the 

EANN, the solution space is limited to non-cyclical topologies while the recurrent 

evolving artificial neural network (EANN/R) expands the search to allow for cyclical 

relationships between nodes. 

 As discussed above, solving a problem with a GA requires an encoding / decoding 

scheme for the genome structure. For EANN, there are two encoding / decoding schemes: 

bit representation and real value representation. For the real value representation, there 

are two training modes: evolutionary and hybrid. With the bit representation each gene 

value may be a 0 or 1, and determines if there is a connection between two nodes. For a 
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non-recurrent EANN, Figure 9 shows a sample genome, the decoding of the genome into 

a matrix and the resulting ANN. For a recurrent ANN, the genomes would have 

additional genes for the connections marked “n/a” in the matrix and additional genes for 

connections from the output node (25 genes in total). The real value representation uses a 

real value from 0 to 1 for each gene which represents the weight of the link. 

Figure 9. (a) A genome using bit representation (b) Decoded matrix of connections from the genome (c) Corresponding 
ANN from the matrix

Genes 

0 1 0 1 1 1 0 1 1 1 1 
(a) 

 I1 I2 H1 H2 O1 

I1 n/a 0 1 0 1 

I2 n/a n/a 1 1 0 

H1 n/a n/a n/a 1 1 

H2 n/a n/a n/a n/a 1 
(b)

 
(c) 

 

 Two forms of training exist for EANNs: evolutionary and hybrid. Evolutionary 

training requires the use of a real value representation as the GA is used to find both the 

optimal topology and optimal weights for the ANN. In other words, the ANN which 

results from decoding the genome is not altered with any other mechanism, such as 

backpropagation, and is evaluated as is. With hybrid training, the resulting ANN from 

decoding the genome is considered a starting point and the ANN is further trained using 
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backpropagation (as in this research) or some other appropriate mechanism. The 

advantage of hybrid training is that the GA can search for a promising area (global 

search) and the ANN training method can refine it to the global optimal (local search); 

whereas, the drawback is an increase in processing time. The processing time needed for 

hybrid training may be reduced by limiting the number of generations permitted for 

training the ANN. 
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Chapter III – Learning Style and Working Memory Capacity Identifiers 

 This chapter describes how the LSID and WMCID approaches were designed and 

created to identify learning styles and WMC respectively. This research, like many of the 

related works (Cha et al., 2006; Chang et al., 2013; García et al., 2007; Graf, Kinshuk et 

al., 2009; Villaverde et al., 2006), uses student behavior patterns to identify both learning 

styles and WMC. In order to understand how the CI algorithms were used to identify 

learning styles and WMC, it is first important to understand the underlying behavior 

patterns and as such they are described in the first two sections (with learning styles first 

and WMC second). The third section describes how the CI algorithms were adapted to 

identify learning styles. This is broken down into sub-sections for the classification 

algorithm (ANN), optimization algorithms and hybrid algorithms. The last section 

explains how the CI algorithms were adapted to identify WMC and is similarly broken 

down into the same three sub-sections as for learning styles. As there is much similarity 

in how the problems are encoded and how the algorithms were trained for the LSID and 

WMCID approaches only the differences for WMCID are highlighted in the fourth 

section. 

3.1 Behavior Patterns for Identifying Learning Styles 

The behavior patterns used by this research are the same as those used in the 

development of DeLeS (Graf, Kinshuk et al., 2009) and are shown in Table 5. Most of 

the behavior patterns relate either to the duration of students’ visits to types of learning 

objects or count how many times a student visits the types of learning objects. Other 

patterns use the navigational behavior within the LMS as an indicator of learning styles. 

Lastly, the average grades for different types of questions are considered. For each 
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relevant pattern it is determined whether a high or low data value corresponds to the 

active, sensing, visual or sequential learning styles and these are marked in Table 5 with a 

“+“ for a correlation to a high value or “-” for a low value. 

Table 5. Relevant behavior patterns for each FSLSM learning style dimension (Graf et al., 2009b) 

Active/Reflective Sensing/Intuitive Visual/Verbal Sequential/Global 
content_stay (-) content_stay (-) content_visit (-) outline_stay (-) 
content_visit (-) content_visit (-) forum_post (-) outline_visit (-) 
example_stay (-) example_stay (+) forum_stay (-) question_detail (+) 
exercise_stay (+) example_visit (+) forum_visit (-) question_develop (-) 
exercise_visit (+) exercise_visit (+) question_graphics (+) question_interpret (-) 
forum_post (+) question_concepts (-) question_text (-) question_overview (-) 
forum_visit (-) question_details (+)  navigation_overview_stay (-) 
outline_stay (-) question_develop (-)  navigation_overview_visit (-) 
quiz_stay_results (-) question_facts (+)  navigation_skip (-) 
self_assess_stay (-) quiz_revisions (+)   
self_assess_twice_wrong (+) quiz_results_stay (+)   
self_assess_visit (+) self_assess_stay (+)   
 self_assess_visit (+)   

 

Many of behavior patterns identified by Graf et al. (2009) from literature may be 

classified into two categories: patterns which pertain to how students visit different types 

of learning material and patterns which pertain to the relationship between students 

grades and types of learning material. Graf et al. (2009) also identify four behavior 

patterns which do not fit into either of these two broad categories. The behavior patterns 

are summarized below as from their work starting with the patterns which relate to 

content visitation. This is followed by discussing the patterns which pertain to the 

relationship between student grades and learning material types, and lastly the description 

of the unique behavior patterns. 

Most of the behavior patterns capture either the number of seconds the student 

stayed on a particular type of learning material (e.g. exercise_stay is the number of 

seconds the student spent on exercises) or the number of times the student visited the 
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learning material (e.g. exercise_visit is the number of times a student visited exercises). 

The types of learning material are: content, exercises, examples, forum, outline, self-

assessment test, course overview (navigation_overview_stay and 

navigation_overview_visit) and quiz results (quiz_stay_results only, the number of visits 

to quiz results is not counted). 

The average grade behavior patterns (prefixed with question_) are divided into six 

categories concerning what type of material is covered by the question: concept, details, 

development (develop), facts, interpretation (interpret) and overview. Additionally, there 

are two question types for how the related learning material is delivered: textually (text) 

or graphics. A question may have more than one type, for example, a question on text-

based factual learning material would belong to both the question_facts and question_text 

behavior patterns. 

The remaining patterns are unique and described as follows. The forums_post 

behavior pattern counts the number of postings the student made to the course forums. 

The navigation_skip pattern counts the number of times that a student skips over learning 

material. The quiz_revisions pattern counts the number of times the student altered an 

answer to a quiz prior to submitting it. Lastly, self_assess_twice_wrong counts the 

number of times a student is incorrect on the same self-assessment test question. 

As seen in Table 5, not all of the behavior patterns are relevant for each of the 

FSLSM dimensions. The following four sub-sections relate the behavior patterns to the 

characteristics of a learning style dimension. All of the descriptions below are based on 

the work of Graf (2007). 

3.1.1 Active / Reflective Dimension Behavior Patterns 
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Students with an active preference tend to be more interested in using material 

than reflecting about it. Thus, these students are expected to visit with more frequency 

exercises and self-assessment tests and stay longer on exercises. Inversely, reflective 

students prefer to think about material and so are expected to visit more frequently and 

stay longer on content. Although both active and reflective students are expected to visit 

examples with the same frequency, reflective students are more likely to stay longer than 

active students both because reflective students will prefer to think about the example and 

active students prefer to try solving a problem for themselves in the exercises. Active 

students tend to prefer communicating with others, while reflective students prefer to 

read and reflect on what others say. Thus, active students are expected to post to forums 

with greater frequency while reflective students will visit forums more often to read what 

has been posted. Reflective students will tend to stay longer on outlines, quiz results and 

self-assessment results and since they tend to think longer on their answers for self-

assessment tests they are less likely to get them wrong twice (i.e. getting a self- 

assessment question wrong twice is an indication of an active preference). 

3.1.2 Sensing / Intuitive Dimension Behavior Patterns 

Students with a sensing preference tend to prefer facts and details, which may 

then be related to the real world (i.e. the world of sensory experience). Sensing students 

tend to be practical realists. Intuitive students prefer to learn abstract concepts and 

principles. Intuitive students tend to use this conceptual knowledge in more creative 

ways. Thus intuitive students prefer conceptual material and so will visit content more 

frequently and for longer periods of time. Intuitive students will tend to do better on 

questions about conceptual material as they will prefer to study it and they will tend to do 
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better on questions which require them to develop a new solution from concepts 

(question_develop). Sensing students prefer concrete and procedural material and so will 

prefer reinforcing this knowledge from examples. Similarly, they will prefer to do 

exercises and self-assessment tests since it allows them to put the procedures they’ve 

learnt into practice. Sensing students tend to work more carefully than intuitive students 

and so it is expected that they will revise quiz answers more often before submitting 

them. Similarly, sensing students will prefer to review quiz results more often. Sensing 

students will tend to do better on questions which require details or are concerned with 

factual learning material. 

3.1.3 Visual / Verbal Dimension Behavior Patterns 

Since most content requires reading, verbal students will have a greater tendency 

to visit learning material in general. Verbal students will also prefer to read and write to 

course forums, thus visiting the forums more often, staying for longer periods of time and 

having more posts. Verbal students will tend to do better on questions on learning 

material which was provided textually; whereas, visual students will do better on 

questions from learning material that was presented graphically. 

3.1.4 Sequential / Global Dimension Behavior Patterns 

Sequential students prefer to navigate / learn in a linear fashion, so these students 

are less likely to skip learning material. Global students will be more likely skip ahead to 

more advanced learning material as they prefer to understand how it all fits together. 

Global students are also more likely to visit more frequently and stay for a longer period 

on content outlines and course overviews, as these often provide a look at how the 

learning material fits together. Since sequential students are more interested in 
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understanding each piece of content in depth before moving on to the next in sequence, 

they are more likely to do well in questions that focus on the details of the material. 

Global students are more likely to do well on questions that focus on a broad overview of 

material. In addition, global students are more likely to do well on questions which 

require interpretation or developing a new solution, as this generally requires a broader 

understanding of the material and the relationships between concepts with the material. 

3.2 Behavior Patterns for Identifying Working Memory Capacity 

The patterns used to identify WMC are those proposed by Chang et al. (2013) 

from their review of psychology literature consisting of five navigational patterns 

exhibited by students when using a learning system and three of the four learning style 

dimensions as described by the FSLSM. Each of the navigational patterns has an 

activated (act) and non-activated (nonact) state where activated means that the particular 

pattern has been exhibited by the student and non-activated that it has not. In what 

follows there is a description of each indicator and then a discussion on how these 

indicators are used to identify WMC. The descriptions of the behavior patterns are based 

on the work by Chang et al. (2013). 

3.2.1 Linear Navigation Pattern 

The first pattern is the linear navigation pattern which is described as when a 

student progresses through learning objects (LOs) as intended by the teacher or course 

designer. The basis of this pattern is the work of Huai (2000) which investigated the 

relationship of linear and non-linear navigational behaviors and WMC. Huai found that 

students who exhibited linear navigation tended to have high WMC and vice versa. 

Figure 10 shows an example of linear and non-linear navigation. When exhibiting a linear 
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navigational pattern the student goes directly from learning object A to learning object B; 

whereas, the non-linear navigational pattern has the student visiting other LOs in-between 

A and B. 

Figure 10. An example of linear navigation (Chang et al., 2013) 

 

3.2.2 Constant Reverse Navigation Pattern 

The second pattern, constant reverse navigation pattern, is defined as navigating 

two or more times to a previously visited learning object in an order not intended by the 

teacher or course designer. A student exhibiting such a pattern may be unable to recall 

recently visited LOs which may indicate they have low WMC (Lin, Kinshuk, & Patel, 

2003). Figure 11 shows an example of this pattern. In this example, the student navigates 

as intended by the course design from learning object A to B to C to D. The student then 

revisits A from D and then from A to C both of which are not intended by the course 

design. It is at the point of revisiting learning object C, the second revisit, that the 

constant reverse pattern would be considered activated. 

Figure 11. Example of constant reverse navigation pattern (Chang et al., 2013) 

 

3.2.3 Simultaneous Tasks Pattern 
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The simultaneous tasks pattern is based on psychological studies showing that 

when a student with low WMC attempts to perform simultaneous tasks they will have an 

increase in errors (Engle, 2010; Woehrle & Magliano, 2012). For this pattern, a student is 

considered to be performing simultaneous tasks if there is an overlapping navigational 

behaviour. This is defined as visiting a learning object (LO A) and then visiting one or 

more other learning objects prior to doing the evaluation of LO A (EA) as shown in 

Figure 12. If the student passes the evaluation of LO A then this indicates a high WMC as 

they were able to recall information even with intervening activity, while failing the 

evaluation indicates low WMC. 

Figure 12. Example of overlapping navigational behavior (Chang et al., 2013) 

 

3.2.4 Recalling Learned Material Pattern 

The recalling learned material pattern is very similar to the simultaneous tasks 

pattern above except that the visitation of the learning object and corresponding 

evaluation are done in different learning sessions. It is detected when the student 

completes a learning object A (LO A) and then completes the evaluation for LO A (EA) 

in a subsequent learning session. Additionally, the student may or may not visit 

additional learning objects in either of the two sessions prior to completing EA. As with 

the simultaneous tasks pattern, if the student is able to recall sufficient information to 

pass EA, then this indicates a high WMC, while if they fail EA this indicates a low 
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WMC. An example of this navigational pattern is shown in Figure 13. This pattern is 

based on works showing that a student’s ability to retrieve information from long term 

memory is related to their WMC (Engle, 2010; Unsworth, Redick, Spillers, & Brewer, 

2012) 

Figure 13. An example of learning and evaluating in different sessions (Chang et al., 2013) 

 

 

3.2.5 Revisiting Passed Learning Object Pattern 

Based on the same concept as the recalling learned material pattern, that a 

student’s ability to recall information from long term memory is related to their WMC 

(Engle, 2010; Unsworth et al., 2012), this pattern seeks to identify when a student is not 

able to recall information from long term memory. If a student has visited learning object 

A (LO A) and then passes the evaluation of this learning object (EA), it is expected that 

they should know the material. Thus, if the student then revisits LO A in a future session, 

it indicates a difficulty in recalling the information from long term memory and may 

indicate low WMC. An example of this navigational pattern is shown in Figure 14. To 

determine if this pattern is activated for student, the time spent in each LO is recorded as 

a base line for each student (bi). If a student visits the LO again the time spent relearning 

the material is recorded (vi). The ratio (ri) between the time spent relearning versus the 
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initial base line for the student is then calculated as shown in Formula 8. For each 

learning object, an average of ratio values (ravg) is calculated as shown in Formula 9. If a 

student’s ri > ravg  then the student has taken longer than average to learn and relearn the 

material and this indicates a low WMC. High WMC is indicated by a student’s ri ≤  ravg.  

Figure 14. An example of relearning in a subsequent session  (Chang et al., 2013) 
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3.2.6 Learning Styles as Indication of WMC 

Graf et al. (2007) investigated the relationship between FSLSM learning style 

dimension and cognitive traits. They conclude that with respect to WMC there is a 

relationship for the A/R, S/I and V/V dimensions. The study found that students with a 

reflective or intuitive learning style tend to have a high WMC, while those with an active 

or sensing learning tend to have a low WMC. Although verbal students were found to 

have a high WMC, visual students were found to have either high or low WMC. In 

DeWMC (Chang et al., 2013), three indication values (ia/r, is/i, iv/v) are computed from the 

strength of the student’s A/R, S/I and V/V preferences. The ia/r and is/i are real values from 
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0.0 to 1.0 and are proportional to the strength of student’s A/R and S/I preferences with a 

0 assigned for a maximal active and sensing strength and 1 for maximal reflective and 

intuitive strength. The iv/v indicator ranges can be unassigned or range from 0.5 to 1.0. If 

the student has a visual preference it is left unassigned; however, for students with a 

verbal preference the value is proportional to the strength of the preference with 1.0 for 

the highest verbal preference. The overall WMC hint is then found by averaging the two 

or three indication values (two if iv/v is unassigned). 

3.3 Learning Style Identifiers 

The aim of this section is to detail how the five CI algorithms are used to identify 

learning styles through the development of the LSID approaches. In developing the LSID 

approaches, we sought two key qualities: generic and high precision. By being generic 

the LSID approaches may be integrated into any LMS instead of being tied to a specific 

system. Higher precision means that students will be provided with more accurate 

recommendations and personalization. Genericity is achieved by using behavior patterns 

which are general to any LMS, while precision is measured by performance metrics 

described later in the next chapter. In addition to these two qualities, the LSID 

approaches were evaluated (using performance metrics) on how fair they were to 

students. Fairness means that all students should be measured with approximately the 

same precision, as individual students who are not precisely identified may suffer as a 

result through no fault of their own.  The remainder of this section will discuss the 

directions investigated to design and develop the LSID approaches. This is followed by a 

sub-section on each broad approach used by this research: classification, optimization and 

hybrid algorithms. 
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The first step was to investigate how CI algorithms could be used to improve the 

precision of learning styles identification. From reviewing the literature, it was decided 

that a novel approach would be to take an existing leading approach and improve on the 

precision by using CI algorithms. This has the advantage of knowing that the approach is 

already somewhat precise and therefore makes for a good basis. DeLeS (Graf et al., 

2009b) was selected for this purpose as it had the best overall results of the approaches 

found in literature and used behavior patterns generic to any LMS. The second step was 

to decide on how to improve precision using CI algorithms and capitalizing on DeLeS.  

It was decided to do the second step using three types of algorithms but in two 

phases. In the first phase, two types of algorithms were used: a classification algorithm 

and optimization algorithms. The classification algorithm, the ANN, uses the behavior 

patterns identified for designing DeLeS (Graf, Kinshuk et al., 2009) as inputs by reason 

that an ANN would be able to find a more precise function for identifying learning styles. 

The reasoning for the optimization approach was that DeLeS was already effective at 

identifying learning styles but uses an unweighted average in its calculation. Another way 

of looking at DeLeS is it used a weight of 1.0 for each behavior pattern, and this set of 

weights is unlikely to be optimal. An optimization was used to optimize the pattern 

weights and thereby improve the precision of identification. The second phase of step two 

analyzed the results from the first phase and selected a hybrid algorithm to overcome the 

weakness of the mono-CI algorithms and to further improve results. Based on the 

analysis, a loosely couple hybrid architecture was selected. The design of each approach, 

i.e. how each algorithm was adapted to identify learning styles, is described in the 

following sub-sections. 
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3.3.1 Improving Learning Styles Identification through Classification 

There are many different classification algorithms; however, for this research the 

ANN was selected for three main reasons. Given the size of the training set it was 

reasoned that statistical classifiers would not work as well (Niles, Silverman, Tajchman, 

& Bush, 1989). Other non-statistical classifiers have been well researched and found to 

be not as successful as rule-based approaches (Carmona et al., 2008; Cha et al., 2006; 

García et al., 2007; Özpolat & Akar, 2009). Although there does exist an ANN based 

approach in literature (Villaverde et al., 2006), our approach differs in three key manners. 

First, this research identified each learning style with a separate ANN, i.e. we use four 

different ANNs instead of one. Second, LSID-ANN used more granular real valued data 

as inputs instead of integer data. Third, the outputs from LSID-ANN were a real value 

from 0 to 1 as opposed to only a 0 and 1. This means that LSID-ANN was able to identify 

the strength of the student’s preference. 

As discussed previously, ANNs consist of a graph with weighted links and by 

adjusting the weights on the links very complex functions can be represented. As such 

ANNs are have been called the universal approximator (Hornik, Stinchcombe, & White, 

1990) and could be successful at finding an efficient function for identifying learning 

styles. 

The inputs to each ANN are the relevant behavior patterns for the learning style 

dimension under consideration. So, when LSID-ANN is built to identify the A/R 

dimension it has 12 inputs, while for the S/I dimension it has 13 inputs, 6 inputs for the 

V/V dimension and 9 inputs for the S/G dimension. Initially, the inputs for LSID-ANN 

were used without pre-processing; however, it was observed that the resulting learning 
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styles would have very large changes from generation to generation and the resulting 

precision was worse than DeLeS. This effect from using inputs of different scales is 

discussed in literature (Priddy & Keller, 2005), although it does not always occur for all 

problems; when it does occur it is recommended to normalize the data (Priddy & Keller, 

2005). Initially, the values were normalized to the minimum and maximum of each 

behavior pattern; however, since most behavior patterns contain an outlying data point 

the normalized values were very similar and quite small. The results with this 

normalization were once again worse than DeLeS. The second, and final, technique 

normalized to the upper threshold value, which is the boundary between balanced and a 

strong preference, (Tup) for each behavior pattern resulting in Formula 10 and this 

normalization formula was used for optimizing parameters, evaluating overfitting 

reduction and producing the final result. For LSID-ANN, regardless of learning style 

dimension, there is always a single output which produces a real value from 0 to 1 which 

is taken as the identified learning style value. The number of hidden nodes is a control 

parameter and was optimized for each learning style dimension (this process is described 

in section 3.8.1). A sample of the topography used for the V/V dimension is shown in 

Figure 15. 

 	� = 	3)4 (10) 

Since the training data contains the actual student learning styles a supervised 

learning model may be used. Backpropagation is used to train an ANN with a supervised 

learning model which requires an error calculation. The error (e) for LSID-ANN is 

calculated as the difference between the actual and identified learning style values, with a 

precision as 1-e. With individual training, after each student, the ANN weights are 
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adjusted to reduce the error; otherwise the weight adjustments are recorded, summed and 

applied at the end of the generation. After each generation, the fitness function is used to 

assess the overall quality of the current topography as the average of the precision values 

across all students. This process continues until the termination condition is reached. 

For this research, the termination condition is picked to promote finding the 

optimal solution by using three rules. The first rule states that whenever a new best result, 

as calculated by the fitness function, occurs the current generation is recorded (Gbest). The 

second rule states if Gbest number of generations have passed since finding the last best 

result then stop processing. The third rule states that a minimum (10,000) generations 

must first pass before terminating. This termination condition is also used for all other 

LSID and WMCID approaches. 

Figure 15. LSID-ANN topography for the V/V dimension 
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3.3.2 Improving Learning Styles Identification through Optimization 

This sub-section describes how optimization algorithms were adapted to improve 

the precision of learning styles identification. For this research, three optimization 

algorithms, ant colony system, genetic algorithm and particle swarm optimization were 

selected to build three corresponding approaches LSID-ACS, LSID-GA and LSID-PSO. 

Each of these three approaches is based on DeLeS (Graf, Kinshuk et al., 2009). DeLeS 

works by averaging a set of hint values (h) calculated based on the relationships between 

students’ behaviors when using learning systems and learning styles. Since there are few, 

if any studies, on the importance of each behavior pattern towards identifying learning 

styles, DeLeS assumes that the weight (W) of each behavior pattern is 1.0. The weighted 

average calculation used is shown in Formula 11. The three LSID approaches listed 

above aim to address this limitation by searching for an optimal weight for each behavior 

pattern. The solution space for this problem tends to be rather large with 1012 to 1026 

combinations depending on the learning style dimension. Although brute force searching 

guarantees that an optimal solution will be found such algorithms become intractable 

with larger solution spaces (Russell & Norvig, 2010). Thus, more efficient searching 

algorithms were needed to effectively solve this problem. In reviewing literature, it was 

found that ACS, GA and PSO have been effective for finding optimal weights and so 

selected for this research (Abido, 2002; Ericsson, Resende, & Pardalos, 2002; Pothiya et 

al., 2010). In the next paragraphs, DeLeS is introduced in more detail in order to provide 

background information on how the proposed LSID approaches work. Subsequently, a 

general overview is provided on how the proposed LSID approaches work and after that, 

each algorithm is described separately in a designated subsection. 
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To identify learning styles, DeLeS extracts behavior pattern data from the 

learning system’s database and translates the behavior pattern data into a learning style 

hint h. A hint value of 3 indicates that the behavior pattern data provide a strong 

indication for an active, sensing, visual or sequential learning style (according to Table 5. 

A hint value of 2 indicates that the student’s behaviour is average and therefore does not 

provide a specific hint towards a learning style. A hint value of 1 indicates that the 

behavior pattern data provide a strong indication for a reflective, intuitive, verbal or 

global learning style (according to Table 5). A hint value of 0 indicates that no 

information about the student’s behavior is available with respect to the respective 

pattern. In order to classify the behavior pattern data into learning style hints, an upper 

and lower threshold has been derived from literature and is used for each pattern. To 

calculate the learning style of a student in a given learning style dimension, an average 

hint value is calculated by summing up all hint values of all patterns relevant for that 

dimension and dividing it by the number of patterns that include available information 

(for the respective dimension). The resulting value is then normalized, leading to a value 

between 0 and 1, where 1 indicates a strong preference for an active, sensing, visual or 

sequential learning style and 0 indicates a strong preference for a reflective, intuitive, 

verbal or global learning style. 

Each LSID approach follows the same overall process to calculate learning styles 

as DeLeS, with only one difference. When DeLeS is calculating learning styles from hint 

values, it calculates an average hint value where each hint from a behavior pattern 

contributes equally to the overall learning style value. The LSID approaches use different 
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optimization algorithms to identify optimal weights for each behavior pattern and 

therefore, when calculating learning styles from hint values, a weighted average hint 

value is computed (instead of just an average hint value), where each hint value is 

multiplied by the optimal weight of the respective pattern. 

For each of the optimization algorithms, the same termination condition is used as 

previously described for LSID-ANN. The fitness function for the optimization algorithms 

works by subtracting the error between the actual (LSactual) and identified (LSidentified) 

learning styles from 1. This is done for each student in the training set of size T and then 

averaged to give the overall fitness (shown in Formula 12). 

 

 � =  ∑ �1 − 95�1(�)1:,7 − 5�
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3.3.2.1 Ant Colony System – LSID-ACS 

ACS requires the problem to be converted into a graph for the ants to traverse. In 

this case, the problem is to find a set of optimal weights for the behavior patterns related 

to each learning styles dimension. To represent this problem, a layered graph is built 

beginning with a start node simply to make for a convenient entry point. Then, the start 

node is connected to each node in a layer of 100 nodes with values 0.01 to 1.0 in 

increments of 0.01 called “Layer 1”. This layer is then repeated N-1 times, where N is the 

number of behavior patterns. Each node in “Layer X” is connected to each node in 

“Layer X+1”. “Layer 1” represents the possible weights for the 1st behavior pattern, 

“Layer 2” for the 2nd behavior pattern and so on. Lastly, for the convenience of knowing 

when an ant is finished traversing the graph, every node in “Layer N” is connected to an 

exit node. When an ant is finished traversing the graph it will have selected a single node 
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from each layer, and this forms the candidate set of weights. The graph for the V/V 

dimension showing how each layer corresponds to a behavior pattern’s possible weights 

in shown in Figure 16. 

Figure 16. LSID-ACS’ graph for finding set of weights for V/V dimension 

 

 

After the graph is built, the local quality of the graph’s links are populated; 

however, since there is no initial information on what weights might be good choices 

each of the values are set to 1.0. Furthermore, with no initial information on the potential 

quality of weight values no candidate lists are constructed and the ants use only the 

pseudorandom proportional rule. Since the graph is unidirectional, the ants cannot return 

to a previously selected node during a single pass, so no tabu lists are used.  
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After the graph has been constructed and initialized, the population of ants is 

built. The following process is then followed for each ant in each generation until the 

termination condition is reached which is identical to that described for LSID-ANN. Each 

ant is placed in the “Start” node and permitted to traverse the graph using the 

pseudorandom proportional rule until it reaches the “End” node. When an ant traverses a 

link it consumes a portion of the pheromone in proportion to the consumption ratio. The 

path from each ant is decoded into a set of optimal weights and assessed using the fitness 

function which is the average of the precision values across all students as described for 

LSID-ANN. Once all of the ants’ fitness values have been calculated, if the best ant has a 

fitness value greater than the current global best then its path is saved. The links along the 

global best path have their pheromone values updated in proportion to its fitness value. 

Finally, all the links in the graph lose a proportion of pheromone in proportion to the 

evaporation ratio. 

3.3.2.2 Genetic Algorithm – LSID-GA 

To find the optimal pattern weights, the genome structure uses N gene values, 

where N is the number of relevant behavior patterns for the learning style dimension. 

Each gene is permitted to have an integer value from 1 to 100 representing the weight for 

a behavior pattern. The first gene is the weight for the first behavior pattern while the 

second gene is the weight for the second behavior pattern, and so on. Thus, the genome 

as a whole provides a set of weights as a candidate solution. The genome structure shown 

in Figure 17 shows how each gene represents a weight range for the behavior patterns in 

the V/V dimension. 



AUTOMATIC IDENTIFICATION OF LEARNING STYLES AND WORKING MEMORY CAPACITY 

80 

 

Figure 17. LSID-GA’s genome structure for the V/V dimension 

 

LSID-GA uses simple and well-known GA operators. During initialization, the 

population is fully populated with P genomes using random gene values as no initial 

information is available on the potential quality of any weight value. For the selection 

operator, the roulette wheel technique is used where the odds of any genome being 

selected is equal to its fitness divided by the total fitness of all genomes in the population. 

The selection operator picks P/2 genomes pairs. Although a genome may be selected 

more than once the same pairing may not be selected in a single generation so when this 

occurs a new pair is selected. The crossover operation uses uniform crossover on each 

genome pair to produce new offspring where each gene has a chance of being swapped 

equal to the crossover weight. The mutation operator is applied to each of the new 

offspring where each gene has a chance to be mutated equal to the mutation weight. 

There is a small chance that no crossover will occur, depending on the crossover weight. 

When this occurs, the resulting offspring would be identical to the parents and so to 
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ensure some difference one gene is forced to mutate. Following mutation, the genomes 

are assigned a fitness value using the fitness function which operates as described for 

LSID-ANN. The new genomes are then merged into the population and an elitist survival 

strategy is used culling the genomes with the lowest fitness until the population reaches 

size P. This process is repeated for each generation until the termination condition is 

reached which is identical to that described for LSID-ANN. 

3.3.2.3 Particle Swarm Optimization – LSID-PSO 

PSO requires a hyperspace or hypershape for the particles to fly in. For this 

research, an N-dimensional hypercube is defined, where N is the number of behavior 

patterns for the learning style dimension under consideration. Each hypershape 

dimension represents the range of possible weights for a behavior pattern and so each 

hypershape dimension is bounded with a minimum value of 0.01 and a maximum value 

of 1.0. The coordinate space is shown in Figure 18 with the coordinates decoded such 

that the first coordinate is the weight for the first behavior pattern; the second coordinate 

is the weight for the second behavior pattern, and so on. 

First, a population of particles are created with randomized positions and initial 

velocities. The following process is then followed for each generation until the 

termination condition is reached which is identical to that described for LSID-ANN. The 

particles are moved in accordance with the individual velocity. The position of each 

particle is then decoded into a candidate solution and the particle is assigned a fitness 

value as the precision values across all students as previously described for LSID-ANN. 

If the fitness value for a particle is greater than its individual best fitness value, then the 

position is saved as its individual best. If the highest fitness value for any particle is 

greater than the global best fitness value found so far, then that particle’s position is 
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recorded as the global best position. The velocity vector of each particle is then modified 

in accordance with the algorithm’s parameters (inertia and acceleration coefficients), the 

individual and global best positions and two random real values from 0 to 1 (as described 

in section 2.6.4). 

Figure 18. LSID-PSO’s coordinate to behavior pattern for the V/V learning style dimension 

 

3.3.3 Improving Learning Styles Identification through Hybrid Algorithms 

The motivation to use a hybrid algorithm is that hybrids may compensate for the 

weakness of mono-CI algorithms and capitalize on their strengths. So the first step in 

selecting and designing a hybrid algorithm was to examine the results from the mono-CI 

algorithms. The key observation made was that multiple executions of the mono-CI 

algorithm based LSID approaches (e.g. LSID-ANN) resulted in similar average precision 

but different results on a student by student basis. As a sample of this behavior, Table 6 

shows the results from two executions of LSID-ANN, called LSID-ANN-1 and LSID-

ANN-2, for the A/R dimension. It is observed that students A and B are identified more 
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precisely in the first execution while students D, F, G and H are identified best in the 

second execution. This suggested that the problem of learning styles identification is not 

optimally solved by a single algorithm producing a single solution. This approach 

improved the precision of learning styles identification by splitting the data set into 

optimal subsets which are then identified by an algorithm specialized for their respective 

subset. To continue this example, it would be as if the data were to be divided into the 

groups G1=(A,B,C,E) and G2=(D,F,G,H) (note students C and E could be in either group 

as the result for this student is the same) and then the students in G1 are identified by 

LSID-ANN-1 and the students in G2 are identified by LSID-ANN-2 and so resulting in 

the “Optimal” row (shown in Table 6).  

Table 6. Precision results from two executions of LSID-ANN (best result bolded) 
 Precision 

A B C D E F G H Avg 
LSID-ANN-1 0.72 0.85 0.92 0.95 0.80 0.81 0.83 0.67 0.82 
LSID-ANN-2 0.51 0.67 0.92 0.97 0.80 0.96 0.93 0.79 0.82 

Optimal 0.72 0.85 0.92 0.97 0.80 0.96 0.93 0.79 0.87 
 

Speaking broadly, a simplify process divides the student data set and sends each 

student to an appropriate algorithm in the solve process which does the actual 

identification. By splitting the data it is reasoned that each algorithm in the solve process 

need only solve a subset of the students, and this should be a simpler problem (hence the 

algorithm’s name “simplify and solve” or SISO). Furthermore, since each solving 

algorithm is concerned only with a subset of students, they should specialize and hence 

further improve their individual solutions to be more precise for their subset of data than 

if they trained with the entire dataset. To continue the example from before, it is reasoned 

that if LSID-ANN-1 need only identify students A,B,C and E it should be able to find a 

better solution for these four students than it found for them when it was trying to identify 



AUTOMATIC IDENTIFICATION OF LEARNING STYLES AND WORKING MEMORY CAPACITY 

84 

 

all eight students. 

 

The first step in designing the algorithm was to determine the process for spliting 

the student data. The first process considered, perhaps as it was the most intuitive, was to 

use the output from an LSID approach (e.g. LSID-ACS) to do an initial identification of 

the students, with students identified with a high preference (≥ 0.5) sent to one solving 

algorithm and the rest to another. This proved unsuccessful (identical results to the mono-

CI approaches) and on further reflection this makes sense. In effect, splitting the dataset 

this way is roughly equivalent to the original problem: using a mono-CI to find a single 

solution to positively identify learning styles for an entire data set. The second process 

investigated was to use split the data set based on whether the initial prediction is likely 

to be correct or not. To do this, a classification algorithm is trained to classify, based on 

the behavior pattern data, the initial prediction into two categories: high confidence and 

low confidence, i.e. those which are likely to be correct and those which are not. Those 

students with an initial prediction that has a high confidence are sent to a CI algorithm 

called HICON for a final identification. Similarly, those students whose initial prediction 

has low confidence are sent to a separate CI algorithm called LOWCON for re-

identification. It may seem counter-intuitive to identify students whose initial prediction 

has high confidence since these are assumed to be essentially correct; however, since the 

data split is not perfect some misidentified students are sent to HICON, and this gives 

these students a chance to be re-identified properly.  

This second process described above is then developed as a loosely coupled 

hybrid architecture (Wermter & Sun, 2000) forming an approach called “Learning Style 

Identifier – Simply and Solve” (LSID-SISO). The architecture starts (shown in Figure 19) 
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with a student behavior pattern data extracted from the learning system. The Simplify 

Process consists of the prediction and confidence steps described above. The Solve 

Process consists of the HICON and LOWCON steps. Each of these steps consists of a 

single CI algorithm, so there are four CI algorithms in total within the LSIS-SISO 

architecture. 

Figure 19. LSIS-SISO architecture 

 

 
The first step is the Prediction step (Figure 19) which uses an LSID approach to 

make an initial prediction of a student’s learning styles. The analysis of the mono-CI 

algorithm-based approaches showed that ACS and ANN each are best in precision for 

two of four learning style dimensions. So both ACS and ANN are evaluated to find which 

performs best for each learning style dimension when used as part of the LSID-SISO 

approach. The initial prediction with ACS operates exactly as described previously for 

LSID-ACS, and similarly the ANN operates exactly as LSID-ANN. As with the other 

LSID approaches, each learning style dimension is treated as a separate problem and so 

eight LSID-SISO algorithms are developed and evaluated. Four of these algorithms use 

ACS for the prediction step and are called LSID-SISO (ACS). The remaining four 

algorithms use ANN for prediction step and are called LSID-SISO (ANN). 

For the Confidence step (Figure 19), an algorithm virtually identical to LSID-
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ANN is used. An ANN was selected as, on examining the results from the mono-CI 

algorithm approaches, it was found that the ANN was the most consistent across all 

dimensions. Since the inputs and problem are similar to identifying learning styles, it is 

reasoned that it should do well. The ANN is similar to LSID-ANN having only a few 

differences. The Confidence ANN uses the initial predicted value as an additional input, 

with no pre-processing of the value needed as it already ranges from 0 to 1. The output of 

the Confidence ANN is not decoded as a learning style value but as a belief that the 

initial prediction should be regarded with low or high confidence. High confidence is 

defined as having a threshold value ≥ 0.75 (Tconf) and was found experimentally by trying 

values from 0.50 to 0.95 in increments of 0.05. For the purposes of training, a supervised 

learning model can be used for the Confidence step as an expected value can be 

computed. Since the Prediction step is fully completed before starting the Confidence 

step an initial predicted learning style (LSpredicted) is known. Similarly, the actual learning 

style (LSactual) is known from the student data. From this an expected confidence value 

can be determined. If LSpredicted - LSactual ≤ 1 – Tconf, then the initial prediction is 

considered to be of decent quality and therefore an expected value of 1 is used (high 

confidence); otherwise, the prediction is considered inaccurate and an expected value of 0 

is used (low confidence). An error (e) from the expected value and the actual output can 

then be calculated and used as the fitness value. The termination condition for the 

Confidence ANN is identical to that previously described for LSID-ANN. 

For the Solve step (Figure 19), HICON and LOWCON use ANNs for the same 

reason as above, LSID-ANN has the best overall performance of the mono-CI algorithm 

approaches when considering all of the results for all learning style dimensions. Both the 
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HICON and LOWCON are identical to LSID-ANN except for two additional inputs: the 

initial predicted value and the confidence value. The output is decoded as the identified 

learning style value as for LSID-ANN. Figures 20 and 21 show the LSID-SISO (ACS) 

and LSID-SISO (ANN) architectures from the point of view of the algorithms used for 

each step. 

Figure 20. LSID-SISO (ACS) Architecture 

 

Figure 21. LSID-SISO (ANN) Architecture 

 

3.4 Working Memory Capacity Identifiers 

Similar to the previous section, the aim of this section is to discuss how the five 

CI algorithms are used to identify WMC through the development of the WMCID 

approaches. The same two key qualities (generic and high precision) were sought for the 

WMCID approaches for identical reasons and also the WMCID approaches were 

evaluated for fairness. As with learning styles identification, genericity is achieved by 
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using behavior patterns to develop WMCID that are generic to any LMS. Precision and 

fairness are measured through the performance metrics described later in the next 

chapter. The remainder of this section will discuss the directions investigated to design 

and develop the WMCID approaches. This is followed by a sub-section on each broad 

approach used by this research: classification, optimization and hybrids. 

 The process used to develop the WMCID approaches was essentially identical to 

that used to develop the LSID approaches. A literature review was done to find an 

existing automatic approach to improve using CI algorithms. Although DeWMC (Chang 

et al., 2013) was the only approach found, it did suit the needs of this research well as it 

uses generic behavior patterns and was reasonably effective (80.9% accuracy). Three 

approaches for improving the precision of identification were considered: classification, 

optimization and hybrid algorithms. A classification approach was selected as such a 

classification algorithm may find a better function than the one used by DeWMC. 

DeWMC, like DeLeS, uses an unweighted average of hint values, or a set of weights each 

with value 1.0, to calculate the WMC for a student in a given learning session. An 

optimization approach is reasoned to be able to find a more optimal set of weights and so 

improve WMC identification precision. Although the first two approaches were expected 

to improve results, hybrid algorithms can overcome the weaknesses of mono-CI 

algorithms and so improve results further. Since there are many possible hybrids to 

choose from, first the classification and optimization approaches were evaluated and then 

a hybrid algorithm was selected based on analyzing the results. 

3.4.1 Improving WMC Identification through Classification 
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For this research, the ANN is reasoned to be a rational choice of classification 

algorithms for two reasons. As with the LSID approach development, the size of the data 

set suggests that statistical classifiers may not work as well (Niles et al., 1989) and ANNs 

are capable of representing very complex functions (Hornik et al., 1990; Mitchell, 

1997a). 

 The behavior pattern data for WMC is separated into activations and non-

activation. In DeWMC (Chang et al., 2013), both activated and non-activated behavior 

patterns are used as an indicator of WMC. In essence, the activated behavior patterns are 

positive evidence for either high or low WMC depending on the particular behavior 

pattern (as described in section 3.2), while non-activated behavior patterns are negative 

evidence. As seen in Dorca et al. (2013), for WMCID-ANN there exist three strategies. 

1. Consider only the positive evidence, 

2. Consider only the negative evidence; or, 

3. Consider both the positive and negative evidence. 

The chosen strategy determines what data is used as inputs to the ANN. For strategy 1, 

only the activated behavior pattern data is used, for strategy 2 only the non-activated 

behavior pattern data is used and for strategy 3 both are used. All three of these strategies 

were fully evaluated (i.e. all parameters optimized, all overfitting reduction strategies 

investigated and a final result produced). 

With the inputs determined, the next step was to investigate if there is any need 

for pre-processing/normalization. Unlike for with the learning styles behavior data, the 

WMC behavior pattern data has both fewer extreme outliers and most of the behavior 

data has similar scale. The minimum value for all behavior patterns is zero and the 
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maximum values ranges from 40 for the non-activations of simultaneous tasks to 472 for 

activations of recalling information. By comparison, the range of maximum values in the 

learning styles data ranges from 15 for the forum_posts behavior to 29441 for the 

exercise_stay behavior. In DeWMC (Chang et al., 2013), the three learning style 

indicators are combined into one by averaging them; however, for WMCID-ANN to 

provide more granularity the A/R, S/I and V/V learning style values were used as 

separate inputs. Since the learning style values are real values from 0 to 1, they were 

multiplied by 100 to bring them more in line with the other behavior data values. A full 

evaluation was performed using both normalization and no pre-processing. 

The output for WMCID-ANN is straightforward. As with DeWMC (Chang et al., 

2013), a real value from 0 to 1 is produced and this is decoded on a linear scale from 0 to 

60 as the OpTotal value from WebOSPAN (Lin, 2007) which as previously discussed is 

taken as the WMC value. The topology using strategy 3 for WMCID-ANN is shown in 

Figure 22. 

As with LSID-ANN, WMCID-ANN uses back propagation as the training method 

as the training data contains the actual WMC value. The error (e) is computed as the 

difference between the actual WMC and the identified WMC. The fitness of WMCID-

ANN is calculated as the average of the precision (1-e) over all samples. The termination 

condition for WMCID-ANN is identical to that for LSID-ANN. 
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Figure 22. WMCID-ANN topology using all possible inputs 

 

3.4.2 Improving WMC Identification through Optimization 

This sub-section describes how optimization algorithms were adapted to improve 

the precision of WMC identification. As for learning styles, three optimization 

algorithms, ant colony system, genetic algorithm and particle swarm optimization were 

selected to build three corresponding approaches WMCID-ACS, WMCID-GA and 

WMCID-PSO. As previously described, DeWMC (Chang et al., 2013) works by 

calculating from student behavior pattern data a set of hint values (h) that are in turn 

averaged into a WMC value. As there is no information available on the relative 

importance of any behavior pattern towards calculating WMC, DeWMC gives each hint a 
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weight of 1.0 when averaging. Although this is a reasonable assumption given the lack of 

information, it is unlikely that these weights are optimal. The WMCID approaches aim to 

enhance precision by finding a set of optimal weights for the behavior patterns. As with 

the LSID approaches, the solution space for this problem is fairly large at 1012 

combinations; therefore, it was decided to investigate using optimization algorithms as 

they search large spaces more efficiently than brute force algorithms (Russell & Norvig, 

2010). Based on literature, ACS, GA and PSO have all been successful at finding optimal 

weights (Abido, 2002; Ericsson et al., 2002; Pothiya et al., 2010) and so were selected as 

the searching algorithms. In the next paragraph, the method used by DeWMC to identify 

WMC is described in greater detail. 

DeWMC (Chang et al., 2013) identifies WMC in the following manner. For each 

learning session (the time between when a student logs into the LMS and then logs out), 

the total number of activations (act) and non-activations (nonact) for each behavior 

pattern is tracked and recorded. Additionally, if a pattern is activated or non-activated 

during the session it is considered detected and the number of patterns detected is also 

recorded (d). The WMC hint (h) for a behavior pattern is the division of activations by 

the sum of activations and non-activations (Formula 13). An additional hint (hLS) is 

calculated, as described Section 3.2.6, based on the student’s learning styles, specifically 

their A/R, S/I and V/V preferences. The learning styles hint value is applied to each 

learning session so that it will have as much importance as the hints calculated from the 

navigational patterns. Since a student’s learning styles do not change very much the 

learning styles hint value is taken as constant across all learning session.  
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Assuming n sessions, the WMC for the ith learning session (WMCi) is calculated 

based only on learning styles and the behavior patterns detected during that learning 

session. Assuming a number of detected patterns (d), the hint for the dth detected behavior 

hd  and the weight for the hint is Wd (which for DeWMC is always 1.0). Formula 14 

shows how WMCi is calculated from the sum of the hints including the learning styles 

hint (hLS weighted by WLS and divided by the number of hints (d+1 for learning styles). 

Once a WMC value has been calculated for each session on a student-by-student 

basis, a weight value for the session (Si) is calculated as the total number of activations 

for that session divided by the total number of activations across all sessions as shown in 

Formula 15. Lastly, the WMC for each student (WMCid) is determined by a weighted 

average of the WMC values across all sessions as shown in Formula 16. In a real world 

setting, these last two steps, calculating the session weights and identifying the WMC, 

would be completed after each session; however, in this research, the data was gathered 

and all calculations made after the end of the course. 

ℎ = $&>$&> +  �?�$&> (13) 

6@A
 = 6BC × ℎBC + ∑ 67 × ℎ7<7��% + 1  (14) 

�
 = $&>
∑ $&>7�7��  
(15) 

6@A
< = ∑ �7 × 6@A7�7�� �  
(16) 

 As mentioned above, the weight values for each hint are assumed to be 1.0. This 

research investigated finding optimal weight values for each of the behavior and thereby 
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improving the precision of the identified WMC value for each session (Formula 14) 

which in turn improves precision of the overall calculation (Formula 16). 

 The process for adapting each individual algorithm towards finding these weights 

is identical to the LSID approaches. Unlike for WMCID-ANN where the behavior pattern 

data could be separated into 13 inputs, for the approaches using optimization algorithms 

six weights are found as these approaches are optimizing the averaging formula (Formula 

16) used by DeWMC (Chang et al., 2013) which has six hint values (five from the 

navigation patterns and one from learning styles). When using ACS a graph is created for 

the ants to traverse with six layers with each layer having 100 nodes assigned values 

iteratively from 0.01 to 1.00 in increments of 0.01. For WMCID-GA, the genome 

consists of six genes and each gene is limited to values from 0.01 to 1.00. With the PSO, 

a hypercube with six dimensions each bounded from 0.01 to 1.00 is used.  

3.4.3 Improving WMC Identification through Hybrid Algorithms 

This sub-section discusses the two approaches used to identify WMC using 

hybrid algorithms. EANN and EANN/R are discussed as the first approach as they are 

very similar. The second approach presented is the SISO architecture as used for learning 

styles. 

On examination of the results from the mono-CI algorithm-based approaches, it 

was clear that the ANN produced the best results. Thus, it was reasoned that the focus for 

choosing a hybrid should be on overcoming a weakness of the ANN. As previously 

discussed, one of the weaknesses of the ANN is the topology forces a particular 

relationship style between the inputs and outputs. The EANN aims to search for an 
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optimal topology by using an evolutionary algorithm, with genetic algorithm being a 

typical choice (Belew et al., 1990; Yao, 1999) and in so doing produce a more precise 

function describing the relationship between behaviors (with learning styles) and WMC. 

Since it is difficult to know if a recursive or non-recursive topology is optimal, both a 

recursive and non-recursive EANN were evaluated by building and evaluating two 

approaches called, WMCID-EANN and WMCID-EANN/R respectively.  

As with other approaches that use an ANN, the first step is to decide what data 

will be used as inputs to the ANN. As will be shown in the results section, using both the 

positive and negative evidence (strategy 3) as inputs produced the best results for 

WMCID-ANN and so these the same 13 inputs are used for both the EANN and 

EANN/R. The second step is to consider what, if any, pre-preprocessing/normalization 

needs to be done to the input data. WMCID-ANN performed best (again as shown in the 

results) when the data was not normalized since the data, except the learning styles 

inputs, is of somewhat similar scale (a low range of 0 to 40 and a high range of 0 to 472) 

with almost no outliers. As the learning styles range from 0 to 1, to bring them into a 

similar range they were multiplied by 100. The output from WMCID-EANN and 

WMCID-EANN/R is the same as for WMCID-ANN, a real value from 0 to 1 which is 

mapped linearly to 0 to 60 is decoded as an OpTotal which determines the WMC of the 

student (Lin, 2007). 

Before designing the genome structure to represent the topology, a training 

method must be picked between evolutionary and hybrid training. The hybrid training 

model has the advantage of using the GA as a global search mechanism and 

backpropagation as a local search, with the main drawback of increased training time 
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compared to evolutionary training. Hybrid training was selected as the average training 

time was less than 30 minutes on an Intel i7-4770 which is not unreasonable. 

For a non-recursive EANN using hybrid training needs a genome which can 

describe all possible unweighted non-recurrent topologies. For WMCID-EANN, the same 

format is used as described by Yao (1999) for representing such a genome described in 

section 2.6.6. For an ANN of I+H+O nodes, where I is the number of inputs (13), H is 

number of hidden nodes (the number of hidden nodes is a control parameter) and O is the 

number of output nodes (1), the first input node requires I+H+O-1 genes (-1 since it 

cannot connect to itself). The second input node requires I+H+O-2 nodes (-2 since it 

cannot connect to itself or the 1st node). Since the hidden nodes cannot connect to an 

input node in a non-recursive EANN, the 1st hidden node requires H+O-1 nodes and then 

a similar pattern is followed. A similar pattern would be followed for the output nodes 

except in this case there is only 1 so it cannot connect to anything in a non-recursive 

EANN and no genes are required. Thus, the formula for the number of genes needed for a 

non-recursive EANN is shown in Formula 17. The first term represents the connection 

between inputs, where the 1st input may be connected to the 2nd, 3rd, 4th, etc. and the 2nd 

input may be connected to the 3rd, 4th, etc. The second term represents the connection 

between the hidden nodes. The third and fourth terms represent the possible connections 

from the input nodes to the hidden and output nodes respectively. The fifth and final term 

describes the connections from the hidden nodes to the output nodes. For EANN/R, the 

genome needs to describe all of the possible connections between any two nodes 

including itself which is simply the number of nodes (I+H+O) squared (shown in 

Formula 18). 
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 DEF�� = G�GH��
I + J�JH��

I +  K × L + K × M + L × M  (17) 

DEF��/O = �K + L + M�I   (18) 

For this research, it was decided that no node should be completely cut out from 

the ANN (i.e. have no inputs or no outputs). For the input node this is justified by the 

assumption that all of the behavior data is relevant and should therefore not be excluded. 

The decision was made to precisely control the number of hidden nodes in the network 

by a control parameter rather than let it vary. For the output node, it clearly cannot be 

excluded. To find an invalid topology, the rules R1 and R2 were included into the 

algorithm and all invalid genomes are given the minimum fitness value of 0. 

R1: All hidden and output nodes must have at least one input from a different 

node 

R2: All hidden and input nodes must have at least one output to a different 

node 

For genomes which produce a valid topology, the fitness of the genome is equal 

to the fitness of the resulting ANN. The fitness of the ANN is calculated exactly as 

WMCID-ANN. In other aspects the GA portion of the EANN uses the same operators 

and processing as for LSID-GA and WMCID-GA summarized as follows. The 

population is initialized to size P. From the population P/2 unique pairs are selected using 

the roulette wheel technique. The uniform crossover operator is applied to each pair to 

produce new offspring. The uniform mutation operator is applied to each new offspring. 

If no change has occurred as a result of the two operators, a single gene is forced to 
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mutate. The new offspring are merged into the population and an elitist survival strategy 

removes those with the lowest fitness until the population is of size P again. 

With respect to using a loosely couple hybrid architecture (i.e. SISO), the analysis 

of the results for WMC did not indicate that there were multiple good solutions as there 

were for learning styles. If any WMCID approach was re-trained, then the results were 

relatively consistent for each individual student; whereas, for learning styles re-training 

would produce very different individual results (as described in Section 3.3.3). Thus it is 

reasoned that if splitting the data is effective because there are multiple good solutions for 

identifying learning styles then such an architecture should not provide much 

improvement when there is no indication of multiple good solutions. Thus, an approach 

called WMCID-SISO was built and evaluated using SISO-style architecture to confirm 

that the reasoning to use it for learning styles identification was justified. Just as with 

LSID-SISO, two different algorithms were evaluated for the Prediction step, GA, as the 

best mono-optimization algorithm, and an ANN. As with LSID-SISO, the Confidence 

and Solve steps use ANNs as the ANN was found to be best overall. These two versions 

were called WMCID-SISO (GA) and WMCID-SISO (ANN) (shown in Figures 23 and 

24). In all other aspects, WMCID-SISO was developed and evaluated exactly as LSID-

SISO. 
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Figure 23. WMCID-SISO (GA) Architecture 

 

Figure 24. WMCID-SISO (ANN) Architecture 
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Chapter IV - Methods 

This chapter explains the methodology to evaluate the LSID and WMCID 

approaches. First the data sets are described and compared in size (where possible) with 

those of related works. This is followed by a discussion on the 10 fold cross validation 

process used to ensure that the algorithms are generalized. The performance metrics used 

to evaluate the LSID and WMCID approaches are then explained. A discussion is 

presented on parameter optimization process used for the CI algorithms. The chapter 

concludes with a look at overfitting reduction strategies used for the LSID and WMCID. 

4.1 Training Data 

The training data for this research consists of two data sets, one set for learning 

style identification and another for WMC identification. First, the data used for the LSID 

approaches will be discussed followed by the WMCID data set. For each data set, the 

overall data set is described and then any removals from the data set are discussed. For 

the LSID data set, it is compared in size to related works. As there are no related works 

for WMCID, no comparison is made. 

4.1.1 LSID Training Data 

The LSID data set is the same data set used by Graf et al. (2009) for evaluating 

DeLeS. The data set consists of both behavior data and the student’s actual learning 

styles (as identified by the ILS (Felder & Solomon, 1998)) for 127 students from an 

undergraduate computer science / information technology course. In order to ensure the 

identified learning styles are reliable, any student who spent less than 5 minutes filling in 

the questionnaire was eliminated from the data set. In addition, to ensure there is 
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sufficient data about each student, only students who submitted more than half of the 

assignments and took the final exam were used. After these removals, the final dataset 

consists of 75 students. This data set is of similar size to that found in the other existing 

approaches that are described as follows. Latham et al. (2012) conducted six experiments 

with data set sizes of 75, 75, 89, 76, 94 and 95. García et al. (2007) had 77 students in 

their data set (50 for training and 27 for testing). The data set is larger than that used by 

Özpolat and Akar (2009) with 40 students (10 for training and 30 for testing) and Cha 

(2006) with between 23 and 49 students as theirs varied by FSLSM dimension with 

correspondingly different sizes of training and testing data sets. 

To ensure that the LSID data set fairly represents learning styles for students the 

distribution of learning styles is examined. Table 7 shows the percentage of students in 

the data set with an active, sensing, visual or sequential learning style (shown in the 

“LSID” row) and the range of values found in literature (Felder & Spurlin, 2005). It can 

be seen that the distribution of learning styles for the data used by this research is well 

within the range of expected values. 

Table 7. Comparison of the distribution of learning styles 

 Active Sensing Visual Sequential 

LSID 52.7% 63.0% 81.9% 53.4% 

Felder & Spurlin (2005) 47-70% 46-81% 66-91% 45-85% 

 

4.1.2 WMCID Training Data 

The WMCID approaches are evaluated using a data set consisting of behavior 

pattern data and learning styles data (as identified by the ILS (Felder & Solomon, 1998)) 

and each student’s actual WMC (as identified using WebOSPAN) from 75 undergraduate 
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students. As with the LSID data set, in order to ensure that only high quality data is used 

students who spent less than five minutes on the ILS (Felder & Solomon, 1998) or 

students who had more than 15 errors in WebOSPAN were removed. This resulted in a 

final data set of 63 students. As no other automatic WMC identification algorithm could 

be found in literature, no comparison of the size of the data set is possible. 

4.2 Ten Fold Cross Validation 

A 10 fold cross validation process is used for control parameter optimization, 

evaluating overfitting reduction and producing a final result to ensure that both LSID and 

WMCID are generalized by exposing the approaches to different data sets. With the 10 

fold cross validation process, the algorithm is executed 10 times with the results averaged 

over the 10 executions each with a different training and assessment data sets, i.e. a fold, 

extracted from the overall data set. For each fold, 1/10th of the students are selected for 

the assessment set and chosen such that each student is selected for only a single fold’s 

assessment set; thereby, guaranteeing that each assessment set is unique. The remaining 

unselected students are used as the training data for the fold. 

4.3 Performance Metrics 

The performance metrics used for LSID and WMCID are very similar, with LSID 

having an extra metric. The metrics are used in every step of the evaluation, i.e. for 

control parameter optimization, evaluating overfitting strategies and producing a final 

result. The shared metrics are accuracy (ACC), lowest accuracy (LACC) and percentage 

of students identified with reasonable accuracy (%Match). LSID also uses the similarity 

metric (SIM) as it is used commonly in literature for learning styles identification (García 

et al., 2007; Graf, Kinshuk et al., 2009; Özpolat & Akar, 2009); however, no 

corresponding metric could be found for WMC. ACC and SIM measure average 
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performance, while LACC and %Match measure performance on a student-by-student 

basis. The remainder of this section will discuss SIM first, followed by ACC, LACC and 

%Match. 

SIM works by dividing learning styles values, ranging from 0 to 1, into three 

regions: an upper region (>0.75) (LSU), a lower region (<0.25) (LSL) and a balanced 

region (>=0.25 and <= 0.75) (LSB). If a student’s actual learning styles value (LSactual) is 

in the same region as the identified value (LSid) then SIM returns 1; when the two values 

are in adjacent regions SIM returns 0.5 and when they are in opposite regions SIM 

returns 0 (shown in Formula 19) where R is a function returning the region of a learning 

style value. SIM values are calculated for each student and then averaged to measure the 

precision of an algorithm over the whole student population. 

 

�K@ = P1.0 ST U�5�
<� = U�5�1(�)1:�0.5 STU�5�
<� ≠ U�5�1(�)1:� $�% �U�5�
<� = 5�X ?# U�5�1(�)1:� = 5�X� 0.0 ?>ℎY#"SZY  (19)

 

Although SIM is commonly used and is suitable for algorithms such as Bayesian 

algorithm which return a classification (e.g., returning active, balanced or reflective for 

the A/R dimension), it does have a notable drawback of reduced accuracy for approaches 

which can return concrete values (such as LSID, WMCID and DeLeS). The drawback 

occurs largely when the LSactual and / or the LSidentified are close to the region edges. For 

example, if LSactual = 0.76 and LSid = 0.74 then SIM returns a 0.5 (moderate match) even 

though this is a very close match. Although, there is no SIM-like metric for WMC, and so 

no corresponding issue, using the ACC is still reasonable as WMCID returns a concrete 

value. So to measure the performance of LSID and WMCID, the exact difference 

between actual and identified learning styles or WMC values is used as shown in 
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Formula 20 and 21 respectively. The ACC values are calculated for each student and then 

averaged to measure the precision for the algorithm. 

 

 [AABCG\ = 1 − | 5�1(�)1: −  5�
<  | 
 

(20) 

   
 [AA^_`G\ = 1 − | 6@A1(�)1: −  6@A
< | (21) 

 

Since students can be negatively affected by mismatched content or inappropriate 

interventions from a teacher (Graf, Chung et al., 2009; Kirschner, 2002; Paas et al., 2004; 

Van Merriënboer et al., 2002) it is desirable that any amount of misidentification be 

minimized. So in addition to the average metrics describe above, the results are examined 

on an individual student basis. To measure the performance of an approach with respect 

to individual students two metrics are used. For each of these metrics’ formulae the 

following definitions and assumptions are made, a data set of size n students is assumed 

where LSactual,x and LSid,x are the actual and identified learning styles for the xth student in 

the data set. Similarly, WMCactual,x and WMCid,x
 are the actual and identified WMC 

values for the xth student in the data set. The first metric is the lowest ACC (LACC) value 

calculated for any student as shown in Formulae 22 and 23. LACC measures the worst 

case scenario for any student. The second metric (%Match) is the percentage of students 

matched with reasonable precision which is defined as within half of the range of 

possible values (shown in Formula 24 and 25). For both learning styles and WMC, a 

student is considered matched if the ACC is within half of the range of possible values in 

the data set for that characteristic. For learning styles, the range of values extends from 0 

to 1, so for learning styles, a student is matched if the ACC ≥ 0.5. For WMC, the range of 
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values was 0.233 to 0.900. Half of this range is 0.333 which was rounded to 0.3 giving a 

match condition for WMC of ACC ≥ 0.7. 

 5[AABCG\ = min�d7d� [AA�5�1(�)1:,7, 5�
<,7� (22) 

   

 5[AA^_`G\ = min�d7d� [AA�6@A1(�)1:,7 , 6@A
<,7� (23) 

   

 

%@$>&ℎBCG\ =  ∑ f0.0 ST[AAg5�1(�)1:,7, 5�
<,7h < 0.51.0 ?>ℎY#"SZY�7��
�  

(24) 

   

 

%@$>&ℎ^_`G\ =  ∑ f0.0 ST[AAg6@A1(�)1:,7 , 6@A
<,7h < 0.71.0 ?>ℎY#"SZY�7��
�  

(25) 

   

4.4 Parameter Optimization 

The process to optimize the parameters for the CI algorithms is described as 

follows and differs only by the parameters and default values for each algorithm. As a 

first step, a literature review was performed to find either a suitable range or principles 

for each parameter, resulting in a set of values for each parameter. A mid-range value 

was selected from the set of values to act as a default value (shown in bold) with the 

exception of the VMax parameter for PSO as the recommended value is the highest 

possible value (Shi & Eberhart, 1998). The algorithm is executed iteratively cycling 

through every value in the set for the first parameter with the remaining parameters using 

their default value. The parameter value which produces the best result is considered the 

optimal setting and used for all subsequent executions. The process is then repeated for 

each parameter. 

4.4.1. Parameter Optimization for Artificial Neural Networks 
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The control parameters for the ANN are optimized in the following order: number 

of hidden node (H), learning rate (η), momentum (m) and training mode. Literature 

suggests an H value between log T  (where T is the size of the training set) (Wanas, 

Auda, S. Kamel, & Karray, 1998) and 2 × the number of inputs (Swingler, 1996). In this 

case, the lower bound is log 67 or 1.82 for the LSID approaches and log 57 or 1.75 for 

the WMCID approaches. To maximize the changes of optimization the lower bound is 

reduced to 1 instead of rounded up to 2. The upper bound varies for each learning style 

dimension and WMC since the number of behavior patterns (inputs) varies (24 for A/R, 

26 for S/I, 12 for V/V, 18 for S/G and 26 for WMC). For learning rate, a low value is 

suggested (Swingler, 1996) so the values evaluated were (0.001, 0.01, 0.01, 0.02, 0.03, 

0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1). Momentum is also recommended to be low so that 

it does not cause the ANN to skip past good areas during training (Swingler, 1996). So 

the values evaluated for momentum are (0.00 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 

0.08, 0.09, 0.1). Both individual and ensemble training modes are evaluated and with 

individual used as the default. The optimal parameters for algorithms which use an ANN 

are shown in Tables 8 to 19. The optimal parameters for the prediction step of LSID-

SISO (ANN) and WMCID-SISO (ANN) are the same as LSID-ANN and WMCID-ANN 

respectively as they are the same algorithm. 

Table 8. Optimal parameter settings for LSID-ANN, LSID-SISO (ANN), Prediction Step 

 H η m Training Mode 
A/R 1 0.08 0.10 Individual 
S/I 5 0.06 0.09 Individual 
V/V 8 0.08 0.06 Individual 
S/G 2 0.07 0.01 Individual 
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Table 9. Optimal Parameter Values for LSID-SISO (ACS), Confidence Step 

 H η m Training Mode 
A/R 2 0.08 0.01 Individual 
S/I 8 0.03 0.01 Individual 
V/V 3 0.02 0.05 Individual 
S/G 9 0.01 0.02 Individual 

 
 

Table 10. Optimal Parameter Values for LSID-SISO (ANN), Confidence Step 

 H η m Training Mode 
A/R 3 0.07 0.01 Individual 
S/I 8 0.05 0.04 Individual 
V/V 6 0.06 0.02 Individual 
S/G 7 0.03 0.00 Individual 

 

Table 11. Optimal Parameter Values for LSID-SISO (ACS), Solve Step 

  H η m Training Mode 

A/R 
HICON 2 0.08 0.01 Individual 

LOWCON 5 0.06 0.02 Individual 

S/I 
HICON 2 0.04 0.03 Individual 

LOWCON 7 0.03 0.02 Individual 

V/V 
HICON 3 0.02 0.05 Individual 

LOWCON 3 0.03 0.03 Individual 

S/G 
HICON 8 0.01 0.00 Individual 

LOWCON 7 0.04 0.03 Individual 
 

Table 12. Optimal Parameter Values for LSID-SISO (ANN), Solve Step 

  H η m Training Mode 

A/R 
HICON 4 0.06 0.01 Individual 

LOWCON 3 0.05 0.01 Individual 

S/I 
HICON 5 0.03 0.04 Individual 

LOWCON 6 0.03 0.01 Individual 

V/V 
HICON 3 0.03 0.03 Individual 

LOWCON 3 0.06 0.02 Individual 

S/G 
HICON 7 0.02 0.01 Individual 

LOWCON 9 0.04 0.01 Individual 
 

Table 13. Optimal Parameter Values for WMCID-ANN and WMCID-SISO (ANN), Prediction Step 

H η m 
Training 

Mode 
3 0.001 0.07 Individual 
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Table 14. Optimal ANN Parameter Values for WMCID-EANN 

H η α 
Training 

Mode 
3 0.001 0.05 Individual 

 

Table 15. Optimal ANN Parameter Values for WMCID-EANN/R 

H η m 
Training 

Mode 
8 0.01 0.03 Individual 

 

Table 16. Optimal Parameter Values for WMCID-SISO (GA), Confidence Step 

H η m 
Training 

Mode 
3 0.001 0.07 Individual 

 

Table 17. Optimal Parameter Values for WMCID-SISO (ANN), Confidence Step 

H η m 
Training 

Mode 
4 0.001 0.04 Individual 

 

Table 18. Optimal Parameter Values for WMCID-SISO (GA), Solve Step 

 
H η m 

Training 
Mode 

HICON 3 0.001 0.07 Individual 
LOWCON 5 0.01 0.04 Individual 

 

Table 19. Optimal Parameter Values for WMCID-SISO (ANN), Solve Step 

 
H η m 

Training 
Mode 

HICON 5 0.02 0.03 Individual 
LOWCON 5 0.05 0.00 Individual 

 

4.4.2. Parameter Optimization for Ant Colony System 

The following parameters are optimized for the ACS: population size (P), local 

quality weight (α), pheromone weight (β), evaporation ratio (ρ), consumption ratio (τ0), 

exploitation factor (q0). The recommended population size varies from 10 to 100 

(Aghdam, Ghasem-Aghaee, & Basiri, 2009; Dorigo & Gambardella, 1997a; Huang, 
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2001; Maier et al., 2003; Shmygelska & Hoos, 2005); however, this is expanded to 

maximize the chance of optimization giving the set of values (10, 25, 50, 100, 200).  

Table 20. Optimal Parameter Values for LSID-ACS and LSID-SISO (ACS), Prediction Step 

 P ρ τ0 q0 
A/R 100 0.80 0.20 0.00 
S/I 200 0.80 0.20 0.00 

V/V 50 0.90 0.05 0.00 
S/G 200 0.50 0.20 0.00 

 
Table 21. Optimal Parameter Values for WMCID-ACS 

P ρ τ0 q0 
100 0.80 0.03 0.80 

 

As discussed previously, since there is no information available to determine the 

local quality for any particular pattern weight, they are set to 1.0 for each link. This 

means that pheromone will quickly dominate every ant's decision so there is no need to 

optimize the α and β parameters, so both are set to 1.0. The evaporation ratio influences 

the amount of exploration vs. exploitation and so is problem specific but is generally 

preferred to be somewhat high (Dorigo & Gambardella, 1997b). The evaporation ratio 

values evaluated are (0.5, 0.6, 0.7, 0.8, 0.9). Like the evaporation ratio, the consumption 

ratio parameter influences the preference of exploration vs. exploitation, and it is 

generally preferred to be lower as if every ant consumes a lot of pheromone then there 

will quickly be none left at all. The consumption ratio values evaluated are (0.01, 0.05, 

0.10, 0.20, 0.30) (Dorigo & Gambardella, 1997b). The exploitation factor is generally 

preferred to be high so that the ants will use previously found good solutions (Dorigo & 

Gambardella, 1997b); however, the lack of a local quality is a significant change to how 

the pseudorandom proportional rule is intended to work, so the exploitation parameter is 

also evaluated as being off (q0 = 0.0) giving the set of values (0.0, 0.5, 0.6, 0.7, 0.8, 0.9). 
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The optimal parameter values computed for algorithms which used ACS are shown in 

Tables 20 to 21. The prediction step parameters for LSID-SISO (ACS) are identical to 

LSID-ACS as they are the same algorithm. 

4.4.3. Parameter Optimization for Genetic Algorithm 

The control parameters optimized for the GA are: population size (P), crossover 

weight (C) and mutation weight (M) and the parameter optimization principles that 

follow were found from reviewing literature (Grefenstette, 1986; Srinivas & Patnaik, 

1994). In general, for larger populations it is suggested to use lower crossover and 

mutation weights (Grefenstette, 1986) and vice versa; however, since no firm relationship 

is known between these parameters a variety of configurations is evaluated. Grefenstette 

(1986) recommends either very low or very high populations. His work examined up to 

160 genomes (but does not recommend this as a strict upper limit) so we expand on this 

upper limit to 200 in order to maximize the chances of finding an optimal setting. This 

gives a set of population values of (25, 50, 100, 150, 200). Crossover weight is 

recommended to be above 0.6 (Srinivas & Patnaik, 1994) and so the set of values 

evaluated is (0.6, 0.7, 0.8, 0.9). Finally mutation weight is generally preferred to be less 

than 0.05 (Grefenstette, 1986; Srinivas & Patnaik, 1994) giving a set of values of 

(0.0001, 0.001, 0.01, 0.02, 0.03, 0.04, 0.05). The optimal parameters for all algorithms 

which use a GA are shown in Table 22 to 25. The parameters for the prediction step of 

WMCID-SISO (GA) are the same as WMCID-GA as they are the same algorithm. 
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Table 22. Optimal Parameter Values for LSID-GA 

 P C M 
A / R 200 0.80 0.03 
S / I 100 0.90 0.03 
V / V 100 0.80 0.03 
S / G 400 0.70 0.04 

 

Table 23. Optimal Parameter Values for WMCID-GA and WMCID-SISO (GA), Prediction Step 

P C M 
25 0.80 0.001 

 

Table 24. Optimal Parameter Values for WMCID-EANN 

P C M 
25 0.70 0.01 

 

Table 25. Optimal Parameter Values for WMCID-EANN/R 

P C M 
25 0.70 0.01 

 

4.4.4. Parameter Optimization for Particle Swarm Optimization 

The following PSO parameters are optimized to ensure proper functioning: 

population size (P), acceleration coefficients (c1 and c2), inertia (w) and maximum 

velocity (VMax). As with the other algorithms, a literature review (Clerc & Kennedy, 

2002; Eberhart & Kennedy, 1995; Shi & Eberhart, 1998) was conducted to find 

recommended ranges for each parameter. As with the population size parameter for the 

ACS and GA, it was expanded from the recommended value of 100 or less (Clerc & 

Kennedy, 2002; Eberhart & Kennedy, 1995; Shi & Eberhart, 1998) to 400 thereby giving 

the set: (25, 50, 75, 100, 200, 400). The acceleration coefficient for the individual best 

(c1) was given the values (0.0, 0.25, 0.5, 0.75, 1.0). Since the global best position must 

always be considered, the acceleration coefficient (c2) was given the values (0.25, 0.5, 
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0.75, 1.0). The recommended range for inertia is 0.9 to 1.2 (Shi & Eberhart, 1998); 

however, this was expanded slightly to allow for a greater chance of optimization giving 

this set of values: (0.75, 0.9, 1.0, 1.1, 1.2). For bounded problems, a good initial value for 

the maximum velocity (Vmax) is recommended to be set equal to the extent of the bounds 

(Xmax) as it is likely optimal; however, a trial-and-error process is recommended to 

refine the value (Shi & Eberhart, 1998). The bounds for the problem in this research are 

the minimum (0.01) and maximum (1.0) weights, giving an Xmax = 0.99. Therefore, the 

default value for Vmax is set to 0.99 instead of a mid-range value. There is no reason to 

assess a value of Vmax>Xmax as this has the same effect as Vmax=Xmax. If a particle has 

a velocity (v) such that v≥Xmax, it simply hits the hypershape boundary. However, there 

is a reason to assess Vmax≤Xmax as this promotes exploitation of promising areas by 

preventing particles from flying away from them too quickly. A set of coefficients (0.05, 

0.1, 0.25, 0.5 and 1.0) were selected focusing on lower values to evaluate keeping the 

particles closer to promising areas. The set of Vmax values was found by multiplying 

Xmax by the each of the coefficients giving a set of value for Vmax of (0.0495, 0.099, 

0.2475, 0.495, 0.990). The optimal parameters for approaches using PSO are shown in 

Table 26 and 27.  

Table 26. Optimal Parameter Values for LSID-PSO 

 P c1 c2 w Vmax 

A / R 400 1.00 1.00 0.75 0.990 
S / I 100 0.25 1.00 1.20 0.990 
V / V 400 0.50 1.00 1.00 0.099 
S / G 50 1.00 1.00 0.90 0.495 

 

 
Table 27. Optimal Parameter Values for WMCID-PSO 

P c1 c2 w Vmax 
100 1.0 1.0 1.1 1.0 
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4.5 Overfitting Reduction Strategies 

With CI algorithms, overfitting is a common problem where the solution is fit to 

noise in the data and is not generalized to future data. Such overfitting reduces the quality 

of the found solution, i.e. reduces the precision of learning styles/WMC identification. 

Fortunately, techniques exist which can reduce overfitting and three such techniques were 

investigated for this study: stratification (Kohavi, 1995), future error prediction (FEP) 

(Mitchell, 1997b) and weight decay (Krogh & Hertz, 1992). 

Stratification works by ensuring the training sets and assessment sets are picked such 

that they have a similar distribution to expected future data sets (Kohavi, 1995). Thus, 

even if the algorithm’s solution is overfit it will be overfit to likely future data and so will 

be effective anyway. As seen in section 4.1.1., the data used in this research has a 

distribution well within the range of values found by Felder and Spurlin (2005). 

Therefore, it can be assumed that future data will be distributed similarly. To ensure that 

each training set and assessment set has a proper distribution students are first grouped in 

accordance to their preference (e.g., all students with an active preference are grouped 

together). Then for each fold's assessment set, students are picked so that the percentage 

of students in the assessment set with a particular preference is as close as possible to the 

actual percentage with that preference.  For example, for an assessment set consisting of 

7 students for the A/R dimension, 4 active students are selected as this gives the closest 

possible percentage to 52.7%. The remainder are selected from the other preference, i.e. 3 

students with a reflective preference. With respect to WMC, a common means to separate 

high and low WMC is using a split along the median (Beilock & Carr, 2005; Schmeichel, 

Volokhov, & Demaree, 2008; Tuholski, Engle, & Baylis, 2001). Thus, our data set was 
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split along the median into high and low WMC sets and an equal number of high and low 

WMC students were selected for each assessment set. With 63 students this meant that 

there were seven assessments set of size 6, and three of size 7. For the size 6, sets three 

students with high and three with low WMC were selected. For the two of the size 7 sets, 

four students with high WMC were selected and three with low WMC. For the last 

assessment set, four students with low WMC were selected and three with high WMC. 

For both learning styles and WMC, all students not in the assessment set are put into the 

training set. Stratification is assessed as either on or off. 

FEP functions by attempting to detect when overfitting starts to occur and then 

terminating the algorithm  (Mitchell, 1997b). This is done by extracting a validation set 

from the data set to represent future data samples. Whenever a new best solution is found, 

a result is produced using the validation set. If this result is worse than the previous result 

from the validation set then overfitting is assumed to be happening and the algorithm is 

terminated. FEP is assessed as either on or off. To prevent early termination due to 

chance (from unstable results) a minimum number of generations (Gmin) must be 

completed. The minimum number of generations used by FEP overrides the minimum 

number of generation requirement used by the termination condition. As no literature 

could be found suggesting values for Gmin, the values were found by examining the early 

relationship between fitness and precision (ACC) by seeking the point at which a higher 

fitness consistently produced a higher precision. It was found that stability was reached 

by generation 500 and often much sooner. Thus, the set of values used for Gmin is (25, 50, 

75, 100, 200, 300, 500). 
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The inspiration for weight decay comes from the observation that lower weight 

values for the neural links have been shown to be associated with better generalization in 

ANNs (Krogh & Hertz, 1992). With weight decay a percentage (0 < λ < 1) of the weight 

of each neural link is lost each generation. Therefore, a weight value on a neural link will 

only stay high if there is a consistent pressure from many of the samples to keep it 

elevated. The weight decay should be low so that the upwards pressure from training can 

overcome the decay when warranted. The values assessed for weight decay were (0.00, 

0.001, 0.01, 0.02, 0.03, 0.04, 0.05). 

Stratification and FEP were used for each algorithm; whereas, weight decay was 

only used with the ANN as it is ANN specific. Each combination of stratification and 

FEP were evaluated, i.e. stratification on with FEP on and each Gmin setting and FEP off 

then repeated with stratification off. For LSID-ANN, weight decay was investigated first 

and the optimal weight decay setting was used when investigating stratification and FEP. 

The optimal overfitting reduction settings for each algorithm are shown in Tables 28 to 

45. 

Table 28. Overfitting Reduction Settings for LSID-ANN and LSID-SISO (ANN), Prediction Step 

 Stratification FEP Gmin 
Weight 
Decay 

A / R On Off - 0.05 
S / I On Off - 0.05 
V / V On Off - 0.01 
S / G Off Off - 0.10 

 
Table 29. Overfitting Reduction Settings for LSID-GA 

 Stratification FEP Gmin 
A / R On On 100 
S / I On On 25 
V / V On On 75 
S / G On On 25 
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Table 30. Overfitting Reduction Settings for LSID-ACS and LSID-SISO (ACS), Prediction Step 

 Stratification FEP Gmin 
A / R On Off - 
S / I On Off - 
V / V On Off - 
S / G On Off - 

 

Table 31. Overfitting Reduction Settings for LSID-PSO 

 Stratification FEP Gmin 
A / R On Off - 
S / I On Off - 
V / V On Off - 
S / G On Off - 

 

Table 32. Overfitting Reduction Settings for LSID-SISO (ACS), Confidence Step 

 Stratification FEP Gmin Weight Decay 
A / R On Off - 0.02 
S / I On Off - 0.01 
V / V On Off - 0.01 
S / G On Off - 0.02 

 

Table 33. Overfitting Reduction Settings for LSID-SISO (ACS), Solve Step 

  Stratification FEP Gmin Weight Decay 

A / R 
HICON On Off - 0.05 

LOWCON On Off - 0.03 

S / I 
HICON On Off - 0.01 

LOWCON On Off - 0.00 

V / V 
HICON On Off - 0.01 

LOWCON On Off - 0.01 

S / G 
HICON On Off - 0.01 

LOWCON On Off - 0.02 
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Table 34. Overfitting Reduction Settings for LSID-SISO (ANN), Confidence Step 

 Stratification FEP Gmin Weight Decay 
A / R On Off - 0.02 
S / I On Off - 0.02 
V / V On Off - 0.01 
S / G On Off - 0.03 

 

Table 35. Overfitting Reduction Settings for LSID-SISO (ANN), Solve Step 

  Stratification FEP Gmin Weight Decay 

A / R 
HICON On Off - 0.03 

LOWCON On Off - 0.03 

S / I 
HICON On Off - 0.01 

LOWCON On Off - 0.00 

V / V 
HICON On Off - 0.01 

LOWCON On Off - 0.01 

S / G 
HICON On Off - 0.02 

LOWCON On Off - 0.02 
 

Table 36. Overfitting Reduction Settings for WMCID-ANN and WMCID-SISO (ANN), Prediction Step 

Stratification FEP Gmin Weight Decay 
On On 30 0.00 

 

Table 37. Overfitting Reduction Settings for WMCID-GA and WMCID-SISO (GA), Prediction Step 

Stratification FEP Gmin 
On On 25 

 

Table 38. Overfitting Reduction Settings for WMCID-ACS 

Stratification FEP Gmin 
On On 100 

 

Table 39. Overfitting Reduction Settings for WMCID-PSO 

Stratification FEP Gmin 
On On 75 
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Table 40. Overfitting reduction value sets and settings for WMCID-EANN 

 Stratification FEP Gmin Weight Decay 
GA Off Off - n/a 

ANN Off Off - 0.00 
 

Table 41. Overfitting reduction value sets and settings for WMCID-EANN/R 

 Stratification FEP Gmin Weight Decay 
GA Off Off - n/a 

ANN On Off - 0.001 
 

Table 42. Overfitting Reduction Settings for WMCID-SISO (GA), Confidence Step 

Stratification FEP Gmin Weight Decay 
On Off - 0.01 

 

Table 43. Overfitting Reduction Settings for WMCID-SISO (GA), Solve Step 

 Stratification FEP Gmin Weight Decay 
HICON On Off - 0.03 

LOWCON On Off - 0.01 
 

Table 44. Overfitting Reduction Settings for WMCID-SISO (ANN), Confidence Step 

Stratification FEP Gmin Weight Decay 
On Off - 0.01 

 

Table 45. Overfitting Reduction Settings for WMCID-SISO (ANN), Solve Step 

 Stratification FEP Gmin Weight Decay 
HICON On Off - 0.04 

LOWCON On Off - 0.03 
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Chapter V - Results 

 

This chapter will provide and compare the final results for the LSID and WMCID 

approaches obtained using the optimal parameter and overfitting reduction settings. The 

chapter is broken down into two sections with the first section presenting the results for 

the LSID approaches and the second section discussing the WMCID approaches. 

5.1 Learning Styles Identifier 

A final result with all four performance metrics is obtained for each LSID 

approach using the optimal parameter settings and the optimal overfitting reduction 

settings. First, a comparison of the SIM metric is performed between the LSID 

approaches, DeLeS (Graf, Kinshuk et al., 2009), a Bayesian approach (García et al., 

2007) and a Naïve Bayes Tree (NBTree) approach (Özpolat & Akar, 2009) (shown in 

Table 46). The other related works are not included in the comparison, because they 

either have no evaluation (Carmona et al., 2008), use simulated data (Dorça et al., 2013) 

or can only classify a subset of students (Cha et al., 2006). Also, no comparison is made 

between LSID and Oscar (Latham et al., 2012) as their approach is tied to their LMS 

while LSID is general to any LMS. The comparison on SIM shows at least one LSID 

approach is best for each learning style dimension and all of the LSID approaches are 

better than the related works when averaging over all dimensions. With respect to only 

the related works (shown below the dotted line), DeLeS is the best (or tied in S/G) among 

the related works and best amongst them when averaging all dimension. So, for the 

remainder of the performance metrics, LSID is compared only to DeLeS as shown in 

Tables 47 to 49. 
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Table 46. Comparison of results for SIM metric 

Approach 
SIM 

A/R S/I V/V S/G Average 
LSID-ANN 0.802 (2) 0.741 (7) 0.727 (7) 0.825 (1) 0.774 (5) 
LSID-ACS 0.804 (1) 0.762 (4) 0.771 (2) 0.785 (4) 0.781 (3) 
LSID-GA 0.801 (3) 0.781 (1) 0.755 (5) 0.818 (2) 0.784 (2) 
LSID-PSO 0.801 (3) 0.755 (6) 0.756 (4) 0.810 (3) 0.781 (3) 
LSID-SISO (ACS) 0.802 (2) 0.761 (5) 0.827 (1) 0.825 (1) 0.804 (1) 

LSID-SISO (ANN) 0.802 (2) 0.755 (6) 0.739 (6) 0.825 (1) 0.780 (4) 
DeLeS (Graf, Kinshuk et 
al., 2009) 

0.793 (4) 0.773 (2) 0.767 (3) 0.733 (5) 0.767 (6) 

Bayesian (García et al., 
2007) 

0.580 (6) 0.770 (3) - 0.630 (6) 0.660 (8) 

Naïve Bayes Tree 
(Özpolat & Akar, 2009) 

0.700 (5) 0.733 (8) 0.533 (8) 0.733 (5) 0.675 (7) 

 

In the A/R dimension, LSID-ACS, LSID-SISO (ACS) and LSID-SISO (ANN) are 

tied for first in the ACC and %Match metrics. For the LACC metric, LSID-SISO (ANN) 

has top result; although, LSID-SISO (ACS) is not far behind. For the S/I and V/V 

dimensions, LSID-SISO (ACS) is the top approach for all metrics. Lastly, for the S/G 

dimension LSID-SISO (ACS) has the best results for ACC and %Match, and although it 

did well in LACC, it was behind LSID-ANN and LSID-SISO (ANN). When considering 

the average result across all dimensions, LSID-SISO (ACS) has the best result in each 

dimension. 

Both LSID-SISO approaches provide an improvement over the mono-AI 

approaches in ACC in the S/I, V/V and S/G dimensions. This suggests that for those 

dimensions splitting the data set into optimal subgroups is an effective strategy. LSID-

SISO (ACS) performed generally better than LSID-SISO (ANN) for most. This suggests 

that there is a benefit to combining ACS and ANN together, and that they capitalize on 

each other strengths to some degree. 
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Table 47. Comparison of ACC results (ranks in parentheses, top result bolded) 

Approach 
ACC 

A/R S/I V/V S/G Average 
LSID-ANN 0.802 (3) 0.790 (6) 0.840 (3) 0.797 (2) 0.807 (3) 
LSID-ACS 0.819 (1) 0.797 (3) 0.799 (4) 0.737 (6) 0.788 (6) 
LSID-GA 0.795 (5) 0.796 (4) 0.794 (6) 0.774 (4) 0.790 (5) 
LSID-PSO 0.805 (2) 0.794 (5) 0.796 (5) 0.768 (5) 0.791 (4) 
LSID-SISO (ACS) 0.819 (1) 0.814 (1) 0.861 (1) 0.802 (1) 0.824 (1) 

LSID-SISO (ANN) 0.819 (1) 0.800 (2) 0.844 (2) 0.796 (3) 0.815 (2) 
DeLeS (Graf, Kinshuk et 
al., 2009) 

0.799 (4) 0.790 (6) 0.788 (7) 0.702 (7) 0.770 (7) 

 

Table 48. Comparison of LACC results (ranks in parentheses, top result bolded) 

Approach 
LACC 

A/R S/I V/V S/G Average 
LSID-ANN 0.610 (3) 0.575 (3) 0.656 (2) 0.613 (1) 0.614 (2) 
LSID-ACS 0.599 (4) 0.583 (2) 0.534 (5) 0.426 (6) 0.536 (6) 
LSID-GA 0.584 (6) 0.557 (5) 0.541 (4) 0.522 (5) 0.551 (4) 
LSID-PSO 0.596 (5) 0.551 (6) 0.482 (6) 0.524 (4) 0.538 (5) 
LSID-SISO (ACS) 0.615 (2) 0.608 (1) 0.673 (1) 0.583 (3) 0.619 (1) 

LSID-SISO (ANN) 0.627 (1) 0.573 (4) 0.638 (3) 0.608 (2) 0.612 (3) 
DeLeS (Graf, Kinshuk et 
al., 2009) 

0.435 (7) 0.389 (7) 0.226 (7) 0.134 (7) 0.296 (7) 

 

Table 49. Comparison of %Match results (ranks in parentheses, top result bolded) 

Approach 
%Match 

A/R S/I V/V S/G Average 
LSID-ANN 0.986 (4) 0.961 (3) 0.986 (3) 0.986 (2) 0.980 (3) 
LSID-ACS 1.000 (1) 0.971 (2) 0.909 (5) 0.879 (6) 0.940 (7) 
LSID-GA 0.986 (4) 0.946 (5) 0.936 (4) 0.916 (4) 0.946 (6) 
LSID-PSO 0.988 (2) 0.971 (2) 0.909 (5) 0.943 (3) 0.953 (5) 
LSID-SISO (ACS) 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1) 

LSID-SISO (ANN) 1.000 (1) 0.960 (4) 0.986 (3) 1.000 (1) 0.987 (2) 
DeLeS (Graf, Kinshuk et 
al., 2009) 

0.987 (3) 0.960 (4) 0.987 (2) 0.880 (5) 0.954 (4) 

 

5.2 Working Memory Capacity Identifier 

For each WMCID approach, a final result was produced using the optimal 

parameter and overfitting reduction settings. Overall, the results are straightforward as 
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WMCID-EANN/R provides the best results in all three metrics (shown in Table 50). 

Furthermore, it is observed that all of CI algorithms provide an improvement over 

DeWMC in all metrics.  

The improvement by WMCID-EANN and WMCID-EANN/R over the WMCID-

ANN (the top mono-CI algorithm approach) shows that the ANN topology is optimizable 

over the standard 3-layer MLP. Additionally, since the EANN/R provided a better result 

shows that recurrent connections provide an additional improvement. Although the three 

ANN variants did best, the optimization algorithms still did well showing that optimizing 

the weights can provide an improvement to identifying WMC. 

The results for the two WMCID-SISO approaches confirm that the justification of 

using SISO for learning styles is valid. For WMC, there is no observation that multiple 

solutions are equally good overall but differing for individual students as was observed 

for learning styles. Correspondingly, there is practically no improvement in the results 

when using SISO-style architecture for WMC. Some small improvement was expected 

due to specialization to the smaller data sets; however, the results suggest that this did not 

occur. 

Table 50. Comparison of ACC, LACC and %Match for the WMCID approaches 

Approach ACC LACC %Match 
WMCID-ANN 0.862 (4) 0.700 (3) 0.907 (2) 
WMCID-ACS 0.832 (8) 0.670 (7) 0.876 (4) 
WMCID-GA 0.851 (6) 0.694 (4) 0.893 (3) 
WMCID-PSO 0.835 (7) 0.685 (5) 0.876 (4) 
WMCID-SISO (GA) 0.854 (5) 0.667 (8) 0.893 (3) 
WMCID-SISO (ANN) 0.863 (3) 0.673 (6) 0.907 (2) 
WMCID-EANN 0.873 (2) 0.708 (2) 0.952 (1) 

WMCID-EANN/R 0.880 (1) 0.711 (1) 0.952 (1) 

DeWMC (Chang et al., 2016) 0.809 (7) 0.442 (7) 0.809 (5) 
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Chapter VI - Discussion 

This chapter aims to discuss the observations made on the LSID and WMCID 

approaches and is divided into four sections. The four section will discuss observation on 

the mono-CI algorithm-based LSID approaches, the hybrid LSID approaches, the mono-

CI algorithm-based WMCID approaches and the hybrid WMCID approaches in that 

order. 

6.1 Analysis of LSID Mono-CI Algorithms 

For the LSID mono-CI algorithms, three analyzes are performed. First, an 

analysis is done for how the results were achieved, focusing particularly on 

improvements in precision over DeLeS (Graf, Kinshuk et al., 2009). For each learning 

style dimension only most precise algorithm is examined meaning LSID-ACS for the A/R 

and S/I dimensions and LSID-ANN for the V/V and S/G dimensions. The second analysis 

looks at the distribution and clustering of weight values produced by optimization 

approach. The third analysis examines the performance of the individual algorithms. 

In the A/R dimension, the improvements for LSID-ACS for all three metrics came 

from a more precise identification of students with a moderate to strong reflective 

preference (LSactual ≤ 0.313). Students with +9 or +11 active preference (LSactual ≥ 0.929) 

are identified worse by LSID-ACS than DeLeS, often identified with a balanced 

preference ~0.55. Although there are not many of such students (n = 4), it is an area for 

improvement for LSID-ACS as students with such a strong preference are the ones most 

penalized by misidentification. 

LSID-ACS identifies students with a strong sensing preference (LSactual ≥ 0.929) 

and a strong intuitive preference (LSactual ≤ 0.143) better than DeLeS thereby improving 
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the LACC metric. Despite, the improvement in identifying these students, there is no 

corresponding improvement in overall precision (ACC) as LSID-ACS is less precise at 

identifying students with a very balanced preference (0.438 ≥ LSactual ≥ 0.563). LSID-

ACS misidentifies these balanced students as having a moderate or strong preference. 

The worst case is student ID#100 with an S/I value of 0.438, DeLeS identifies this 

student as 0.461; whereas, LSID-ACS identifies this student as 0.597. This is equivalent 

to a +1 sensing preference vs the actual +1 intuitive preference. Overall, since students 

with a balanced preference can handle both sensing and intuitive material this is not such 

a bad misidentification. 

LSID-ANN focuses on correctly identifying visual students as 81.9% of the 

students in the training data set have a visual preference and this maximizes fitness. This 

focus can be seen by examining the lowest and average LSidentified value. The lowest 

LSidentified = 0.51 and an average of 0.743. By comparison, DeLeS, which has no 

intelligent mechanism trying to maximize fitness, has a lowest LSidentified = 0.08 and an 

average of 0.708. The narrower identified value range found by LSID-ANN does 

improve results as seen with an improvement in both ACC from 0.788 to 0.840. 

Additionally, although DeLeS find a wider range of identified values, sometimes the 

more extreme values are very wrong resulting in a low LACC metric (0.226). For 

example, the student (id#356) with LSidentified = 0.08 has an LSactual = 0.857 while LSID-

ANN identifies this student with an LSidentified = 0.750. Overall though, it would be ideal 

to have both a wide range of identified values and high accuracy, and as will be discussed 

in Section 6.2 this was partially resolved with LSID-SISO. 

In the S/G dimension, DeLeS struggled to identify many students with a +5 or 
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stronger sequential preference (LSactual ≥ 0.786) and +5 or stronger global preference 

(LSactual ≤ 0.313). In one case, identifying a student with an LSactual = 0.071 (+9 global 

preference) as LSidentified = 0.938 (approximately a +9 sequential preference), hence the 

very low LACC value for DeLeS. LSID-ANN improves results by being more precise for 

students with moderate (± 5) to strong (± 9) preferences. However, LSID-ANN identifies 

the strongest sequential preferences (LSactual ≥ 0.929) with a balanced to moderate 

sequential preference. Similarly, students with the strongest global preferences (LSactual ≤ 

0.143) were identified with a balanced to moderate global preference by LSID-ANN. 

Behavior patterns which are the most useful for identifying learning styles should 

have the highest weights, and vice versa for those behavior patterns which are not as 

useful. To capture weights for this analysis, the most precise optimization algorithm for 

each learning style dimension was executed 10 times. For the A/R, S/I and V/V 

dimensions ACS was used and for the S/G dimension GA was used. Since each execution 

has 10 folds, this makes for a total of 100 executions for each dimension. The average 

weight across all executions is calculated for each relevant behavior pattern in each 

dimension and shown in Tables 51 to 54. The weights exhibited some clustering so, the 

weights were divided into four regions: 0 to 0.25 (very low), 0.25 to 0.5 (low), 0.5 to 0.75 

(high) and 0.75 to 1.0 (very high) and the number of times the weight falls into each 

region is recorded and shown in Tables 51 to 54. Due to the general inconsistency of the 

results, it is difficult to draw many conclusions. There is at least one behavior pattern in 

for each learning style dimension which has a consistently high weight. For example, the 

“forum_post” and “question_text” behaviors have a consistently high weight for the V/V 

dimension. Similarly, there is at least one behavior pattern with a consistent low weight 
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for each learning style dimension. To continue the example, the “forum_stay” and 

“forum_visit” have consistent low weights for the V/V dimension. The analysis suggests 

that those with consistent high weights are the most useful predictors and those with the 

consistent low weights are the least useful. This cannot be conclusively stated though 

because the importance of a weight is relative to the other weight values and too many of 

the weights are very inconsistent.  So although the data hints at possible behavior pattern 

importance more investigation is required. 

Table 51. Average weights per behavior pattern for A/R dimension as found by LSID-ACS 

Behavior Pattern Average Very Low Low High Very High 
content_stay 0.24 54 46 0 0 
content_visit 0.59 0 22 67 11 
example_stay 0.82 0 0 21 79 
execise_stay 0.32 28 65 7 0 
exercise_visit 0.51 19 23 43 15 
forum_post 0.70 0 28 12 60 
forum_visit 0.70 10 0 37 53 
outline_stay 0.28 36 64 0 0 
quiz_stay_result 0.21 68 32 0 0 
self_assess_stay 0.17 85 15 0 0 
self_assess_twice_wrong 0.73 0 29 0 71 
self_assess_visit 0.46 24 18 58 0 

 

Table 52. Average weights per behavior pattern for V/V dimensions as found by LSID-ACS 

Behavior Pattern Average Very Low Low High Very High 
content_visit 0.53 0 40 58 2 
forum_post 0.83 0 0 17 83 
forum_stay 0.17 83 17 0 0 
forum_visit 0.19 77 23 0 0 
question_graphics 0.42 21 56 5 18 
question_text 0.77 0 0 40 60 
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Table 53. Average weights per behavior pattern for S/I dimension as found by LSID-ACS 

Behavior Pattern Average Very Low Low High Very High 
content_stay 0.68 0 23 31 46 
content_visit 0.63 9 27 14 50 
example_stay 0.22 62 38 0 0 
example_visit 0.75 0 3 43 54 
exercise_visit 0.42 30 44 26 0 
question_concepts 0.63 0 41 28 31 
question_detail 0.54 18 22 60 0 
question_develop 0.72 2 19 16 63 
question_facts 0.36 39 28 31 2 
quiz_revision 0.34 39 37 24 0 
quiz_stay_result 0.37 37 26 37 0 
self_assess_stay 0.67 0 21 42 37 
self_assess_visit 0.59 3 24 54 19 

 

Table 54. Average weights per behavior pattern for S/G dimension as found by LSID-GA 

Behavior Pattern Average Very Low Low High Very High 
navigation_overview_stay 0.19 77 23 0 0 
navigation_overview_visit 0.85 0 0 9 91 
navigation_skip 0.24 54 46 0 0 
outline_stay 0.18 78 22 0 0 
outline_visit 0.29 39 56 5 0 
question_detail 0.46 18 28 54 0 
question_develop 0.35 31 44 25 0 
question_interpret 0.37 28 47 25 0 
question_overview 0.23 65 27 8 0 

 

 With respect to overfitting reduction, stratification is clearly the mechanism of 

choice as it improved results for every algorithm and dimension except LSID-ANN for 

the S/G dimension. This is not surprising as learning styles distributions tend to be fairly 

consistent from study to study (Felder & Spurlin, 2005), and this is precisely the sort of 

situation for which stratification is intended. For LSID-ANN, weight decay was also 

beneficial by improving results in every dimension. As stratification was useful for the 

S/G dimension for the remaining LSID approaches, an additional experiment was 

performed for LSID-ANN with weight decay set to 0.0 (i.e. off) and stratification on. The 
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result was ACC=0.795 which compares favourably to the result with no overfitting 

reduction at all (ACC=0.792). Thus stratification is useful in all instances; however, for 

the S/G dimension weight decay provides sufficient overfitting reduction so as to make 

stratification unnecessary. FEP only provided an improvement for LSID-GA. The 

drawback to FEP is that it reduces the training set size by 10%, so it is possible with a 

larger data set that FEP might be more helpful. 

Several observations were made on algorithm performance starting with 

examining the average number of generations completed by the algorithm before 

terminating (shown in Table 55).  First it can be seen that LSID-ACS and LSID-GA had 

a higher average number of generations than LSID-PSO and LSID-ANN which never 

exceeded the minimum. For LSID-PSO the low average number of generations is 

explained by early convergence caused by inefficient trajectories. When the individual 

and global best positions were close, the particle would tend to orbit them elliptically. 

When the individual and global best positions are distant, the particles tend towards a flat 

trajectory between both points. Thus, LSID-PSO quickly stopped finding better solutions 

and so terminated fairly quickly.  Since ANNs operate as a black box (Mitchell, 1997b) it 

is more difficult to determine why it trained so quickly; however, since LSID-ANN 

performed best overall of the mono-CI algorithms the quick training did not prevent it 

from doing well. It may simply be that an ANN is more efficient for this problem. 

Table 55. Average number of generations before termination 

Algorithm A/R S/I V/V S/G 
LSID-ACS 27745 25311 11307 26907 
LSID-GA 32698 27509 10000 27295 
LSID-PSO 10000 10000 10000 10000 
LSID-ANN 10000 10000 10000 10000 
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A literature search was done looking for techniques for measuring population 

diversity in GA, ACS and PSO. Existing techniques for considering diversity in GA 

either measure the error relative to the global optimum solution (Andre, Siarry, & 

Dognon, 2001) or are used for multi-objective GA (Farhang-Mehr & Azarm, 2002; Horn, 

Nafpliotis, & Goldberg, 1994), neither of which are applicable to LSID-GA. Instead 

diversity was considered in a manner used by Leung et al. (1997) in which they examine 

how often the same gene value was presented for every genome in the population. This 

was found to be a very rare occurrence, and never for more than one gene at a time. So it 

is concluded that diversity was fairly maintained throughout the main part of the 

processing. A technique found for ranked ant system (Nakamichi & Arita, 2004)  in 

which the number of unique solutions found by the colony each generation are counted is 

suitable for measuring diversity in ACS since the underlying concepts of the two 

algorithms are the same. The number of unique solutions was almost always equal to the 

population size, i.e. very diverse, although occasionally there were a few (5 or less, 

depending on population size) identical solutions. For LSID-PSO, the technique used to 

measure diversity has two steps (Riget & Vesterstrøm, 2002). In step 1, after each 

generation, an average point is found by averaging each coordinate in the population. In 

step 2, diversity is found as the sum of the Euclidian distances for each particle to the 

average point. Using this technique, it was quite clear that diversity was not well 

maintained with typical values being in the range from 0.04 to 0.12 × P.  

6.2 Analysis of LSID Hybrid Algorithms 

As the results for LSID-SISO (ACS) are better than LSID-SISO (ANN) (shown in 

Tables 43 to 45), except where tied in %Match and LACC for the A/R and S/G 

dimensions, the remainder of this section will analyze only LSID-SISO (ACS). The 
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analysis will look at: the effects of specialization, the effectiveness of confidence as a 

splitting mechanism, how results were improved, observations on optimal parameters 

overfitting reduction settings and algorithm performance issues. In examining how 

resulted are improved, LSID-SISO (ACS) is compared to the most precise mono-CI 

algorithm, i.e. LSID-ACS for the A/R and S/I dimensions and LSID-ANN for the V/V 

and S/G dimensions. 

LSID-SISO (ACS) is expected to provide improvements by two means: by 

capitalizing on the benefits of multiple equally good solutions, in essence allowing 

HICON and LOWCON to specialize to their data set. To show evidence of specialization 

the following calculation is made. For each student, the ACC result from the best mono-

CI approach is subtracted from the ACC result from LSID-SISO (ACS) giving a ΔACC 

for that student. So, if ΔACC is positive than LSID-SISO (ACS) improved the precision 

of identification for the student and vice versa. The ΔACC are divided into two groups 

based on whether the student was identified by HICON or LOWCON. Finally the ΔACC 

for HICON and LOWCON are summed separately. If specialization is occurring then it 

would be expected that the sum of the ΔACC values (ΣΔACC) should be positive for 

both HICON and LOWCON and this can be seen in Table 56. 

Table 56. ACC improvement by dimension for HICON and LOWCON 

ΣΔACC HICON LOWCON 
A/R +0.004 +0.022 
S/I +0.054 +0.015 
V/V +0.035 +0.012 
S/G +0.009 +0.028 

 

Overall using confidence as a means to separate the students works well at 

providing an improvement in the performance metrics; however, a deeper analysis shows 

that it has mixed results for getting each student sent to the proper solving algorithm 
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(HICON or LOWCON). A student is considered sent to the proper solver if the initial 

prediction (LSpredicted) value is within ±0.25 of the LSactual and the confidence ≥ 0.75 or if 

the LSpredicted value is not within ±0.25 of the LSactual and the confidence < 0.75. Table 57 

shows the percentage of students at each solver that were placed correctly. The results 

show that overall the algorithm is not picking by guessing as otherwise the percentages 

would be closer to 50%. 

Table 57. Percentage of students sent to correct solver 

 HICON  
%Correct 

LOWCON  
% Correct 

A/R 72% 84% 
S/I 83% 74% 
V/V 85% 73% 
S/G 73% 80% 

 

For the A/R and S/G dimensions, identifying students with a poor initial 

prediction by expressing a low confidence in the result worked well with 84% and 80% 

identified properly. The inverse is true for the S/I and V/V dimensions, where students 

with a good initial prediction had a high confidence value 83% and 85% respectively. 

Except for the V/V dimension, students who ended up at the wrong solving algorithm 

were students with a balanced preference for that dimension more than 90% of the time 

indicating that it might be more difficult to have high confidence in the identification for 

students with a balanced preference. However, since balanced students can more easily 

handle learning material for both preferences, a lack of confidence in their identification 

is not as potentially harmful. In any case, balanced students were not badly misidentified 

despite being sent to the wrong solver, except for the slight loss of precision for balanced 

students in the A/R dimension. 

On examining the students on an individual basis in the A/R dimension, it is 
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observed that when compared to LSID-ACS students are identified slightly better on 

average, while students with a balanced preference are identified slightly worse. Overall, 

this results in a small increase for the LACC metric without a corresponding increase in 

precision. By identifying students with stronger preferences more precisely is a practical 

improvement as students with a balanced preference are more able to adapt to any 

material than those with a strong preference. 

In the S/I dimension, the increase in precision is obtained as a general increase for 

all students as no student was identified worse by LSID-SISO (ACS) than LSID-ACS. 

The improvement in precision caused the increase in LACC and %Match metrics.  

Table 58. Comparison of ACC values between LSID-ANN and LSID-SISO (ACS) 

Student ID LSactual 

 
LSid 

LSID-ANN 
 

ACC 
LSID-ANN 

LSid 
LSID-SISO 

(ACS) 

ACC 
LSID-SISO 

(ACS) 
ΔACC 

75 0.438 0.726 0.712 0.648 0.790 +0.078 
175 0.438 0.805 0.633 0.683 0.755 +0.122 
200 0.438 0.691 0.747 0.583 0.855 +0.108 
242 0.438 0.837 0.601 0.621 0.817 +0.216 
295 0.438 0.831 0.607 0.630 0.808 +0.201 
593 0.438 0.759 0.679 0.675 0.763 +0.084 
129 0.313 0.693 0.620 0.589 0.724 +0.104 
177 0.313 0.690 0.623 0.590 0.723 +0.100 
225 0.313 0.704 0.609 0.515 0.798 +0.189 
72 0.214 0.756 0.458 0.590 0.624 +0.166 
255 0.214 0.687 0.527 0.335 0.879 +0.352 
 

The improvement by LSID-SISO (ACS) in the V/V dimension is obtained almost 

entirely by improving the results for the verbal students. For each verbal student a ΔACC 

value is calculated by subtracting LSID-ANN’s ACC values from the ACC value for 

LSID-SISO (ACS). Table 58 shows the calculated ΔACC, the ACC values, the actual 

(LSactual) and identified learning style (LSid) values from LSID-ANN and LSID-SISO 

(ACS). For each student, the ACC was improved by LSID-SISO (ACS) in a range from 
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0.078 to 0.352. However, it can be seen that despite the improvement all but one verbal 

student (student #255) are identified as having a visual preference (even if it is slight). 

For the S/G dimension, the increase in precision when compared to LSID-ANN is 

fairly small and split among many students. In six of the folds a single student had a drop 

in precision, hence the drop in LACC. 

As with the mono-CI algorithm-based approaches, an analysis of algorithm 

performance begins by examining the average number of generations before termination. 

Table 59 shows the average for each step in the LISD-SISO (ACS) architecture. For the 

Prediction step with ACS, the number of generations is similar to LSID-ACS and this is 

expected as the Prediction step ACS is identical to LSID-ACS. For steps which use an 

ANN, the algorithm never requires more than the minimum of 10,000 generations. 

Diversity measurements for the prediction step were performed by counting the number 

of unique solutions (Nakamichi & Arita, 2004). As with LSID-ACS, the number of 

unique solution was almost always equal to the population size, and again this is expected 

as they are the same algorithm.  As with LSID-ANN, it is difficult to assess the inner 

workings of an ANN since they operate as a black box (Mitchell, 1997b); however, based 

on the overall results for LSID-SISO (ACS) they seemed to work well. 

Table 59. Average number of generations before termination 

Algorithm A/R S/I V/V S/G 
Prediction (ACS) 28312 28501 10508 24302 
Confidence 10000 10000 10000 10000 
HICON 10000 10000 10000 10000 
LOWCON 10000 10000 10000 10000 

 

6.3 Analysis of WMCID Mono-CI Algorithms 

The same three analyzes are performed for the WMCID mono-CI algorithms as 
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for the LSID algorithms. First, an analysis is done for how the results were achieved, 

focusing particularly on improvements in precision of WMCID-ANN (the best approach) 

over DeWMC (Chang et al., 2013). The second analysis looks at the distribution and 

clustering of weight values produced by optimization approach. The third analysis 

examines the overfitting setting and performance of the individual algorithms. 

By conducting a closer examination of the results for each individual student, 

some additional observations are made. WMCID-ANN improved the identification 

accuracy (ACC) for every individual student with a WMC higher than 0.3 compared to 

DeWMC. For students with a WMC between 0.3 and 0.7 (63.4% of students in the 

dataset), WMCID-ANN has an average ACC of 0.914. When using WMCID-ANN, the 

average ACC for students with a WMC higher than 0.7 (28.6% of students in the dataset) 

is 0.791. However, the average ACC for students with a WMC lower than 0.3 (8.0% of 

students in the dataset) is 0.705. In contrast, for DeWMC, the average ACC for students 

with a WMC higher than 0.7 is 0.684 and the average ACC for students with a WMC 

lower than 0.3 is 0.748. As can be seen from these values, WMCID-ANN is identifying 

students with moderate and high WMC better than DeWMC but worse for those with low 

WMC. Most likely, this is caused by the ANN not having enough data for students with 

very high and especially very low WMC and a larger sample size would help improving 

the results of the algorithm even further. 

Since no weight clustering was observed for WMC a slightly different weight 

analysis was performed than for learning styles. For each pattern, the minimum, 

maximum and average weights across all folds from the final result are shown in Table 

60. Furthermore, Table 60 shows the percentage of learning sessions in which each 
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pattern was activated. From this table, it can be seen that the linear navigation, recalling 

learned material and learning styles patterns are weighted rather low, suggesting that the 

impact of these patterns on identifying WMC is smaller than the impact of other patterns. 

The weights for the constant reverse navigation and performing simultaneous tasks 

patterns are generally high, indicating that they are highly predictive of WMC. However, 

the performing simultaneous tasks pattern appears only in 8.25% of all learning sessions 

of all students. Accordingly, its role in identifying WMC should be investigated further 

with a sample where this pattern occurs more often. 

Table 60. Minimum, Maximum, and Average Weights and Percentage of Activated Learning Sessions per Pattern 

Pattern Min Max Average Activated 

Linear Navigation 0.03 0.13 0.07 89.98% 

Constant Reverse Navigation 0.50 0.99 0.82 78.62% 

Performing Simultaneous Tasks 0.81 1.00 0.97 8.25% 

Recalling Learned Material 0.10 0.33 0.22 58.86% 

Revisiting Passed Learning Objects 0.36 0.84 0.62 60.19% 

Learning Styles 0.02 0.17 0.10 100.00% 

 

To analyse algorithm performance, first the average number of generations 

completed by the algorithm before terminating (shown in Table 61) was examined. 

WMCID-ACS and WMCID-GA both required more than the minimum number of 

generations, but only for 3 and 4 folds out of 10 respectively. WMCID-PSO and 

WMCID-ANN both never required more than the minimum.  

Table 61. Average number of generations before termination 

Algorithm Avg # of Generations 
WMCID-ACS 11795 
WMCID-GA 15327 
WMCID-PSO 10000 
WMCID-ANN 10000 
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The next analysis of performance was to examine population diversity for the 

optimization algorithms. For WMCID-GA, the number of unique values was examined 

on a gene by gene basis in a manner similar to Leung et al. (1997) to ensure that diversity 

was being maintained. In general, gene value diversity was very high until WMCID-GA 

approached convergence, which was somewhat different than LSID-GA. This could be 

because for WMC, unlike learning styles there are not multiple equally good solutions, 

thus the GA was converging towards the single global optimal solution. Counting the 

number of unique solutions found by the ants per generation  (Nakamichi & Arita, 2004)  

to measure for WMCID-ACS showed that number of unique solutions was almost always 

equal to the population size. As with WMCID-GA, diversity did drop off slightly as the 

algorithm reached convergence although not to the same degree. WMCID-PSO has 

similar problems with diversity, measured as the sum of the Euclidian distances to an 

average point (Riget & Vesterstrøm, 2002), and inefficient trajectories as LSID-PSO. 

 With respect to overfitting reduction, when iteratively evaluating stratification 

and FEP it was observed that for every algorithm when each overfitting reduction 

technique was used alone it would improve results. As seen in section 4.5, the best 

improvement was found when they were used together.  

6.4 Analysis of WMCID Hybrid Algorithms 

As WMCID-EANN/R had better overall results that WMCID-EANN, the 

discussion on improvements will focus mainly on the recurrent version. The 

improvement in results over WMCID-ANN comes as a result of improving the 

identification of students with low WMC. With WMCID-ANN, students with WMC < 
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0.4 were identified with a WMC between 0.4 and 0.5. WMCID-EANN/R identifies these 

students with greater precision and so this improves all three metrics. As was done for 

WMCID-ANN, the average ACC was calculated for student in the ranges of WMC > 0.7, 

WMC between 0.3 and 0.7 and WMC < 0.3. For students with a WMC between 0.3 and 

0.7 (63.4% of students in the dataset), WMCID-EANN/R has an average ACC of 0.918. 

The average ACC for students with a WMC higher than 0.7 (28.6% of students in the 

dataset) is 0.838. However, the average ACC for students with a WMC lower than 0.3 

(8.0% of students in the dataset) is 0.732. In contrast, for WMCID-ANN, the average 

ACC for students between 0.3 and 0.7 is 0.914, the average with a WMC higher than 0.7 

is 0.791, the average ACC for students with a WMC lower than 0.3 is 0.705. There is not 

much improvement for students with WMC higher than 0.7; however, they were already 

well identified.  The greatest improvement is seen for students with WMC between 0.3 

and 0.7 and considerable improvement for students with WMC lower than 0.3. Despite 

the improvement for students with WMC < 0.3, WMCID-EANN/R is still a little bit 

worse than DeWMC which has an average WMC of 0.748 for those students. 

Since recurrent links improved results an analysis was made of the nature of the 

links. Table 62 shows the minimum, maximum and average number of links which were 

recurrent either to the same layer or to a previous layer. In addition, the number of links 

which were to and from the same node (links to self) is indicated in parentheses. It can be 

seen that the number and distribution of links is fairly consistent, with many input-to-

input links a few hidden-to-input links and never any hidden-to-hidden links. Also, the 

number of links to self is generally quite low.  
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Table 62. Average number of recurrent links for WMCID-EANN/R (number of links to self in parenthesis) 

Link Type 
# of Links 

Min Max Avg 
From Input to Input 63 (4) 96 (10) 78 (7) 
From Hidden to Input 4 (n/a) 10 (n/a) 8 (n/a) 
From Hidden to Hidden 0 (0) 0 (0) 0 (0) 

 

 In terms of algorithm performance, the average number of generations prior to 

termination was recorded (shown in Table 63). It can be seen that it takes more 

generations to complete training both the EANN and EANN/R than for WMCID-ANN. 

Additionally, each generation requires much more processing time since each genome 

must be decoded into an ANN and then the ANN must be trained and evaluated. Thus 

overall the processing time is greatly increased with the EANN and EANN/R approaches 

averaging ~6 minutes on an i7-4770 @ 3.40 GHz. for a single fold (execution). By 

comparison, WMCID-ANN completes a single fold in < 5 seconds on the same 

computer. For the GA part of the EANN and EANN/R, gene diversity was checked by 

examining the number of times the same gene value appears in every genome in the 

population (Leung et al., 1997). As with other uses of GA, this proved to be extremely 

rare even as the GA approached convergence.  

Table 63. Average number of generations before termination 

Algorithm Avg # of Generations 
WMCID-ANN 10000 
WMCID-EANN 13716 
WMCID-EANN/R 15101 
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Chapter VII - Conclusions 

The overarching focus of this research was to investigate how CI algorithms could 

be used to identify learning styles and WMC from student behaviors when using LMSs. 

Other related works develop an entirely new behavior framework of unknown quality 

based on literature; however, for this research it was decided to instead pick a leading 

approach and try to improve it with CI algorithms. By using an existing leading approach, 

it was possible to know that the behavior patterns were at least already somewhat 

effective for identifying learning style or WMC. A literature review found “Detecting 

Learning Styles” (DeLeS) (Graf, Kinshuk et al., 2009) and “Detecting Working Memory 

Capacity” (DeWMC) (Chang et al., 2013). DeLeS has an accuracy between 73% and 

79% based on the SIM metric which is equal to or greater than other related works 

(ignoring those with simulated data or major limitations); thereby, making it a leading 

approach. DeWMC has an accuracy of 81% based on absolute error and since no other 

automatic approach could be found in literature, it was treated as the de facto leader. 

The plan to improve DeLeS and DeWMC occurred in two broad phases. First, an 

investigation was done on using mono-CI algorithms to improve DeLeS and DeWMC. 

Second, the results from the first phase would be analyzed and an appropriate hybrid CI 

algorithm was developed based on any observations made from the analysis. The first 

phase was divided into two approaches: classification and optimization. For the 

classification approach, an ANN was used as it can find complex functions to classify 

data. DeLeS and DeWMC use an unweighted average of hint values generated from 

behavior data. So the optimization approach worked by finding an optimal set of pattern 

weights. Since little was known of the solution space describing the weights, it was 

decided that three different optimization algorithms should be used as each uses a 
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different search mechanism which is ideal for different solution spaces. The three 

optimization algorithms selected were ant colony system, genetic algorithm and particle 

swarm optimization. For learning styles, these approaches were called LSID-ANN, 

LSID-ACS, LSID-GA and LSID-PSO while for WMC they were called WMCID-ANN, 

WMCID-ACS, WMCID-GA and WMCID-PSO. To evaluate the performance of the 

approaches, three metrics were used for WMC and four for learning styles. Accuracy 

(ACC) measured overall performance while lowest ACC (LACC) and the percentage of 

students matched with reasonable accuracy (%Match) were used to measure performance 

for individual students. The fourth metric for learning styles was similarity (SIM) which 

is used commonly in literature to measure overall performance identification (García et 

al., 2007; Graf, Kinshuk et al., 2009; Özpolat & Akar, 2009). 

The result from the first phase showed that for learning styles the best approach 

was split between LSID-ACS, being best for the A/R and S/I dimensions, and LSID-

ANN being best for the V/V and S/G dimensions. When compared to DeLeS, LSID-ACS 

provided an improvement in precision for each dimension; thereby, proving that finding 

an optimal set of weights is a valid approach. LSID-ANN provided an improvement over 

DeLeS in precision for each dimension except S/I, where it did improve the LACC 

metric. LSID-ANN also was more precise than LSID-ACS, LSID-GA and  LSID-PSO in 

the V/V and S/G dimensions; therefore, this proves that an ANN is able to find a better 

function for identifying learning styles than averaging hint values (as used by DeLeS), 

even when the weights are optimized. Overall, when considering the average across all 

dimension, LSID-ANN had the best results. 
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For the second phase, it was observed that the LSID approaches would have 

similar overall results across multiple executions while different individual students 

would be identified better or worse. This suggested that performance could be improved 

by splitting the students into optimal sub-groups and then identify them with an ANN 

specialized to the sub-groups. This was accomplished building an approach called LSID-

SISO (Simply and Solve) based on a loosely coupled hybrid architecture. The 

architecture consisted of three steps and four algorithms. The first step was the Prediction 

step, in which either an LSID-ANN or LSID-ACS was used to provide an initial 

identification of the learning style making two versions of LSID-SISO, called LSID-

SISO (ACS) and LSID-SISO (ANN). The second step was the Simplify step, where an 

ANN was used to produce a confidence value on the initial predicted identification. 

Based on the confidence value, the students were split into high and low confidence 

groups. Each of the groups was then sent to a separate ANN that provides the final 

identification of the learning styles.  LSID-SISO (ACS) was found to have better results 

than LSID-SISO (ANN). LSID-SISO (ACS) was found to improve results in most 

metrics when compared to the best mono-CI approach for each learning style dimension, 

i.e. LSID-ACS for the A/R and S/I dimensions and LSID-ANN for the V/V and S/G 

dimensions. LSID-SISO (ACS) tied LSID-ACS in ACC for the A/R dimension and had a 

lower LACC than LSID-ANN for the S/G dimension). 

The results for the first phase for WMC show that every mono-CI algorithm 

provided an improvement over DeWMC in every metric. Thus, unquestionably, both 

optimizing the weights for DeWMC and using the behavior patterns and learning styles 

as inputs to an ANN were effective at providing an improvement to precision and 
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fairness. Overall, WMCID-ANN is the best approach in all metrics, with WMCID-GA as 

the best of the optimization algorithms. 

Since the ANN was the best mono-CI algorithm for identifying WMC, for the 

second phase, it was decided to use the evolving ANN (EANN) as the hybrid algorithm. 

One drawback to the ANN is that it uses a fixed topology which may be non-optimal and 

the EANN resolves this by using an evolutionary algorithm, such as GA, to search for an 

optimal topology. EANN can produce recurrent and non-recurrent topologies and so both 

were evaluated using a hybrid training model. The recurrent artificial neural network 

topology was found to provide an improvement in every metric over WMCID-ANN 

although it did have a longer training time requirement. 

The benefit of this research lay in supporting learning through student modelling. 

A student model is a queryable collection of information about students including 

elements such as learning styles and WMC (Brusilovsky & Millán, 2007). Student 

models support teachers by providing them with better insight into their students' profiles. 

This allows the teachers to offer more appropriate interventions, especially when a 

student struggles (Delozanne, Grugeon, Previt, & Jacoboni, 2003; Graf, Kinshuk et al., 

2009; Lin, 2004). Students are empowered by knowing about themselves (Felder & 

Spurlin, 2005) and benefit by understanding their strengths and weakness with respect to 

learning styles and WMC and so make better self-regulated learning choices. In addition 

to providing information directly to teachers and students, the student models are used by 

adaptive learning systems to optimize the learning environment to each student’s 

preferences and abilities (Brusilovsky & Millán, 2012). A more precise student model, in 

the case of this research with respect to learning styles and WMC, allows for adaptations 
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to be more closely matched to each student. Since providing such adaptations based on 

learning styles and WMC has been shown to improve learning outcomes (Bajraktarevic et 

al., 2003; Paas et al., 2004), satisfaction (Cordova & Lepper, 1996; Popescu, 2010), 

learning transfer (Moreno, 2004; Van Merriënboer et al., 2002) and reduce the time 

needed to learn (Cooper, 1998; Graf et al., 2009), it follows that the more precise 

identification of learning styles and WMC provided by the LSID and WMCID 

approaches will allow students to learn better and faster from courses using adaptive 

learning systems. 

The future of this research rests in three possible directions. One potential avenue 

is to use feature selection techniques to consider turning the behavior patterns on / off for 

each learning styles dimension thereby allowing the remaining behavior patterns to have 

better weights. Secondly, adaptive mechanisms, such as a decreasing inertia for LSID-

PSO, could be evaluated to see if they can further improve precision. Finally, although 

the data set is sufficient for showing that CI algorithms can improve precision of learning 

styles identification, LSID should be evaluated with a more diverse and larger data set. A 

diverse data set should show that LSID works also with students from different 

educational levels (i.e. primary school, secondary school, etc.), from various fields of 

study and backgrounds.  
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